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Abstract:    Recently, dictionary learning (DL) based methods have been introduced to compressed sensing magnetic resonance 
imaging (CS-MRI), which outperforms pre-defined analytic sparse priors. However, single-scale trained dictionary directly from 
image patches is incapable of representing image features from multi-scale, multi-directional perspective, which influences the 
reconstruction performance. In this paper, incorporating the superior multi-scale properties of uniform discrete curvelet transform 
(UDCT) with the data matching adaptability of trained dictionaries, we propose a flexible sparsity framework to allow sparser 
representation and prominent hierarchical essential features capture for magnetic resonance (MR) images. Multi-scale decompo-
sition is implemented by using UDCT due to its prominent properties of lower redundancy ratio, hierarchical data structure, and 
ease of implementation. Each sub-dictionary of different sub-bands is trained independently to form the multi-scale dictionaries. 
Corresponding to this brand-new sparsity model, we modify the constraint splitting augmented Lagrangian shrinkage algorithm 
(C-SALSA) as patch-based C-SALSA (PB C-SALSA) to solve the constraint optimization problem of regularized image recon-
struction. Experimental results demonstrate that the trained sub-dictionaries at different scales, enforcing sparsity at multiple 
scales, can then be efficiently used for MRI reconstruction to obtain satisfactory results with further reduced undersampling rate. 
Multi-scale UDCT dictionaries potentially outperform both single-scale trained dictionaries and multi-scale analytic transforms. 
Our proposed sparsity model achieves sparser representation for reconstructed data, which results in fast convergence of recon-
struction exploiting PB C-SALSA. Simulation results demonstrate that the proposed method outperforms conventional CS-MRI 
methods in maintaining intrinsic properties, eliminating aliasing, reducing unexpected artifacts, and removing noise. It can achieve 
comparable performance of reconstruction with the state-of-the-art methods even under substantially high undersampling factors. 
 
Key words:  Compressed sensing (CS), Magnetic resonance imaging (MRI), Uniform discrete curvelet transform (UDCT),  

Multi-scale dictionary learning (MSDL), Patch-based constraint splitting augmented Lagrangian shrinkage algo-
rithm (PB C-SALSA) 
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1  Introduction 
 
Magnetic resonance imaging (MRI) is a widely 

used noninvasive imaging modality for clinical di-
agnosis. However, low speed in traditional magnetic 
resonance (MR) data acquisition due to physical and 
physiological constraints remains a great challenge 
for clinical applications. One method to speed up data 
acquisition is the k-space undersampling. However, 
undersampling violates the Nyquist sampling criterion, 
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leading to aliasing artifacts. Besides, noise due to 
coils and eddy currents of human body influence the 
accuracy of k-space data. The above two factors blur 
MR image edges containing significant information 
in pathological diagnosis. Hence, undersampling MR 
image reconstruction without degrading image qual-
ity has become a focus in the field of medical imaging 
in recent years. 

Compressed sensing (CS) (Candes and Donoho, 
2004; Candes et al., 2006a; 2006b; Baraniuk, 2007) is 
a novel signal acquisition and compression technique 
that enables accurate signal recovery from dramati-
cally few measurements only if the signal is sparse or 
can be sparsely represented in a sparsifying transform 
domain. CS has shown great potential in reducing the 
data acquisition time for MRI. Compressed sensing 
MRI (CS-MRI) (Lustig et al., 2007; 2008) allows 
high-quality reconstruction from highly under-
sampled k-space data by solving a constrained mini-
mization problem with nonlinear optimization 
methods on the premise of the sparsity of images. 
CS-MRI has been a topic of great interest to the MR 
reconstruction community. A leading approach using 
Daubechies wavelet transform and total variation (TV) 
(Rudin et al., 1992) as the sparsity method and the 
nonlinear conjugate gradient descent algorithm for 
reconstruction (denoted as LDP) (Lustig et al., 2007; 
2008) has verified the efficiency of CS in rapid MRI. 

Sparsifying transform plays a key role in 
CS-MRI. The performance of reconstruction from 
highly undersampled k-space data relies greatly on 
the chosen sparsity prior. Numerous predefined ana-
lytical sparsity approaches have been exploited in 
CS-MRI, such as wavelet transform (Lustig et al., 
2007), TV (Lustig et al., 2007; 2008; Huang et al., 
2011), contourlet (Gho et al., 2010), and multi-scale 
geometric analysis (MGA) (Kim et al., 2009; Qu et al., 
2010; Zhu et al., 2013). The structured sparsity, such 
as the Gaussian scale mixture (GSM) model (Kim et 
al., 2012) and wavelet tree sparsity (Chen and Huang, 
2014), has been introduced to CS-MRI reconstruction. 
However, the predefined sparsifying transforms lack 
the adaptability to various images, and thus could not 
provide a sufficient sparse representation for the re-
constructed images. In general, the performance of 
CS-MRI reconstruction with nonadaptive sparsifying 
transforms at low undersampling rates is not good 
enough. Consequently, the loss of important edge 

details and artifacts can be shown in reconstructed 
images from undersampled k-space data due to the 
lack of local structures. These artifacts may be viewed 
as meaningful edges and possibly mislead the diag-
nosis. In contrast, learning adaptive transforms in 
CS-MRI can lead to lower reconstruction errors and 
superior image quality because the dictionary learned 
from the training sample can effectively capture local 
image features and provide a sparser representation, 
and can be finely fitted to data (Lewicki and 
Sejnowski, 2000; Rauhut et al., 2008; Elad, 2010). 

Dictionary learning (DL) (Elad, 2010) from in-
termediate reconstruction or fully sampled reference 
images has also been introduced for CS-MRI (Rav-
ishankar and Bresler, 2011; Qu et al., 2012; Ning et 
al., 2013). The trained dictionary is expected to pro-
vide sparser representation of MR images compared 
with the general sparsifying transforms, thus im-
proving the reconstruction. 

Ravishankar and Bresler (2011) proposed a 
novel framework, called dictionary learning MRI 
(DLMRI), to learn the sparsifying transform (dic-
tionary) adaptively and reconstruct the image simul-
taneously from highly undersampled k-space data. 
However, in DLMRI, sparse dictionaries are trained 
in the image domain at a single scale. MR images 
usually contain some anisotropic features at different 
scales. These intrinsic features need to be retained for 
image reconstruction. A dictionary trained from im-
age patches can fit the data finely, but it fails to rep-
resent these characteristics from multiple scales in a 
hierarchical structure. 

Qu et al. (2012) proposed the method of 
patch-based directional wavelets (PBDW), which 
trains geometric directions from undersampled data. 
However, PBDW cannot sparsify the smooth regions 
better than the conventional sparsifying transform, 
which leads to artifacts that influence geometric di-
rections. Afterwards, in PBDWS (Ning et al., 2013), 
the performance of PBDW-based undersampled MR 
image reconstruction has been improved by mini-
mizing the l0-norm of transform coefficients and ex-
tending PBDW into a two-dimensional (2D) shift- 
invariant discrete wavelet domain to enhance the 
ability of transform on sparsifying piecewise smooth 
image features. Qu et al. (2014) designed a patch- 
based nonlocal operator (PANO) to sparsify MR  
images by using the similarity of image patches. The 
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operator also leads to optimized sparse representation 
of images to be reconstructed, whereas the availabil-
ity of the guided image and how the gridding process 
affects PANO imaging with non-Cartesian sampling 
remain to be carefully analyzed. 

Hence, exploiting a more sparsifying method for 
image representation to break the bottleneck of un-
dersampling rate is crucial. The experience with the 
preconstructed transforms tells us that it is generally 
beneficial to process the signals in several different 
scales, and then to operate on each scale separately. 
This leads us to another approach for seeking proper 
dictionaries, which overcomes these limitations by 
adopting both multi-scale and learning points of view. 
By integrating the advantages of the above two 
methods and merging a learning procedure on top of 
an existing multi-scale transform, a novel framework 
of multi-scale dictionary learning (MSDL) (Rubin-
stein et al. 2010; Ophir et al., 2011) has been built. 
MSDL combines the multi-scale property of MGA 
and the superior data adaptability of trained diction-
aries. Inspired by this, using the superiority of uni-
form discrete curvelet transform (UDCT) (Nguyen 
and Chauris, 2010) and patch-based methodologies, 
in this paper, we explore the incorporation of adaptive 
dictionary learning with UDCT representation to 
introduce a more flexible framework for learning 
multi-scale sparse representations of MR images with 
overcomplete dictionaries. 

Our proposed CS-MRI algorithm is termed 
‘UDCT DL patch-based C-SALSA’, UDPC for short. 
UDPC contains two stages. A simple and easily im-
plemented zero-filling reconstruction image is chosen 
as the intermediate reconstruction for dictionary 
training. Considering that the realistic MR data gen-
erally contain phase information, the real and imagi-
nary parts of the data are treated independently in 
UDPC. In the first stage, the real and imaginary parts 
of the initialized reconstruction image are decom-
posed into multi-scale and multi-directional sub- 
bands applying UDCT, respectively. Each sub- 
dictionary of multi-scale dictionaries is trained inde-
pendently using the K-singular value decomposition 
(K-SVD) algorithm (Aharon et al., 2006; Elad and 
Aharon, 2006) from maximum overlapped patches of 
the corresponding UDCT sub-band coefficients. In 
the second stage, corresponding to blocking of MSDL 
in the UDCT domain, we extend the constraint split-

ting augmented Lagrangian shrinkage algorithm 
(C-SALSA) (Afonso et al., 2011) to fit patch-based 
sub-dictionaries, termed ‘patch-based C-SALSA’ (PB 
C-SALSA), to update the solution repeatedly until 
reaching convergence. The previously obtained re-
construction image will serve as the intermediate 
reconstruction image for the next iteration in multi- 
scale dictionary training. These two stages are per-
formed alternately until reaching convergence. 

The multi-scale UDCT dictionaries trained by 
the proposed sparsifying model can give rise to the 
more prominent sparsity for the particular image 
instance at multiple scales compared with the state- 
of-the-art methods, thereby leading to accurate cap-
turing of the intrinsic characteristics of MR images 
and substantially improved reconstruction perfor-
mance for CS-MRI. These dictionaries can then be 
used efficiently for MRI reconstruction to obtain 
satisfactory results with further reduced under-
sampling rate, potentially outperforming both single- 
scale trained dictionaries and multi-scale analytic 
transforms. In addition, the extended PB C-SALSA 
with high efficiency and stability leads to fast con-
vergence for the implementation of MR image  
reconstruction. 

 
 

2  Background and related work 

2.1  CS-MRI 

Define xP as the vector of the 2D image 

signal to be reconstructed and k-space measurements 

y=Fux, where Fum×P represents the undersampled 

Fourier encoding matrix. In CS-MRI, assume 

ΨT×P represents the analytical sparsifying trans-

form or a set of signals learned from image patches. 
Sparse representation is defined as α=Ψx, where α is 
assumed to be sparse corresponding to image x in 
domain Ψ. Reconstructing the unknown MR image x 
from measurements y using CS is to solve the 
CS-MRI optimization problem, which is denoted as 

 

0 umin || || s.t. = .
x

x F x yΨ                   (1) 

 
However, this l0 problem is generally nonconvex 

and NP-hard (Candes and Donoho, 2004; Candes  
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et al., 2006a; 2006b; Donoho, 2006). Under certain 
conditions, this l0-norm problem can be approxi-
mately replaced by the convex relaxation, l1-norm 
optimization, which simplifies the solution process of 
Eq. (1) and promotes sparsity. Besides, in the process 
of k-space data acquisition, random noise is  
unavoidable. The minimization problem in Eq. (1) 
turns into 

 

1 u 2min || || s.t. || || , 
x

Ψ F x yx              (2) 

 
where ε is a parameter which depends upon the added 
noise variance. By merging the constraint term into 
objective function (2), the formula turns out to be 
 

2
u 2 1

1
min || || || || ,

2
   

 x
xF x y Ψ            (3) 

 
where the Lagrangian multiplier λ>0 controls the 
tradeoff between solution sparsity and data fidelity. In 
Eq. (3), the error term is used to constrain the con-
sistency of the reconstructed image with k-space data, 
and the sparse constraint term is used to guarantee the 
sparsity in the transform domain. 

As pointed out by Afonso et al. (2011), parameter 
 in Eq. (2) has a straightforward meaning, which is 
proportional to the noise standard deviation, and is 
much easier to set than parameter λ in Eq. (3). Con-
sequently, in this work, we focus directly on the con-
strained problems (1) and (2) by a fast algorithm. 

2.2  Uniform discrete curvelet transform 

UDCT (Nguyen and Chauris, 2010) is a novel 
mathematical and computational tool for multi- 
resolution data representation and an innovative im-
plementation of the discrete curvelet transform, 
which uses the ideas of fast Fourier transform (FFT) 
based discrete curvelet transform and filter-bank 
based contourlet transform. The discrete curvelet 
functions are defined by a parameterized family of 
smooth windowed functions that satisfy two condi-
tions: they are 2π periodic and their squares form a 
partition of unity, and the centers of the curvelet 
functions at each resolution are positioned on a uni-
form lattice. UDCT is implemented by the FFT algo-
rithm but designed as a multi-resolution filter-bank 
with the advantages of the two methods. 

Compared with other directional, discrete, and 
nonadaptive transforms, UDCT provides a flexible 
instead of fixed number of directions at each level to 
accurately capture various directional geometrical 
structures of the image. UDCT has several advantages 
over existing transforms in practical applications, 
such as lower redundancy ratio, hierarchical data 
structure, and ease of implementation. These make 
UDCT very practical in many applications. Further-
more, its shift-invariance in the energy sense is sig-
nificant in image analysis and representation. Fig. 1 
illustrates some effective atoms learned from different 
UDCT coefficient sub-bands of some scales after 
UDCT operating on the image. For one sub-dictionary, 
all coefficients are set to zeros except one in terms of 
this sub-dictionary, to visualize a single effective 
atom of it. Passing the result of multiplying such a 
coefficient set by the learned multi-scale dictionary, 
through the uniform discrete curvelet synthesis oper-
ation, exhibits a visualization of a single ‘effective’ 
atom in the image domain, demonstrating that the 
atoms are localized and from different scales, possess 
clear directionality, and are adapted to the training 
data. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1  Visualization of some effective atoms from different 
levels/bands trained on an undersampling T2-weighted 
image of the brain using a four-level UDCT 
A separate sub-dictionary was trained for each band. Atoms 
came from the approximation band (a), the first direction of
the second level (b), the first direction of the third level (c), 
and six directions of the fourth level (d)–(i) 

(a)                       (b)                         (c) 

(d)                       (e)                         (f) 

(g)                       (h)                         (i) 
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In contrast, UDCT is more effective in approx-
imating piecewise smooth images containing rich 
geometric information such as edges, corners, and 
spikes, which is of vital importance for CS-MRI ap-
plications. UDCT has very similar asymptotic ap-
proximation properties to the curvelets (Candes and 
Donoho, 2004). To make the statement of optimal 
sparsity and approximation property more rigorous, it 
is useful to quantify the approximation performance 
from the point of view of approximation theory. The 
asymptotic convergence is actually the correct opti-
mal behavior for approximating general smooth ob-
jects having discontinuities along piecewise C2 curves. 

Denoting ˆ
Mf  as the approximation of an image f by 

the M largest transform coefficients in the corre-
sponding representation, the resulting approximation 

error (in l2-norm square) is 2
2

ˆ|| || .Mf f  It is very 

helpful to achieve the best asymptotic decay rate for 

this error in applications. Let 2C  be the space of 
functions that are twice continuously differentiable. If 
image f is C2 everywhere away from edge curves that 
are piecewise C2, the best M-term asymptotic ap-
proximation error using curvelets has a decay rate of 
O((log M)3M−2) (Candes and Donoho, 2004), which is 
essentially optimal in representing 2D image f which 
is piecewise C2 except for discontinuities along C2 
curves, and greatly outperforms that of wavelet ap-
proximations only with the decay rate of O(M−1) 
(Mallat, 2008). The error decay rate using UDCT is 
close to the theoretical optimal approximation, where 
the error decays as M−2 (Donoho, 2001). In this sense, 
the UDCT representation provides an optimally sparse 
representation of objects with singularities along 
piecewise C2 edges. The transform has the same order 
of complexity as FFT. Consequently, we consider the 
applications of UDCT using these advantages for 
multi-resolution data representation. UDCT is well 
suited to the problem of CS-MRI. 

2.3  Dictionary learning 

Dictionary learning can capture fine structures 
and details effectively for the image reconstruction 
problem. In addition, superior adaptability of trained 
dictionaries to various anisotropic image features 
could be beneficial to represent the images sparsely. 
Dictionaries learned from trained samples provide an 
adaptive sparse representation for images. For a 

complex-valued image xP, let Rijn×P be the 

operator that extracts patch xijn (image patch size 

,n n  and indexed by (i, j), the location of its 

top-left corner in the image) as a column vector from 

x denoted as xij=Rijx. T P P
ij ijij

 R R   represents a 

diagonal matrix in which the diagonal elements cor-
respond to the pixel locations of x. Each image patch 
(xij) can be sparsely represented by a learned dic-

tionary Dn×K, i.e., xij=Dαij (αij is a sparse coeffi-

cient vector of xij with respect to dictionary D). For all 
the patches, the dictionary learning model can be 
written as 

 
2
2

,
,

0 0

min || ||

s.t. || || , , ,

ij ij
Γ

i j

ij T i j



 


D

R x Dα

α
                   (4) 

 

where Γ is the sparse representation set {αij}ij of all 
training patches, and T0 the required sparsity level. 
The l0 quasi norm is used to constrain the sparsity of 
each patch representation. Sparse coding is the pro-
cess to find a sparse coefficient vector α with a given 
initial dictionary D. To tackle this DL problem,  
numerous algorithms have been proposed, concen-
trating mainly on the alternating process between 
finding the optimal dictionary and corresponding 
sparse coding. Particularly, the K-SVD algorithm 
(Aharon et al., 2006), derived from K-means, out-
performs others in terms of simplicity, flexibility, and 
efficiency. In K-SVD, the dictionary D is trained by 
solving the optimization problem, where data are 
fitted according to sparsity constraints. 

Thus, a possible formula for CS-MRI based on 
DL from image patches can be denoted as 

 
2 2
2 u 2

, ,
,

0 0

min || || || ||

s.t. || || , , .

ij ij
Γ

i j

ij

δ

T i j

  

 


x D

R x Dα F x y

α
 (5) 

 

The first term in Eq. (5) is used to capture the 
sparse approximation of x with respect to dictionary 
D, and the second term is applied to ensure k-space 
data fidelity. The positive constant δ represents the 
weight of the fidelity term in the cost function, which 
is relevant to the noise level, making the formulation 
more robust to noise. 
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DLMRI is an appealing framework to tackle  
Eq. (5), which involves settling an alternating  
minimization problem of the DL procedure using 
K-SVD and the reconstruction update process, and 
achieves a better reconstruction result than other ear-
lier methods. However, trained sparse dictionaries in 
DLMRI operate on images by considering only their 
native scales, which fails to represent intrinsic fea-
tures from multiple scales and multiple directions. 
Thus, it influences further improvement of recon-
struction performance. Furthermore, it is empirical 
and impractical to determine the optimal reconstruc-
tion parameter values in the DL process of DLMRI so 
as to reach improved reconstruction results for every 
specified image in each iteration process attributed to 
the nonconvergence of its applied reconstruction 
approach. Meanwhile, the large number of iterations 
between the DL and image update process increases 
the computational complexity. On the other hand, 
most experimental validations (except two cases) in 
Ravishankar et al. (2011) were performed using the 
images downloaded from American Radiology Ser-
vices, which have been interpolated and compressed. 
This means that their characteristics are very different 
from real MR images. Real-valued MR images have 
discarded phase information in realistic data. The raw 
MR data generally are complex-valued, containing 
phase information. The reconstruction results of 
DLMRI for complex-valued data will be discussed in 
Section 4. 

 
 

3  Proposed UDPC algorithm 
 
The predefined, global sparsifying transforms 

are typically limited in their ability to sparsify signals, 
which leads to the insufficient sparse representation 
for images of a certain type without adaptability. 
Learned dictionary from the image domain at a single 
scale can adaptively represent information for the 
particular image instance and finely fit the data, yet it 
is unable to capture the essence of image in various 
scales and directions. Multi-scale dictionary learning 
effectively combines the advantages of these two 
representations. Consequently, we propose a CS-MRI 
reconstruction method based on UDCT multi-scale 
dictionary learning. The framework of sparsifying the 
images combines the advantages of multi-scale 

UDCT and dictionary-learning methodology. Con-
sidering the computational load and PB C-SALSA, an 
efficient iterative algorithm with fast convergence is 
introduced for the implementation of reconstruction. 

The flowchart of the proposed UDPC-based 
MRI reconstruction from undersampled data is shown 
in Fig. 2. In practice, the obtained k-space measure-
ments are always complex-valued data with a phase 
component. So, we consider separating the real and 
imaginary parts of k-space data, and then handling 
them seperately. Multi-scale directional analysis is 
implemented by adopting a multi-level UDCT de-
composition. To further sparsify data, we exploit 
dictionary learning to enhance the sparsity of UDCT 
coefficients. Overcomplete dictionaries are trained on 
each sub-band in the UDCT domain. Each sub- 
dictionary is trained independently adapting to each 
coefficient sub-band of each level to deliver a sig-
nificantly sparser image representation superior to 
multi-resolution analysis alone and single-scale dic-
tionary alone. 

We propose the following model to reconstruct 
x̂  in UDPC: 

 

r

2 #
2, , ,

1 , 1

0 u 2

min || ( ) || (( ) ( ) )

s.t. || || , || || , , ,

B B

ij b b ij b bΓ
b i j b

ij bT i j

 


 

 

   

 
x D Γ

R Ψx D α D Ψx

α F x y

 

(6) 
 

where Ψ denotes the UDCT operator applied to image 
x; thus, (Ψx)b represent different coefficient sub- 
bands of the decomposition coefficients Ψx by the 
UDCT. Db (b=1, 2, …, B) represent the relevant sub- 
dictionaries learned from the UDCT coefficient 
sub-bands, where B is the total number of sub-bands 
which is related to the number of scales (J) and the 
number of directions for each scale (2νJ), i.e., 
B=J×2νJ+1. The set {Db|b=1, 2, …, B} is the learned 
multi-scale dictionary in the UDCT domain. (Db)

# 
denotes the pseudo-inverse of the trained UDCT co-
efficient sub-band dictionary Db such that (Db)

#= 
((Db)

HDb)
−1(Db)

H, where (Db)
H indicates the Hermitian 

transpose of Db. Tb is the corresponding sparsity level 
with respect to each sub-dictionary and  is a convex, 
nonsmooth regularizer, such as TV or l1-norm. Prac-
tical implementation of reconstructing x̂  by the 
proposed model contains two stages, i.e., multi-scale 
UDCT dictionary learning and MR image  



Yuan et al. / Front Inform Technol Electron Eng   2015 16(12):1069-1087 1075

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
reconstruction (solving the constrained optimization 
problem by regularization). 

3.1  Multi-scale dictionary learning based on UDCT 

In this stage, the zero-filling reconstruction im-

age H
0 u=x F y  is adopted as the intermediate image 

to initialize the reconstructed MR image. The real and 
imaginary parts of the initial image are decomposed 
by the UDCT into one lowpass, three directional 
scales (J=3), and 2vj=6 (j=1, 2, 3) directions in each 
scale, respectively. Thus, there are totally 18 direc-
tional sub-bands and one approximate sub-band from 
coarse to fine scales for the real or imaginary part. 
The corresponding sub-dictionary for each sub-band 
is trained with the sub-band coefficient of initial im-
age x, in which fitting errors of all selected training 
patches are taken into account using the correspond-
ing sub-dictionaries. Note that data patches of training 
sub-dictionaries in the MS UDCT DL process are not 
the image blocks themselves, but a fraction of the 
UDCT decomposition coefficient patches in each 
sub-band of each scale for the initial image. This 
allows further reduction of the correlation between 
the UDCT coefficients, giving rise to representing the 
image more sparsely. All sub-dictionaries are learned 
in the same way. Thus, a multi-scale hierarchical 
dictionary is achieved to permit a sparser representa-
tion for CS-MRI reconstruction. 

Each sub-dictionary is trained by solving the 
following optimization formulation: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

2
2

,
1 ,

0

min || ( ) ||

s.t. || || , , .

B

ij b b ij
Γ

b i j

ij bT i j





 


D

R Ψx D α

α

        (7) 

 
This problem describes each maximum over-

lapped patch for each UDCT coefficient sub-band 
Rij(Ψx)b as the sparsest representation αij over the 
unknown sub-dictionary Db, and aims to find the 
proper representations and the sub-dictionary. It con-
strains the sparsity of each UDCT coefficient 
sub-band by the sparsity constraint Tb and obtains the 
best fit for data. All sub-dictionaries constitute the 
multi-scale dictionaries. In each sub-band, randomly 
selected overlapped UDCT coefficient patches are 
used to train Db by dealing with Eq. (7). The over-
lapping stride l is defined as the distance in pixels 
between relevant pixel locations in adjacent patches 
(Ravishankar and Bresler, 2011). The patches for l=1 
are said to possess maximum overlap, which means 
every pixel (i, j) in each sub-band (except the ones 
near the right and bottom boundaries) would be the 
top-left corner of a square 2D patch. Each sub- 
dictionary Db is learned from the corresponding 
UDCT sub-band coefficient patches (Ψx)b by K-SVD 
(Aharon et al., 2006) with both fixed error threshold 
and sparsity threshold constraints (Ravishankar and 
Bresler, 2011), which costs less time than general 
K-SVD in solving the DL problem in Eq. (7). The 
proposed MS UDCT DL is described in Algorithm 1. 

Fig. 2  Flowchart of the proposed UDPC-based MRI reconstruction 
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Algorithm 1    Multi-scale UDCT dictionary learning 
(MS UDCT DL) for solving sub-problem (7) 
Require: the sample data applied to train multi-scale dictionary 
x, the number of decomposition levels J, the number of atoms 
per sub-dictionary K, the size of atoms in each sub-dictionary n, 
UDCT operator Ψ, scale indicator vJ 
1: Initialize multi-scale dictionary: use the UDCT to decom-
pose the initial image into B=J×2vJ+1 sub-bands. Set each 

initial sub-dictionary Dbn×K (b=1, 2, …, B) to the combi-

nation of left singular vectors of the corresponding UDCT 
coefficient sub-bands using singular value decomposition and 
some random columns of training coefficient matrix 
2: for b=1, 2, …, B do 

3:    Divide (Ψx)b to maximum overlapped patches ,ijij coef  

where coefficient patch  ( )ij ij bcoef R Ψx  is denoted as a 

column vector of size n×1 

4:   Arrange 
ijij coef  in a row vector sequentially 

5:   Extract a fraction column of 
ijij coef  randomly 

6:   Apply the K-SVD algorithm to the random partial columns 

of 
ijij coef  to train each sub-dictionary Db, separately 

7: end for 

8: Return set D of all sub-dictionaries Dbn×K (b=1, 2, …, 

J×2vJ+1) 

 
The difference between patch-based DL in the 

image domain and the presented MS DL in the UDCT 
domain in Algorithm 1 is that the former emphasizes 
only global features between image pixels, while for 
the latter even a small patch of the fine decomposition 
level affects a large area in the image domain to 
permit not only the global but also the local perspec-
tive to represent MR images. Additionally, each sub- 
dictionary is learned from the maximum overlapped 
coefficient patches of the sub-band in the UDCT 
domain, to create a ‘richness’ in the training sub-band  
 
 
 
 
 
 
 
 
 
 
 
 
 

that generates a level of shift invariance in the re-
sulting sub-dictionary. The obtained multi-scale dic-
tionary coming in the form of the collection of all 
sub-dictionaries is considered to represent an image 
more sparsely and less computationally complex 
because representations of an image in terms of the 
UDCT are decomposed into a series of relatively 
sparse coefficient sub-bands of various scales, direc-
tions, and sizes. 

3.2  PB C-SALSA for MR image reconstruction 

In this section, the UDCT DL-based reconstruc-
tion method for CS-MRI is presented, making use of 
trained dictionaries for the UDCT coefficient sub- 
bands in the first stage. The ill-posed linear inverse 
problem of estimating x̂  from y in CS-MRI requires 
regularization or prior information. Corresponding to 
the aforementioned sparsity structure, we extend the 
constraint splitting augmented Lagrangian shrinkage 
algorithm (C-SALSA) (Afonso et al., 2011) to patch- 
based C-SALSA (PB C-SALSA) since it possesses 
some wonderful properties such as high generality, 
efficiency, and stability. Then a new balanced sparse 
model in tight frame is proposed for CS-MRI (Liu et 
al., 2015), and an efficient numerical algorithm to 
solve the optimization problem (C-SALSA-B) is 
exploited to achieve faster convergence. 

The framework to obtain a numerical solution 
for the UDPC is shown in Fig. 3. We propose the 
following model to reconstruct x̂  by solving a con-
strained optimization problem: 
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#
r r

u 2

arg min ( ) arg min (( ) ( ) )
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b b

ε

  

 
Γ x

Γ Γ D Ψx
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Fig. 3  Patch-based constraint splitting augmented Lagrangian shrinkage algorithm reconstruction 
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where Db denotes the trained sub-dictionary accord-
ing to Eq. (7) in the UDCT domain, Γr the represen-
tation coefficients of the UDCT sub-band coefficients 
(Ψx)b over the corresponding sub-dictionary Db, i.e., 
Γr=(Db)

#(Ψx)b,  the regularization function with 
respect to the representation coefficients of UDCT 
coefficients over the corresponding dictionary. Eq. (8) 
involves minimizing a convex, nonsmooth regulari-
zation function, under the constraint that the solution 
explains the observed k-space data sufficiently well. 
This equation updates Γr when the trained dictionaries 
are fixed through the optimization problem. 

Then the UDCT sub-band coefficients are de-
duced by the representation coefficients and the cor-
responding sub-dictionaries. The reconstructed image 
can be obtained after the inverse transform is applied. 

That is, H
r

1

ˆ ,
B

b
b

 
  

 
x ψ D Γ  where ψH denotes the 

inverse UDCT operator. 
PB C-SALSA for solving optimization problems 

of form (8) is proposed to be derived from the modi-
fication of C-SALSA corresponding to the dictionary 
learning structure in the UDCT domain. By adding 
the indicator function of the feasible set, the ellipsoid 
E(ε, Fu, y)={x| ||Fu−y||2≤ε}, to objective function (8), 
the original constrained problem (8) turns out to be 
the following unconstrained one: 

 

#
1 2 ( , , ) u

1

min (( ) ( ) ) ( ),
B

b b E
b

l   


 I yx
D Ψx F x     (9) 

 
where parameter λ1≥0 measures the weight of the reg-
ularization term, λ2≥0 measures the weight of k-space 
data fidelity, and E(ε, I, y) is simply a closed ε-radius 
Euclidean ball centered at y. The definition of the 
Moreau proximal mapping associated with the regu-
larizer  (Combettes and Wajs, 2005) and the indi-
cator function lE(, I, y) can be found in Afonso et al. 
(2011). This mapping can be efficiently computed and 
contributes to the universality of C-SALSA for any 
kind of convex regularized term including wavelet- 
based (with orthogonal or frame-based representa-
tions) or TV regularization. If (·)≡||·||1, then Θλ is 
simply an element-wise soft threshold. If  is the 
TV-norm, one of several available iterative algo-
rithms (Chambolle, 2004; Dahl et al., 2010) is used to 
compute the corresponding function Θλ. In our im-

plementation of PB C-SALSA, the powerful TV is 
chosen as the regularizer due to its property of pre-
serving sharp edges. Then the corresponding Moreau 
proximal mapping can be computed using Cham-
bolle’s algorithm (Chambolle, 2004). 

The resulting unconstrained problem (9) is then 
transformed into a different constrained problem by 
the application of a variable splitting (VS) operation 
by defining u0={(Db)

#(Ψx)b|b=1, 2, …, B} and 
v0=Fux0. All nonoverlapping vector-form patches 
(size n×1) are arrayed to produce a matrix from the 
UDCT sub-band of the intermediate image. Results of 
(Db)

# multiplying with the above matrix are the rep-
resentation coefficients Γr of the UDCT sub-band 
coefficients over the dictionary. They are generally 
not sparse but easier to handle in our reconstruction 
approach. The proximal operator may be regarded as 
the generalized projection operator. So, the Moreau 
proximal map of lE(,I,y) is simply the orthogonal pro-
jection of Fux on the closed -radius ball centered at y, 
which can be attacked by 

 

( , , )

2
2

2

, || || ,
|| ||( )

, || || .
E εl

 



     
   

I y

v y
v y

v yΘ v y

v y v y

  (10) 

 
Then the alternating direction method of multi-

pliers (ADMM) (Gabay and Mercier, 1976; Eckstein 
and Bertsekas, 1992) is introduced to solve two 
sub-problems in Eq. (9) in terms of representation 
coefficients uk and k-space measurements vk sepa-
rately, in which k  is the index of C-SALSA iterations. 
After applying C-SALSA, we arrive at the UDPC 
reconstruction algorithm described in Algorithm 2. 

 
Algorithm 2    MS UDCT DL based MR image re-
construction by PB C-SALSA (UDPC) for solving 
problem (8) 
Require: k-space data y, the undersampled Fourier operator Fu, 
and UDCT operator Ψ 

1: Set H
0 u= , 0,k x F y and choose λ>0, J=3, 2vJ=6, B= 

J×2vJ+1, r=1 or 2 (r=1, 2 denotes the real and imaginary parts 
of an image, respectively). The initial representation coeffi-
cient of the UDCT sub-band over sub-dictionary Db is denoted 

as ( )
0 :ru  

   ( ) ( ) ( ) ( )
0 0 0

( ) ( )
0 0 0 0 0

( ) ( ) | 1, 2, , ,

= , Δ , ,

r r r r
b b b

r r

b B  

    

#

0 0

u u D Ψx

v y u u v v
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where ( )
0

r
bu  denotes the coefficients in terms of sub- 

dictionary Db, 
( )
0( )r

bΨx  denotes the sub-band coefficients of 
( )
0 ,rΨx  and the set of all sub-dictionaries is 

 ( ) ( ) | 1, 2, , , 1, 2r r
b b B r  D D  

2: Repeat 

3: H (1) (1) (1) H (2) (2) (2)( + Δ ) 1i ( + Δ )k k k k k  s Ψ D u u Ψ D u u  
H

u ( + Δ )k kF v v  

4: 
12

H ( ) ) H
1 u u

1

( )( ) ( )r r
k k

r






   
 
 ( #x Ψ D D Ψx F F s  

5:  for b=1, 2, …, B do 
6:    for r=1, 2 do 

7:        Moreau proximal mapping function of ( ) :r
bu   

( ) ( ) # ( ) ( )
( 1) 1[( ) ( ) Δ ]r r r r
k b b k b kb  u D Ψx u  

8:       ( ) ( ) ( ) ( ) ( )
( 1) 1 ( 1)Δ Δ ( ) ( )r r r r r
k b kb b k b k b    #u u D Ψx u  

9:    end for 
10: end for 

11: Assemble all ( )
( 1)

r
k bu  to form the updated ( )

( 1) ,
r
k u  and as-

semble all ( )
( 1)Δ r
k bu  to form the updated ( )

( 1)Δ r
ku  

12: Moreau proximal mapping function of v:  

( , , )1 u 1( Δ )
Ek l k k  

I y
v F x v  

13: 1 u 1 1Δ = Δ +k k k k  v v F x v  

14: 1k k   
15: Until some stopping criterion is satisfied 
16: Return x̂  

 
Then the image in the spatial domain is acquired 

as the result of the inverse UDCT to the UDCT coef-
ficients. The sub-problem with respect to lE(, I, y) can 
be efficiently solved via Eq. (10). The ultimate re-
constructed image x̂  is the result of the weighted 
average between the above regularization penalty and 
the result of Eq. (10) for one iteration. The flowchart 
for UDPC reconstruction in Fig. 3 shows clearly the 
reconstruction process based on the proposed sparsi-
fying model. 

The two stages of the UDPC are implemented 
alternatively. The previous reconstructed image 
serves as the initial image of the training dictionary in 
the next iteration, again to guarantee new features of 
the image available in the current dictionary, resulting 
in a superior reconstruction performance. This pro-
cedure is executed in a loop until some stopping cri-
terion is satisfied. The specified number of iterations 
or the difference of the mean-squared error between 
two consecutive iterations is assigned to the stopping 

criterion for PB C-SALSA reconstruction. PB 
C-SALSA fitting multi-scale dictionary structure can 
achieve fast convergence under the guarantee for the 
convergence of C-SALSA. 

3.3  Summary for UDPC 

Natural images generally exhibit meaningful 
structures and features over many scales, and can be 
analyzed and described efficiently by multi-scale 
constructions. Considering these reasons, a novel 
sparse model by training dictionaries with multi-scale 
structure in the UDCT domain is explored in our 
proposed UDPC-based MRI reconstruction from 
undersampled k-space data. This sparsity method 
maintains the advantages of both redundant sparse 
representation and MGA, thereby matching signifi-
cant constituent structures of the image in multiple 
scales and multiple directions with a small number of 
nonzero coefficients, in contrast to multi-scale anal-
ysis alone or single-scale dictionary learning alone. 
The modified PB C-SALSA fitting multi-scale dic-
tionary structure for reconstruction is presented in our 
work, which leads to a stable and rapid convergence 
with high-quality reconstruction. It means that the 
value of reconstruction parameter needs only a gen-
eral estimation for most images, manifesting the 
flexibility and robustness of our algorithm. Therefore, 
our proposed multi-scale UDCT dictionary can finely 
match the significant features of images with the 
ability of superior sparse representation for MR im-
age reconstruction under high undersampled factors. 
The details and fine features from different scales in 
MR images can be preserved in CS-MRI reconstruc-
tion with a small number of coefficients. In this way, 
UDPC outperforms the existing methods based on 
predefined transforms alone and trained dictionaries 
alone. In addition to all advantages of C-SALSA, the 
proposed UDPC is applicable to complex-valued data, 
which promotes CS-MRI theory much closer to the 
practical MRI application, along with rapid conver-
gence and ease of implementation, giving rise to 
preeminent performance in CS-MRI. 

3.4  Computational cost 

As described in Algorithm 2, the UDPC contains 
alternating operations in the UDCT domain and 
k-space. The complexity of the UDPC algorithm is 
dominated by the MS UDCT DL stage, which  
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consists of 2D UDCT decomposition and each  
sub-dictionary training, and the related sparse coding 
steps. The complexity of 2D UDCT is equal to the 
redundancy ratio multiplied with the complexity of 
FFT on data (O(Plog P)) (Nguyen and Chauris, 2010). 
The estimation of the redundancy ratio in Nguyen and 
Chauris (2010) shows that 2D UDCT has an ac-
ceptable redundancy ratio of less than 4. The training 
of the dictionary and sparse coding of patches are 
performed using the efficient implementations of a 
K-SVD with both sparsity level and error threshold 
(Ravishankar and Bresler, 2011), which works for 
both real- and complex-valued training signals. With 
the patch size denoted by n, the number of all over-
lapping patches by N=P/l2, the number of patches 
used for training by L, the number of dictionary atoms 
by K, and the number of iterations in learning by J, the 
computation in MSDL is dominated by the cost of 
sparse-coding, which scales as O(LNKnTbJ). Given 
overlap stride l=1 and the number of patches N=P, we 
have O(PKnTbJ)>>O(Plog P). This indicates that the 
sparse coding steps in Eq. (7) dominate the computa-
tional cost. As analyzed in Afonso et al. (2011), the 
computational complexity of PB C-SALSA for solv-
ing Eq. (8) in the proposed UDPC is dominated by the 
required sparse matrix-vector multiplications, vector 
additions, and the computation of the Moreau prox-
imal map, which have a cost of O(Plog P) for a wide 
choice of regularizers and frame representations. It is 
not dominated compared with the sparse coding step 
in the MS UDCT DL stage. In summary, the compu-
tational cost of the proposed UDPC algorithm re-
quires approximately O(LNKnTbJ) operations. In-
creasing the overlap stride l can reduce the number of 
overlapping patches, resulting in the reduction of 
complexity.  

 
 

4  Experiments 

4.1  Experimental setup 

To evaluate the performance of the proposed 
approach, we performed a large number of experi-
ments on in vivo MR scan and standard phantoms, 
which contain a representative T2-weighted axial MR 
complex image of human brain and water phantom 
complex data (from the Computational Imaging 
Group at Xiamen University) (Qu et al., 2012; 2014; 

Ning et al., 2013), together with a realistic phantom 
for CS-MRI reconstruction (simulated data). To test 
the performance of the UDPC with different sampling 
patterns, 2D variable-density random sampling pat-
tern (Trzasko and Manduca, 2009), Cartesian sam-
pling with random phase encode scheme, and the 
pseudo radial line sampling were used to undersample 
the k-space data. Densities of MR images were nor-
malized to [0, 1]. In this section, experiments at a 
variety of undersampling factors and sampling 
schemes were performed. The performance of the 
proposed UDPC was compared with those of six 
related methods: the leading LDP method (Lustig et 
al., 2007), adopting four levels of Daubechies wavelet 
decomposition for sparsifying image and C-SALSA 
(Afonso et al., 2011) (wav_CSALSA for short), 
DLMRI (Ravishankar and Bresler, 2011), PBDW (Qu 
et al., 2012), PBDWS (Ning et al., 2013), and PANO 
(Qu et al., 2014) reconstruction. 

All experiments were implemented in MATLAB 
R2011b. Computations were performed employing a 
64-bit Windows 7 operating system workstation with 
an Intel Xeon E5 CPU at 2.80 GHz and 8 GB 
memory. 

Parameters needed in our algorithm were set as 
follows. The UDCT was of three levels, with each 
level possessing six directions acting on the initial 
image, thus obtaining 19 coefficient sub-bands in-
cluding an approximation sub-band and six high-pass 
directional sub-bands of each level. We used the 
UDCT coefficient patches of size n=8×8 to train 
overcomplete sub-dictionaries of K=80 atoms using 
J=20 iterations in learning of K-SVD. These param-
eters were chosen based on empirical tradeoffs be-
tween performance and efficiency. Maximum overlap 
stride l=1 for adjacent patches was applied to divide 
each sub-band into maximum overlapped patches for 
training each sub-dictionary. The MSDL stage em-
ployed 20 iterations, and fraction of patches L=16 000 
for training. The fixed sparsity thresholds of Tb1≈0.1×n 
for approximation sub-band and Tb2≈(0.02–0.05)×n 
for high-pass directional sub-bands were employed to 
train different sub-dictionaries. In the process of 
training sub-dictionaries, the coefficient matrix was 
split into 8×8 patches. Data of each patch were ar-
ranged to a column vector. All patches formed a new 
matrix in the form of a column vector. Then left sin-
gular vectors obtained by SVD for the new matrix 
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constituted a part of the initial sub-dictionary in the 
K-SVD learning stage. The other part consisted of 
some random columns of the new coefficient matrix. 
Each directional sub-dictionary of each scale was 
trained independently using the K-SVD algorithm. 
Each of the maximum overlapped patches was 
sparse-coded subject to the corresponding sparse 
threshold Tb. In the patch-based C-SALSA recon-
struction process, the UDCT coefficient sub-bands 
were split into maximum overlapping patches (Rav-
ishankar and Bresler, 2011). To ensure convergence, 
PB C-SALSA performed 50 inner iterations when the 
trained multi-scale dictionary {Db} was fixed. The 
whole alternating procedure between MSDL and PB 
C-SALSA reconstruction in UDPC needed only to 
perform a relatively small number of iterations, such 
as one or two outer iterations, under a variety of 
sampling trajectories and acceleration factors. 

The numerical metrics of quality assessment for 
reconstructed images in this study are as follows: 

1. Peak signal-to-noise ratio (PSNR)  
Suppose x  is the fully sampled MR image, and 

x̂  the reconstructed image. Then PSNR is defined as 
 

 PSNR 20lg 255 MSE (dB),         (11) 

 

where 
1 1
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    ((M, N) 

represents the size of the MR image). 
2. Structural similarity (SSIM) (Wang et al., 

2004) 
SSIM represents the structural similarity index 

based on the degradation of structural information. 
The detailed explanation can be found in Wang et al. 
(2004). 

3. Transferred edge information (TEI) (Qu et al., 
2002) 

TEI measures the amount of transferred edge 
information, which is defined as 

 
ˆ ˆTEI ,g aQ Q  xx xx                         (12) 

 

where ˆ
gQ xx and ˆ

aQ xx  represent the edge strength and 

orientation preservation value, respectively (the 
meanings of subscripts a and g are referred to Xydeas 
and Petrović, 2000). 

4. Relative l2-norm error (RLNE) (Qu et al., 
2010) 

To evaluate the reconstruction error, we use 
RLNE, which is defined as 
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5. Concordance correlation coefficient (CCC) 
(Lin, 1989) 

We used Lin’s CCC (Lin, 1989) to measure the 
agreement between the reconstructed image ˆ( )x  and 

the full sampling result ( ).x  The degree of concord-

ance between the two measures can be characterized 
by the expected value of their squared difference: 

 
2 2 2 2
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where μ denotes the mean, σ denotes the variance, and 
ρ is the Pearson correlation coefficient. The formula 
of CCC is as follows: 
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where 
2

2
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 ˆ ,   x x  and    

ˆ ˆ| | .     x x x x  

The quantity ω is the scale shift, and the quantity 
υ is the location shift relative to scale. The correlation 
ρ is a measure of precision and the quantity χa is a 
measure of accuracy. 

4.2  Performance without noise 

4.2.1  Water phantom 

The case of standard water phantom complex 
data (Qu et al., 2012; 2014; Ning et al., 2013) using 
the UDPC reconstruction is as shown in Fig. 4. The 
water phantom data were acquired on a 7 T Varian 
MRI system (Varian, Palo Alto, CA, USA) with the 
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spin echo sequence (TR/TE2000/100 ms, 80 mm 
×80 mm field of view, 2 mm slice thickness). The 
phantom for the MRI system was used for evaluating 
the image quality and testing the MRI machine per-
formance. The phantom was well suited to assess the 
spatial resolution qualitatively and quantitatively over 
a wide range. It contained simple geometric objects 
that were the simple representations of anatomical 
structures. These objects possessed different gray 
scales, contrast, and spatial resolutions. They were 
important in evaluating MR image quality. Fig. 4a 
shows a fully sampled water phantom image (size 
256×256). Pseudo-radial sampling pattern with sam-
pling rate 25.97% shown in Fig. 4b was employed for 
the water phantom. 

From the experimental results, the proposed 
method achieves the best resolution among all the 
methods (Fig. 4). The results using wav_CSALSA 
(Fig. 4d) and PBDW (Fig. 4f) demonstrate large er-
rors in the smooth region. The reconstruction with 
LDP (Fig. 4c) and DLMRI (Fig. 4e) can suppress the 
artifacts, but the edges of water phantom and three 
circular objects show the presence of loss of consid-
erable details and blurring around edges, whereas 
PBDWS, PANO, and UDPC reconstructed images 
exhibit clear edge details and few artifacts. The local 
regions of reconstructed images in Figs. 4c–4i are 
scaled up (by a factor of 2) for detailed observations. 
These details clearly show that UDPC performs 
slightly better in reconstructing clear curve-like de-
tails. Most image features are obtained using UDPC, 
which shows the superior performance of our algo-
rithm in reconstructing the curve-like characteristics 
of MR images. Meanwhile, the edge of objects is  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

much clearer and sharper than those obtained using 
the compared approaches. The homogeneity and 
image intensities of UDPC-based reconstruction ap-
pear well, which permits the visualization of small 
details with less graininess. 

The magnitudes of the reconstruction error be-
tween the fully sampled MR image (Fig. 4a) and 
reconstruction results using these methods (Figs. 
4c–4i) are shown on the same scale of [0, 0.25] (Figs. 
4c1–4i1). We can observe that the magnitude of the 
reconstruction error for the proposed approach is the 
lowest among these methods. The error magnitudes of 
several compared methods (Figs. 4c1–4f1) show 
many more regions of high error, indicating loss of 
fine structured features. Their RLNEs are 0.05, 0.29, 
0.07, 0.05, 0.04, 0.04, and 0.04, respectively. The 
assessment indices of PBDWS, PANO, and UDPC 
are very close. Their differences appear in the third 
decimal place. In other words, the proposed UDPC is 
highly effective at preserving more details and pro-
ducing an artifact-free reconstruction (Fig. 4i), which 
looks close to the fully sampled image. The proposed 
method achieves lower reconstruction error and 
higher visual quality than conventional CS-MRI 
methods. 

4.2.2  CS phantom 

The CS phantom (Fig. 5a) was provided by Da-
vid Smith (http://www.mathworks.com) and is a test 
phantom tailored to CS-MRI algorithm development. 
This more accurately simulates what occurs when a 
physical phantom is sampled in an MRI scanner. 
Various shaped objects with different gray scales and 
directional features are contained in the phantom. It is  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4  Comparison of reconstruction results for a water phantom 
(a) Fully sampled water phantom (256×256); (b) Simulated k-space trajectory (pseudo-radial lines mask with 25.97% sampling 
rate); (c)–(i) Reconstruction using LDP, wav_CSALSA, DLMRI, PBDW, PBDWS, PANO, and the proposed UDPC, respec-
tively; (c1)–(i1) Magnitudes of reconstruction errors for (c)–(i) with the scale of [0, 0.25], respectively 
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designed to be non-sparse under a gradient transform 
and to contain features difficult to reproduce with 
partial Fourier sampling. This phantom can be used to 
evaluate the quality and accuracy of CS-MRI recon-
struction algorithms in the noise-free domain so that 
real-world applications of CS-MRI may be improved. 
CS data acquisition is simulated by undersampling 
the 2D discrete Fourier transform of the CS phantom 
image. A variable-density Cartesian sampling pattern 
with a sampling rate of 25% is employed on CS 
phantom data (Fig. 5b). Gibbs ringing artifacts are 
prevalent at the object boundaries in the reconstructed 
images using other three methods (Figs. 5c–5e). LDP, 
wav_CSALSA, and DLMRI reconstructions with less 
contrast and loss of considerable details still show the 
presence of a considerable amount of aliasing and 
blurring around the edges. By contrast, the proposed 
method significantly suppresses these artifacts and 
preserves the edges (Fig. 5i), which shows the supe-
riority in sharpness of small features and the level of 
Gibbs ringing and aliasing. More details are visible 
because this image has higher spatial resolution. In 
particular, some rings in the CS phantom have dif-
ferent gray scales. It is not hard to see that several 
rings in the middle with lower gray scales and con-
trast can be clearly distinguished only in the image 
reconstructed using our method. This is very im-
portant for clinical diagnosis, because some inchoate 
diseased tissue with low gray levels and contrast in 
MRI images cannot be faithfully rendered in MRI 
images if using some poor reconstruction method, 
which could delay the early diagnosis of some dis-
eases. Our method performs even better in  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
reconstructing clear edges and fine features, and can 
obtain preeminent reconstruction performance among 
state-of-the-art methods. 

4.2.3  T2-weighted image of the brain 

Fig. 6 shows the obtained comparison of 
CS-MRI reconstruction results using UDPC versus 
other approaches from undersampled k-space data for 
a T2-weighted MR image of the brain (Qu et al., 2012; 
2014; Ning et al., 2013) (size 256×256). The complex 
raw data were acquired from a healthy volunteer  
using a 3 T Siemens Trio Tim MRI scanner using the 
T2-weighted turbo spin echo sequence with sequence 
parameters TR/TE6100/99 ms, 220 mm×220 mm 
field of view, and 3 mm slice thickness. The SENSE 
reconstruction with reduction factor 1 is performed to 
compose a full k-space of gold standard images. 
These full k-space data are used for emulating single- 
channel MRI. Variable-density random sampling 
pattern with 20.05% sampling rate is employed. 

To test the performance of our algorithm, 2D 
variable density random sampling with sampling rate 
20.05% (Fig. 6a), was used to undersample the 
k-space data of the T2-weighted brain image. The 
LDP reconstruction result suffers from significant 
undesirable artifacts and loss of detail features, which 
can be seen in our latter experiments as well. Obvi-
ously, the MRI images reconstructed using LDP, 
wav_CSALSA, DLMRI, and PBDW suffer consid-
erably from less contrast and less visibility in some 
tissue structures, which is clearly seen to have many 
undesirable artifacts and much loss of features. The 
quality of reconstruction results obtained using  

Fig. 5  Comparison of reconstructions using different methods for CS phantom 
(a) Reference CS phantom image (256×256); (b) Cartesian sampling mask with sampling rate 25%; (c)–(i) Reconstruction using 
LDP, wav_CSALSA, DLMRI, PBDW, PBDWS, PANO, and UDPC, respectively; (c1)–(i1) Magnitudes of reconstruction errors
for (c)–(i) with the scale of [0,0.25], respectively 



Yuan et al. / Front Inform Technol Electron Eng   2015 16(12):1069-1087 1083

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
PBDWS, PANO, and the proposed approach has a 
large degree of improvement. As shown in Fig. 6i, the 
reconstruction using UDPC is relatively devoid of 
aliasing artifacts. Gibbs ringing artifacts have been 
drastically mitigated by employing the proposed ap-
proach compared with the others due to the sparsify-
ing model in our method. Specifically, in comparison 
to other methods, the images reconstructed using 
UDPC can provide good contrast between gray and 
white matters. The anatomic structure of bilateral 
basal ganglia is depicted well. Cerebral cisterns and 
sulci are present with a clear border. The MR images 
reconstructed using UDPC with higher contrast and 
spatial resolution can preserve tissue boundary integ-
rity and texture of tissue well. To better illustrate the 
reconstruction performance of UDPC for some fine 
features of MR images, the comparison with visual 
appearance is given in the zooming regions of Fig. 6 
(areas marked by red arrows). The PSNRs of these 
methods are 31.92, 33.64, 30.99, 36.68, 38.82, 37.24, 
and 37.96 dB, respectively. Their RLNEs are 0.16, 
0.13, 0.17, 0.09, 0.08, 0.09, and 0.09, respectively. It 
shows that edges are better preserved and lower re-
construction errors are achieved using UDPC than 
using the earlier methods. The proposed method can 
achieve comparable performance with PANO and 
PBDWS. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

4.3  Performance under noisy circumstances 
 
To demonstrate the performance of the proposed 

method in the noisy case, zero-mean complex 
Gaussian white noise with standard deviation σ=10.2 
is added to the k-space data. Fig. 7 shows the recon-
struction results of the proposed method and other 
methods from k-space noisy data in Fig. 6a, employ-
ing 2D variable density random sampling with 
20.05% sampling rate. Two iterations are applied in 
UDPC while eight iterations are executed in DLMRI. 
Fig. 7a is the fully sampled noisy image, and Fig. 7b 
shows the magnitude of the added noise. The PSNR 
of the fully sampled noisy image corresponding to the 
reference is approximately 29.92 dB. The PSNRs of 
the reconstructed images in Figs. 7c–7i are 30.25, 
29.41, 30.25, 30.01, 31.25, 31.47, and 31.56 dB, re-
spectively. It is found that our method achieves the 
highest PSNR, which is about 1.3 dB higher than 
those of LDP and DLMRI, and about 2.1 dB higher 
than that of wav_CSALSA. The reconstruction with 
LDP and DLMRI is unable to sufficiently remove 
obvious artifacts and noise. The proposed method 
achieves good reconstruction quality with edge pre-
serving and less noise. The noise is greatly reduced in 
reconstruction (Fig. 7i), which shows the superior 
ability of noise suppression. The red arrows in the 

Fig. 6  Comparison of reconstruction results for the T2-weighted brain image 
(a) Variable density random sampling pattern with sampling rate 20.05%; (b) Reconstructed image from fully sampled data 
(256×256); (c)–(i) Reconstruction using LDP, wav_CSALSA, DLMRI, PBDW, PBDWS, PANO, and the proposed UDPC, 
respectively. References to color refer to the online version of this figure 
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zoom of Figs. 7c–7i indicate visible details. It is ob-
served that a much smaller reconstruction error and 
loss of features are obtained for UDPC compared with 
other methods. The proposed method is shown to 
acquire preeminent results even under noisy cases. 

Table 1 depicts vividly the comparison of ob-
jective evaluation indices for aforementioned three 
kinds of noise-added data according to the proposed 
UDPC CS-MRI reconstruction with compared 
methods using three different sampling patterns with 
different sampling rates. The PSNRs of the fully 
sampled noisy image for the three cases in Table 1 are 
29.9198, 34.9163, and 34.1096 dB, respectively. Only 
the PSNR of our proposed UDPC reconstruction is  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

closest to that of the fully sampled image, even higher 
for the T2-weighted brain image. The values of four 
typical evaluation indices indicate that in general the 
proposed method obtains a better reconstruction 
performance and significant improvements than the 
other methods. 

Fig. 7 and Table 1 show that the proposed 
method can not only obtain minor reconstruction 
errors and good edge-preserving characteristics, but 
also improve the spatial detail information and pre-
serve the structural similarity of image over all the 
compared methods (especially in zooming), which 
can also be justified by the obtained optimal values of 
evaluation indices (Table 1). These objective  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 1  Comparison of the objective assessment indices of CS-MRI reconstruction for noise-added data via UDPC to 
compared methods using three different sampling patterns with different sampling rates* 

Method 
T2-weighted brain image & 

mask_VDRS_2001 & sigma=10.2
Water phantom & 

mask_PRS_2597 & sigma=6.5
CS phantom & mask_ 

Carteian_25 & sigma=6.5 

PSNR (dB) TEI SSIM RLNE PSNR (dB) TEI SSIM RLNE PSNR (dB) TEI SSIM RLNE
LDP 30.25 0.52 0.79 0.19 33.57 0.68 0.72 0.04 29.04 0.57 0.88 0.09
wav_CSALSA 29.41 0.52 0.71 0.21 16.94 0.50 0.65 0.30 28.65 0.58 0.74 0.09
DLMRI 30.36 0.51 0.86 0.19 32.73 0.66 0.73 0.05 31.45 0.66 0.84 0.07
PBDW 30.01 0.57 0.77 0.19 31.43 0.66 0.70 0.06 33.33 0.68 0.87 0.05
PBDWS 31.65 0.61 0.79 0.16 34.20 0.68 0.81 0.04 33.35 0.71 0.88 0.05
PANO 31.47 0.61 0.77 0.16 34.46 0.69 0.82 0.04 32.20 0.69 0.87 0.06
UDPC 31.56 0.60 0.86 0.16 33.52 0.68 0.78 0.04 32.11 0.69 0.87 0.06
* mask_VDRS_2001 denotes variable density random sampling mask with 20.01% sampling rate, mask_ PRS_2597 denotes pseudo radial lines 
sampling mask with 25.97% sampling rate, and mask_Carteian_25 denotes with variable density (Cartesian sampling mask in k-space with 25% 
sampling rate) 

Fig. 7  Comparison of reconstruction results for noisy T2-weighted brain image data 
(a) Reconstructed image from fully sampled noisy data (σ=10.2); (b) Noise magnitude in (a); (c)–(i) Reconstruction using LDP, 
wav_CSALSA, DLMRI, PBDW, PBDWS, PANO, and the proposed UDPC, respectively. References to color refer to the 
online version of this figure 
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assessment indices agree with the visual assessment. 
Considering image quality assessment from 

various comprehensive evaluation standards, the su-
perior reconstruction performance is achieved by the 
proposed UDPC CS-MRI reconstruction method. 
Furthermore, it has good stability in various cases. 

4.4  Assessing agreement 

The comparisons of Lin’s CCC values (Lin, 
1989) of each reconstruction method with respect to 
the full sampling result for phantom and in vivo re-
constructions are demonstrated in Table 2. In partic-
ular, the CCC for noisy T2-weighted image of the 
brain is the concordance between the reconstructed 
image and the noisy fully sampled reconstruction 
image. According to the data in Table 2, the recon-
struction results of the proposed method with the 
highest CCCs are verified. 

4.5  Evaluation of the sparsity ratio 

Via MSDL based on UDCT operation, a novel 
sparsity model is built. Thus, the multi-scale UDCT 
dictionary permits the optimal sparse representation 
of the image with intrinsic properties of the image 
preserved among current sparse methods. To illus-
trate the superiority of the proposed UDCT multi- 
scale dictionary in sparsifying the image, the image in 
Fig. 4b is used for sparse assessment. The sparsity 
ratios of the Daubechies wavelet, UDCT, and multi- 
scale UDCT dictionary in this work are compared.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

For Daubechies wavelet and UDCT, the sparsity ratio 
for the corresponding sparse transform is defined to 
be the proportion of coefficients whose absolute 
values are larger than the mean absolute value to the 
total number of coefficients. For the UDCT multi- 
scale dictionary, the sparsity ratio is designated as the 
ratio of nonzero elements in one coefficient set in 
terms of the corresponding sub-dictionary. The spar-
sity ratios of the three methods compared are given in 
Table 3. It is found that the optimal sparse percentage 
for the coefficient matrix is obtained by the multi- 
scale UDCT dictionary method. The sparsity ratio has 
a large influence on the convergence speed of the 
reconstruction algorithm. The sparsity ratio compar-
ison illustrates the efficiency of our algorithm in 
representing the image with optimal sparsity, laying 
the foundation for reconstructing images under high 
undersampling factors. 

4.6  Computation time 

The computation time of these reconstruction 
methods is summarized in Table 4. The iteration 
stopping criterion is that the norm of the difference 
between the reconstructed image and the fully sam-
pled image of two successive iterations for recon-
struction is less than a certain threshold. Table 4 
shows clearly that in DLMRI, the average runtime for 
single-scale dictionary training (20 K-SVD iterations) 
is 100 s or so, and for the reconstruction procedure is 
131 s. The wav_CSALSA method using 85 iterations  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 2  Comparisons of Lin’s CCC values of each reconstruction method with respect to the full sampling result for 
phantom and in vivo reconstructions 

Method 
Lin’s CCC value 

Water phantom CS phantom T2-weighted brain image Noisy T2-weighted brain image 

LDP 0.9984 0.9849 0.9796 0.9430 

wav_CSALSA 0.9120 0.9880 0.9868 0.9408 

DLMRI 0.9981 0.9885 0.9746 0.9485 

PBDW 0.9981 0.9888 0.9887 0.9489 

PBDWS 0.9985 0.9902 0.9901 0.9516 

PANO 0.9988 0.9930 0.9904 0.9525 
UDPC 0.9988 0.9932 0.9904 0.9535 

 
Table 3  Sparsity ratios of different sparse methods for four-level decompositions 

Method 
Sparsity ratio 

Low pass Fourth level Third level Second level First level 
Daubechies wavelet 0.4277 0.4131 0.4131 0.4131 0.4131 
UDCT 0.4277 0.3506 0.3545 0.3918 0.3590 
UDCT-based DL 0.0468 0.0078 0.0078 0.0154 3.91×10−6 
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has the runtime of 46.60 s, and MS UDCT dictionary 
training in UDPC has a runtime of about 501 s for all 
19 complex-valued sub-dictionaries and about 26.37 s 
for each sub-dictionary on average. The runtime of 
PB C-SALSA reconstruction (50 iterations) is about 
111 s with complex dictionaries. The time-consuming 
part of the proposed method is the MS UDCT DL 
stage, but the computational cost of dictionary train-
ing may be decreased substantially with the use of 
code optimization and graphics processing units 
(GPU). In addition, the modified PB C-SALSA fitting 
multi-scale dictionary structure achieves relatively 
fast convergence with preeminent reconstruction 
performance compared with LDP and DLMRI. From 
the above analyses, it is obvious that our proposed 
UDPC method obtains the tradeoff between perfor-
mance and computational cost in CS-MRI  
reconstruction. 

 
 

5  Conclusions and future work 
 
In this paper we proposed a novel multi-scale 

UDCT dictionary learning framework for CS recon-
struction of MR data. The structure consists of a 
sparsity model of adaptive multi-scale dictionary 
learning in the UDCT domain together with the cor-
responding patch-based constraint splitting aug-
mented Lagrangian shrinkage reconstruction algo-
rithm. In the first stage, a complex-valued multi-scale 
dictionary is trained to sparsely represent com-
plex-valued data, which helps remove aliasing and 
Gibbs ringing artifacts and to preserve the rich in-
trinsic properties of MR images. The proposed spar-
sity model has been proved to allow much sparser 
representation, resulting in significant improvement 
over all compared methods in CS-MRI application. In 
the second stage, patch-based C-SALSA enforces 
data fidelity with rapid convergence without degrad-
ing the reconstruction quality. Experimental results 
demonstrated that the proposed method can provide 
superior reconstruction performance at high acceler-
ation rates with or without noise, which leads to  

 
 
 
 
 
 
greatly improved visual quality of the reconstruction 
image with much less graininess and less information 
loss than the others. Future work will aim at the ac-
celeration of implementation for UDPC with the use 
of GPUs and the extension of proposed method to 
multi-coil MR technology. 
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