
1018 Chen et al. / Front Inform Technol Electron Eng 2015 16(12):1018-1033

Frontiers of Information Technology & Electronic Engineering

www.zju.edu.cn/jzus; engineering.cae.cn; www.springerlink.com

ISSN 2095-9184 (print); ISSN 2095-9230 (online)

E-mail: jzus@zju.edu.cn

Schedule refinement for homogeneous multi-core
processors in the presence of

manufacturing-caused heterogeneity∗

Zhi-xiang CHEN†1,2, Zhao-lin LI3,4, Shan CAO2,5, Fang WANG3,4, Jie ZHOU1

(1Department of Automation, Tsinghua University, Beijing 100084, China)

(2Institute of Microelectronics, Tsinghua University, Beijing 100084, China)

(3Research Institute of Information Technology, Tsinghua University, Beijing 100084, China)

(4Tsinghua National Laboratory for Information Science and Technology, Tsinghua University, Beijing 100084, China)

(5The School of Information and Electronics, Beijing Institute of Technology, Beijing 100084, China)
†E-mail: chen-zx10@mails.tsinghua.edu.cn

Received Feb. 1, 2015; Revision accepted Aug. 26, 2015; Crosschecked Nov. 4, 2015

Abstract: Multi-core homogeneous processors have been widely used to deal with computation-intensive embed-
ded applications. However, with the continuous down scaling of CMOS technology, within-die variations in the
manufacturing process lead to a significant spread in the operating speeds of cores within homogeneous multi-core
processors. Task scheduling approaches, which do not consider such heterogeneity caused by within-die variations,
can lead to an overly pessimistic result in terms of performance. To realize an optimal performance according to
the actual maximum clock frequencies at which cores can run, we present a heterogeneity-aware schedule refining
(HASR) scheme by fully exploiting the heterogeneities of homogeneous multi-core processors in embedded domains.
We analyze and show how the actual maximum frequencies of cores are used to guide the scheduling. In the scheme,
representative chip operating points are selected and the corresponding optimal schedules are generated as candidate
schedules. During the booting of each chip, according to the actual maximum clock frequencies of cores, one of the
candidate schedules is bound to the chip to maximize the performance. A set of applications are designed to evaluate
the proposed scheme. Experimental results show that the proposed scheme can improve the performance by an
average value of 22.2%, compared with the baseline schedule based on the worst case timing analysis. Compared with
the conventional task scheduling approach based on the actual maximum clock frequencies, the proposed scheme
also improves the performance by up to 12%.
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1 Introduction

1.1 Background

Homogeneous multi-core processors are becom-
ing widely used for computation-intensive embedded
applications. Typical homogeneous multi-core pro-
cessors include Stanford’s Imagine (Khailany et al.,
2001), MIT’s RAW (Taylor et al., 2002), Tilera’s
Tile64 (Bell et al., 2008), etc., in which all cores
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have the same architecture and run at the same
clock speed. With the development of IC tech-
nology, the performance improvement of multi-core
processors benefits from continuous down-scaling of
feature size in the manufacturing process. How-
ever, parameter variations within the manufactur-
ing process, which are called process variations, are
inevitable when the sizes of transistors are respec-
tively shrunk all the way to their feasible limits with
imperfect lithographic equipment and material pro-
cessing systems (Dietrich and Haase, 2012). In fact,
the continuous down-scaling of the feature size has
resulted in significant variations, both intra-die and
inter-die, of gate length, threshold voltage, and mo-
bility, which are important to the transistor behav-
ior (Zhao et al., 2009). According to the information
about process variation reported by ITRS (2014), ef-
fective channel length and gate-oxide thickness can
deviate up to 12% of the nominal values. As a result,
cores in homogeneous multi-core processors can run
at different maximum operating frequencies, which
is called manufacturing-caused heterogeneity, after
fabrication due to process variations, though they
are designed to have the same architecture and run
at the same maximum operating frequency deter-
mined by the worst case timing analysis during the
design stage. For example, experimental data reveals
40% spread in the frequencies of cores within a chip
in 32 nm technology (Aguilera et al., 2014).

The maximum operating frequencies (FMAXs)
of all cores are determined by the slowest core in con-
ventional homogeneously designed multi-core pro-
cessors. The unified FMAX makes the task schedul-
ing simple but has a heavy performance penalty be-
cause the manufacturing-caused heterogeneity is ne-
glected. In this work, ‘scheduling’ means allocating
executing core and executing order for each task, and
‘schedule’ means the result of scheduling. As shown
in Fig. 1, the schedule sch1 for the task graph of the
application in Fig. 1a is shown in Fig. 1c with all
cores operating at 200 MHz. In the schedule, vi, v′i,
and v′′i (1 ≤ i ≤ 4) are different instances of the
same task. In the presence of multiple FMAXs for
the cores, each different combination of the FMAXs
for the cores on a chip is denoted as a chip operat-
ing point, which is the same as the term ‘scenario’
in Khodabandeloo et al. (2014) and is denoted as op.
As shown in Fig. 1d, in the traditional scheduling
scheme, sch1 is applied over the three chip operating

points in Fig. 1b, which exhibit the same perfor-
mance with the schedule interval of 0.35 s. There-
fore, the increase of FMAX on core c2, from 200
to 250 MHz, makes no performance improvement.
Twenty percent of the computing ability of core c2 is
unexploited in the traditional scheduling scheme.

Fig. 1 A simple example: (a) an application with four
tasks; (b) three chip operating points; (c) the tradi-
tional schedule; (d) traditional scheduling scheme

In the presence of manufacturing-caused hetero-
geneity, task scheduling has to take the heterogene-
ity into consideration to improve the performance
for each chip. A straightforward approach is to gen-
erate an individual schedule for each chip according
to the detected op. However, in the embedded do-
main where dynamic scheduling is almost impossi-
ble, applying this approach to masses of chips is too
time-consuming, since the schedule should be gen-
erated externally for embedded systems. Another
approach is to generate all optimal schedules for all
chip operating points in advance and store them into
the on-chip memory for each chip. However, the
search space for matching the schedule with the chip
is too large. Furthermore, the memory usage is too
high, since embedded systems have limited on-chip
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memory. Thus, both approaches are not feasible for
embedded systems. Therefore, we propose an effec-
tive solution to schedule refinement, where a finite
set of optimal schedules is stored into the on-chip
memory and the best schedule is selected for each
chip during booting.

1.2 Overview

In this work, heterogeneity-aware schedule re-
fining (HASR) is proposed to efficiently exploit the
manufacturing-caused heterogeneity to improve per-
formance. We analyze and show how the actual
maximum frequencies of cores are taken into con-
sideration to obtain the effective schedule. The pro-
posed HASR scheme generates multiple candidate
schedules to achieve the most optimal expected per-
formance by taking the distribution of heterogeneity
into consideration. Meanwhile, a sampling method
is adopted to deal with the problem of exponential
growth in the quantity of operating points. HASR
stores an appropriate number of schedules and the
corresponding chip operating points in the on-chip
memory and adopts a simple algorithm to bind the
most appropriate schedule to the chip during boot-
ing. The binding is carried out during booting and
thus has no negative impact on the performance.
The effects of the number of tasks, the number of
cores, and the number of candidate schedules on the
performance improvement are analyzed. The experi-
mental results show the effectiveness of the proposed
HASR scheme.

2 Related work

This work deals with the schedule refin-
ing on multi-core processors in the presence of
manufacturing-caused heterogeneity. The related re-
search can be categorized into two types, traditional
task scheduling on multiprocessor and process vari-
ation aware scheduling.

2.1 Traditional task scheduling

Task allocation and scheduling for multi-core
processors has been extensively studied. Since
precedence-constrained task allocation and schedul-
ing has been proved to be an NP-complete problem
(Ramamritham, 1995), heuristic algorithms, such as
list scheduling (Topcuoglu et al., 2002), genetic al-

gorithms (Omara and Arafa, 2010), and ant colony
algorithm (Ferrandi et al., 2010), were widely used
to quickly find a suboptimal solution. Two novel
scheduling algorithms for a bounded number of het-
erogeneous processors were proposed in Topcuoglu
et al. (2002) with an objective to simultaneously
meet the requirements of high performance and fast
scheduling time. Two genetic algorithms with some
heuristic principles were introduced in Omara and
Arafa (2010) to reduce the complexity of the op-
timization process and improve the performance.
An ant colony optimization heuristic was presented
in Ferrandi et al. (2010) to efficiently execute both
scheduling and mapping to optimize the application
performance. However, none of them considered the
impact of manufacturing-caused heterogeneity.

2.2 Process variation aware scheduling

Task scheduling with process variation aware-
ness is used to guide the design of a multi-core
processor and aims at the optimization of perfor-
mance yield, which is the percentage of manufac-
tured chips satisfying the predefined performance re-
quirement. Wang et al. (2011) scheduled tasks to en-
hance performance yield through statistical schedul-
ing to mitigate the impact of process variations.
Singhal and Bozorgzadeh (2008), Chon and Kim
(2009), and Huang and Xu (2010) expanded the re-
search in Wang et al. (2011) with other scheduling
approaches. Both exhaustive and heuristic meth-
ods were proposed to achieve yield optimization for
variation-aware task allocation of real-time stream-
ing applications on a multi-core processor (Mirzoyan
et al., 2012). However, all these solutions are based
on statistical timing analysis to optimize the perfor-
mance yield rather than the performance. Momtza-
pour et al. (2010a; 2010b) used the genetic algorithm
to find the best schedule that maximizes power-
yield under the performance-yield constraint and ex-
tended their work for a deep investigation (Mom-
tazpour et al., 2013). Momtazpour et al. (2011)
considered the problem of simultaneously choosing
multi-processor system-on-a-chip (MPSoC) architec-
ture and task allocation for energy optimization un-
der a given performance constraint. However, all
these solutions aim at power-yield and energy op-
timization under process variation. Khodabande-
loo et al. (2014) presented a hierarchical and statis-
tical temperature-aware quasi-static task mapping
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and scheduling framework under process variation
for hard real-time applications on MPSoCs. They
considered the optimization of temperature and their
framework is ineffective in evaluating plans by exe-
cuting each plan for all scenarios. The terms ‘plan’
and ‘scenario’ have the same meaning as ‘candidate
schedule’ and ‘chip operating point’ in this work.
However, we aim at the optimization of expected
performance and analyze and show how the effective
schedule refining scheme works.

3 Model

This section lays the foundations upon which
our proposed HASR scheme rests. First, the de-
tailed architecture of the target multi-core processor
is presented. Second, the task graph model of the
application running on the multi-core processor is
described. Third, the formulation of the problem to
be solved is shown. The main notations used in this
work are listed in Table 1.

3.1 Model of homogeneous multi-core
processors

Fig. 2 depicts a typical multi-core processor
which consists of multiple cores and an on-chip in-
terconnection network. The on-chip interconnection
network is used for inter-core communication. The
identically designed cores are influenced by process
variation and have different maximum operating fre-
quencies. The chip is implemented in a globally-
asynchronous-locally-synchronous (GALS) style to
support different operating frequencies for cores on
the same chip (Yu and Baas, 2009). Each core is allo-
cated to a frequency island (FI), where the local clock
signal can be adjusted independently. This means
the operating frequencies of different cores, which
are in different FIs, can be controlled independently
and are the corresponding actual maximum operat-
ing frequencies after speed binning. Data transfer
between different FIs is realized by the mixed-clock
first-in-first-out.

Due to the impact of manufacturing-caused het-
erogeneity, the maximum operating frequency of
each core varies and can be described by a continu-
ous distribution (Bowman et al., 2002). The prob-
ability density function (PDF) of the distribution
can be obtained by the model presented in Sarangi
et al. (2008). The minimum value of the maximum

Table 1 Overview of the main notations

Notation Description

op Chip operating point
OP The set of all possible chip operating points
OF The set of all possible maximum operating

frequencies
Nsch The number of candidate schedules
Nc The number of cores in the multi-core processor
NOP The number of chip operating points
NOF The number of maximum operating frequencies
Pm
i The performance for processor with opi when ap-

plying the optimal schedule of processor with opm

Pi The best performance for processor with opi given
the candidate schedules

latmi The scheduling interval for processor with opi when
applying the optimal schedule for processor with
opm

lati The optimal scheduling interval for processor with
opi

freqi,k The actual maximum operating frequency of the
kth processor for opi

RP The ratio between the performances of two sched-
ules for the same op

REPP The ratio between the expected performance of two
schedules for the op

schi A schedule for application execution on the multi-
core processor

operating frequency fmin is the maximum operat-
ing frequency under the worst case such that the
cumulative probability at fmin, CDF(fmin), equals
0.25% according to the three-sigma rule. Although
the maximum operating frequency of a core is pos-
sible to be any value greater than fmin, the physical
implementation of the clock generation allows the
frequency to be changed only in discrete steps. The
reason is that the clock frequency of a core is tuned
by multiplying the reference clock, which is usu-
ally tens of megahertz, with different multiplication
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Fig. 2 The model of multi-core processors
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factors. Therefore, there are only several maximum
operating frequencies supported by the chip. Taking
the reference clock of 50 MHz as an example, the
maximum operating frequency of a core can be 450,
500, 550 MHz, etc. Thus, the maximum value of the
maximum operating frequency is set to be fmax such
that CDF(fmax+Δf) equals 99.75% with Δf as the
frequency step size. Denoting the set of all maximum
operating frequencies asOF, each element, ofi ∈ OF,
represents an operating frequency. The number of el-
ements is denoted as NOF. The probability of ofi is
computed as

fp(ofi)=

⎧
⎪⎪⎨

⎪⎪⎩

CDF(ofi +Δf)− CDF(ofi)

1− CDF(fmin)
, ofi �= fmax,

1− CDF(ofi)

1− CDF(fmin)
, ofi = fmax.

Same as the term ‘scenario’ in Khodabande-
loo et al. (2014), opi stands for one combination
of operating frequencies of all cores. In a given
opi, the maximum operating frequencies of all cores
are determined. Denoting the maximum operat-
ing frequency of the kth core as freqi,k, opi can
be represented as opi = {freqi,1, freqi,2, . . . , freqi,Nc

}
with the constraint of freqi,k ∈ OF. The set of
all possible chip operating points is denoted as OP,
OP = {op1, op2, . . . , opNOP

}. The probability of opi
is represented as prob(opi) and the number of chip
operating points is denoted as NOP. The probability
prob(opi) is computed as fp(freqi,1) · fp(freqi,2|A2) ·
· · · · fp(freqi,Nc

|ANc), where fp(freqi,j |Aj) (2 ≤ j ≤
Nc) is the probability that the maximum operating
frequency of the jth core is freqi,j under the condi-
tion Aj . Aj stands for the condition that the maxi-
mum operating frequencies of the 1st, 2nd, 3rd, . . .,
(j − 1)th cores have been determined by opi. A chip
operating point represents a class of chips in which
the same cores have identical maximum operating
frequencies.

3.2 Task graph model

In this work, the application is modeled by a di-
rected acyclic graph (DAG), G(V,E). In the graph,
each node in V represents the computational task to
be executed on the core and the edge in E between
nodes represents both the precedence constraint and
the data transfer. Similar to the domain-specific lan-
guages for streaming applications, each node requires
a number of clock cycles to finish its execution on

the core. An embedded application is usually exe-
cuted many times for a stream of input data on a
multi-core processor. For the periodic application
considered in this work, the throughput, rather than
latency, is the most concerned performance met-
ric. Pipeline scheduling benefits from allowing tasks
from different embedded application instances to be
scheduled at each stage of the pipeline. The com-
munication between tasks is assumed not to be criti-
cal to the throughput due to pipeline scheduling. In
pipeline scheduling, the scheduling interval is defined
as the time between the start times of two consec-
utive iterations of the task graph, and the through-
put is computed as the reciprocal of the scheduling
interval.

3.3 Problem formulation

The proposed task allocation and scheduling
scheme aims at achieving high performance on chips
influenced by manufacturing-caused heterogeneity.
The goal can be described as maximizing the ex-
pected performance:

max EPP. (1)

The expected performance is calculated as

EPP =
∑

opi∈OP

Piprob(opi), (2)

where Pi is the best performance achieved by chips
with opi, and prob(opi) is the probability of opi.
To achieve this goal, different schedules are adopted
for performance enhancement on chips with differ-
ent chip operating points. However, the number of
all possible chip operating points is usually high, es-
pecially for a processor with many cores. To achieve
performance improvement, we derive an appropriate
number of candidate schedules and store all of them
to all chips. Then, an on-chip binding of schedule to
chip is conducted to find the best schedule.

Thus, the problem to be solved is formulated as:
Given the frequency island based multi-core proces-
sor, the distribution of chip operating points indi-
cating the probability for each chip operating point,
and the task graph of the embedded application, find
the candidate schedules and the binding of candidate
schedule to chip that maximizes the performance un-
der the constraint of the total schedule number for
the processor.
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4 Proposed schedule refining scheme

The optimization goal relates to the perfor-
mance optimization for different chip operating
points. To maintain high performance across differ-
ent chip operating points, HASR adapts the sched-
ule to each chip to exploit the processor heterogene-
ity. HASR takes the distribution of chip operating
points into consideration to obtain multiple candi-
date schedules, and binds one of them to each chip
during booting. In HASR, representative chip op-
erating points are selected and the optimal sched-
ules are generated for the representative chip oper-
ating points. The generated candidate schedules are
stored in the dedicated on-chip memory space. Ac-
cording to the actual maximum clock frequencies of
a multi-core processor, one of the candidate sched-
ules is bound to each chip to maximize the perfor-
mance. The binding is carried out on-chip during
booting. Both generating candidate schedules and
binding candidate schedule to chip are critical to the
performance improvement.

To distinguish the schedule generated during
candidate schedule generation and the schedule
bound to each chip, the definitions of the optimal
schedule and best schedule are presented below:
Definition 1 (Optimal schedule) The optimal
schedule represents the schedule generated for the
chip according to the given scheduling algorithm in
Algorithm 2 (lines 11–18, see p.1024). Each element
in Schr is an optimal schedule for the chip with the
chip operating point in OPr.
Definition 2 (Best schedule) The best schedule

represents the schedule bound to the chip accord-
ing to the actual maximum clock frequencies of the
multi-core processor. The best schedule is selected
from Schr for each chip.

4.1 Example

The use of the proposed scheduling scheme on
the task graph and the multi-core processor in Fig. 1
is shown in Fig. 3. In this example, the number of the
generated candidate schedules is set to two. It con-
sists of two phases: off-chip generating representative
chip operating points and candidate schedules, and
on-chip binding schedule to chip. In the first phase,
σ1, σ2, and σ3 are computed to be 400, 377, and
360 respectively according to Eq. (10). Thus, op1 is
selected as the first selected representative chip op-
erating point. Similarly, op2 is selected as the second
representative chip operating point by computing γ2
and γ3 according to Eq. (14). Then, the representa-
tive chip operating point set {op1, op2} and the cor-
responding optimal schedules {sch1, sch2} are writ-
ten into the on-chip memory. In the second phase,
the binding of schedule to chip is done during boot-
ing. The best schedule for chips with op1 is sch1
according to the algorithm in Fig. 6. Similarly, the
best schedules for chips with op2 and op3 are found
to be sch2. The performance improvements on chips
with op2 and op3 are 4.8% and 7.1%, respectively.

4.2 Chip operating point sampling with prob-
ability consideration

In the multi-core processor with manufacturing-
caused heterogeneity, the number of chip operating
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Fig. 3 Heterogeneity-aware schedule refining scheme for the task graph and processor in Fig. 1
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points is (NOF)
Nc , because the maximum operating

frequency of each core is the element of OF and the
maximum operating frequencies of the Nc cores in
the processor are independent due to intra-die vari-
ation. However, the large number of chip operating
points makes it too time-consuming to select repre-
sentative chip operating points, which are used for
candidate schedule generation. The reason is that
the selection of representative chip operating points
has to traverse all chip operating points, and the se-
lected representative chip operating point has to be
evaluated over all chip operating points. Therefore,
chip operating point sampling is adopted to reduce
the time complexity. The influence of chip operating
sampling is discussed in the experiments.

The sampling of chip operating points takes the
probability distribution of chip operating points into
consideration. Chip operating points with higher
probabilities are more likely to be sampled. The pro-
cedure of the sampling is described in Algorithm 1.
In each iteration, a chip is generated according to
the PDF of the chip operating point. If its chip op-
erating point does not belong to the sampled chip
operating point set OPs, the chip operating point is
added into OPs. The probability of chip operating
points in OPs is defined as

sprob(opi) =
prob(opi)∑

opj∈OPs

prob(opj)
. (3)

According to the Bernoulli law of large numbers (Von
Mises, 1964), OPs is close to OP for large threshold
number of sampled chip operating points NTH.

Algorithm 1 Chip operating point sampling with
probability consideration
Input: Chip operating point set OP, the threshold num-

ber of sampled chip operating points NTH.
Output: Sampled chip operating point set OPs.
1: i← 0;OPs ← ∅;
2: while i < NTH do
3: Sample a chip operating point, ops, according to

the probability distribution of OP;
4: if ops /∈ OPs then
5: Add ops into OPs;
6: i← i+ 1;
7: end if
8: end while

4.3 Generating multiple candidate schedules
for sampled chip operating points

In the proposed scheme, the candidate sched-
ule is iteratively generated and stored, as shown in
Algorithm 2. It takes as input the application task
graph, the multi-core processor description, and the
distribution of the sampled chip operating point set.
The output is the representative chip operating point
set and the corresponding optimal schedules, which
are candidate schedules. The quantity of the opti-
mal candidate schedules is limited by the number of
candidate schedules, Nsch, which is specified by the
user or constrained by the memory requirement. If
the number of chip operating points in OPs, NOPs

,
is less than Nsch, all NOPs

optimal schedules cor-
responding to the chip operating point in OPs are
generated and stored.

In each iteration, the representative chip oper-
ating point is selected for the generation of the can-
didate schedule (lines 4 to 9). The representative

Algorithm 2 Generation of multiple candidate
schedules
Input: Application task graph G, distribution of sam-

pled chip operating point OPs, and multi-core pro-
cessor description.

Output: Representative chip operating point set OPr

and the corresponding optimal schedule set Schr.
1: i← 0; Schr ← ∅; OPr ← ∅;
2: while i < max(Nsch, NOPs) do
3: // select the representative chip operating point
4: if i = 0 then
5: opr ← Sel_first();
6: else
7: opr ← Sel_remaining();
8: end if
9: Store opr as the ith element of OPr;

10: // obtain the optimal schedule for the selected
optimal operating point op

11: Sort tasks in decreasing execution cycles;
12: for all tasks do
13: for all cores do
14: Tentatively assign task to the core;
15: Compute the scheduling interval;
16: end for
17: Assign task to the core that minimizes the

scheduling interval;
18: end for
19: Store the schedule as the ith element of Schr;
20: i++;
21: end while
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chip operating point opr is selected from all possible
chip operating points by the functions Sel_first()

and Sel_remaining(), which are stated later in Sec-
tions 4.3.1 and 4.3.2.

In each iteration, the generation of the candi-
date schedule is accomplished by applying the heuris-
tic scheduling algorithm (Mirzoyan et al., 2014) to
chips with the selected representative chip operating
point (lines 12 to 20). During task scheduling, the
schedule interval is computed as the maximum time
to execute tasks of an application instance among all
cores. Since the optimization of candidate sched-
ule generation is complementary to the proposed
scheme, other scheduling algorithms, such as the in-
teger linear programming method (Yi et al., 2009),
can also be adopted to generate the candidate sched-
ule. The storage of candidate schedules is shown in
Fig. 4. The candidate schedules and the correspond-
ing representative chip operating points are stored in
the same order. The stored representative chip oper-
ating points are used to evaluate the corresponding
candidate schedules during the booting of each chip,
as stated in Section 4.4. For each stored candidate
schedule, the corresponding chip operating point in-
dicates the operating frequency of each core, and the
stored candidate schedule shows both the executing
core and the executing order for each task.

4.3.1 Selection of the first representative chip oper-
ating point

The procedure of selecting the first representa-
tive chip operating point is presented in Algorithm
3. The expected performance, EPP, is used to select
the representative chip operating point. All chip op-
erating points in OPs are traversed to select the chip
operating point with the highest priority as the rep-
resentative chip operating point. The expected per-
formance EPPm for a selected representative chip
operating point opm is computed by applying the
corresponding optimal schedule to chips of all chip
operating points:

EPPm =
∑

opi∈OPs

sprob(opi) · Pm
i . (4)

To compare the priorities of two chip operating
points opm and opn, the expected performance
EPPm is divided by EPPn to obtain the ratio be-
tween the expected performances of two schedules,
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Fig. 4 The storage of candidate schedules

REPP, which is computed as

REPP =
EPPm

EPPn
. (5)

Since the ideal optimized performance for a homo-
geneous multi-core processor is achieved when the
workloads, in terms of execution time in second, on
all cores are identical, all cores in the chip with chip
operating point opm are assumed to consume latm
seconds to execute the workload assigned by the cor-
responding optimal schedule schm. Thus,

Pm
i =

1

latmi
=

1

latm max
0≤k<Nc

( freqm,k

freqi,k

)

= Pm min
0≤k<Nc

( freqi,k
freqm,k

)
. (6)

Pn
i can be expressed in a similar form. Here, we

assume that the optimal schedules schm and schn
can achieve workload balance on the target proces-
sor with chip operating points opm and opn, respec-
tively. The impact of this assumption is discussed in
the experiments. Since both schm and schn are op-
timized schedules for the same application, the total
required execution cycles are assumed to be fixed for
the homogeneous multi-core processor:

latm
∑

0≤k<Nc

freqm,k = latn
∑

0≤k<Nc

freqn,k. (7)

Accordingly, we have

Pm

Pn
=

∑

0≤k<Nc

freqm,k

∑

0≤k<Nc

freqn,k
. (8)
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Therefore, Eq. (5) can be rewritten as

REPP =
EPPm

EPPn
=

σm

σn
, (9)

where σm and σn are expressed as

σj =
∑

0≤i<Np

sprob(opi) · ρj,i,

ρj,i =
∑

0≤k<Nc

freqj,k · min
0≤k<Nc

( freqi,k
freqj,k

)
,

(10)

with j ∈ {m,n}. If REPP is larger than one, the
priority of opm is higher than that of opn. Oth-
erwise, opn has a higher priority. The priorities of
all chip operating points are compared to select the
chip operating point with the highest priority as the
representative chip operating point.

Algorithm 3 Selection of the first representative
chip operating point, Sel_first()

Input: Distribution of the sampled chip operating point
OPs, task graph G.

Output: Representative chip operating point opr.
1: Select the first element of OPs as the initial value of

opr;
2: Compute σr for opr according to Eq. (10);
3: i← 0;
4: for all op ∈ OPs do
5: Select the ith chip operating point of OPs, opi;
6: Compute σi for opi according to Eq. (10);
7: ComputeREPP of opi to opr according to Eq. (5);
8: if REPP > 1 then
9: opr ← opi;

10: σr ← σi;
11: end if
12: i++;
13: end for

4.3.2 Selection of the remaining representative chip
operating point

The selection of the remaining representative
chip operating point is more complicated due to the
presence of already selected candidate schedules (Al-
gorithm 4). All chip operating points are traversed
to construct the tentative representative chip oper-
ating point set to compute the priority, which is rep-
resented as EPP. Then, the set with the highest pri-
ority is selected as the representative chip operating
point set. The priority of each tentative representa-
tive chip operating point set is computed based on

Algorithm 4 Selection of the remaining representa-
tive chip operating point, Sel_remaining()

Input: Distribution of sampled chip operating point
OPs, application task graph G, previous represen-
tative chip operating point set OPpre.

Output: Representative chip operating point opbest.
1: Select the first element of OPs as the initial value of

opbest;
2: Obtain the best schedule for each chip operating

point with the tentative representative chip operat-
ing point set OPnxt = {OPpre, opbest};

3: Compute γnxt for OPnxt according to Eq. (14);
4: i← 0;
5: for all op ∈ OPs do
6: Select the ith chip operating point of OPs, opi;
7: Obtain the best schedule for each chip operating

point with the tentative representative chip oper-
ating point set OPi = {OPpre, opi};

8: Compute γi for OPi according to Eq. (14);
9: Compute REPP of OPi to OPnxt according to

Eq. (13);
10: if REPP > 1 then
11: opbest ← opi;
12: OPnxt ← OPi;
13: γnxt ← γi;
14: end if
15: i++;
16: end for

the best performance, and the best performance is
obtained by applying the best schedule for each chip
operating point in OPs. The best schedule for each
chip operating point is selected according to the pro-
cedure given in Fig. 6. The performance for chips
with chip operating point opi is expressed as

Pi = max
l∈OPa

P l
i , (11)

where OPa is the tentative representative chip oper-
ating point set. The expected performance EPPa of
the tentative representative chip operating point set
OPa is computed as

EPPa =
∑

opi∈OPs

sprob(opi) · max
l∈OPa

P l
i . (12)

The ratio of the expected performance for tentative
representative chip operating point set OPa to that
of another tentative representative chip operating
point set OPb is

REPP =
EPPa

EPPb
=

γa
γb

, (13)
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where γa and γb are expressed as

γj =
∑

0≤i<Np

sprob(opi) · βj,i,

βj,i = max
l∈OPj

(
∑

0≤k<Nc

freql,k · min
0≤k<Nc

( freqi,k
freql,k

))

,

(14)
with j ∈ {a, b}. The expected performances for all
tentative representative chip operating point sets are
compared to select the one with the highest priority
as the new representative chip operating point set.

4.4 Binding schedule to chip during booting

For each chip, only one schedule is adopted to
execute the application. Given multiple candidate
schedules, schedule binding is done during booting
to achieve the best performance according to the de-
tected chip operating point (Fig. 5). The chip op-
erating point of the chip is detected by using the
testing techniques and speed binning (Lin et al.,
2005; Raychowdhury et al., 2005). The booting pro-
cess performs the essential initialization including
PLL configuration, memory control register configu-
ration, exception vector table construction, etc. The
schedule binding is inserted at the end of the booting
process. The schedule binding is done only once at
the initial booting by modifying the beginning ad-
dress of the best schedule. Since schedule binding is
done before the execution of applications, the time
cost for schedule binding has no impact on the per-
formance of application execution.

Booting

PLL configuration

Memory control register configuration

Exception vector table construction

Stack initialization

Schedule binding

Fig. 5 The booting process

The pseudocode of schedule binding is shown in
Fig. 6. For each chip operating point, all candidate
schedules are traversed to find the one that results in
the highest performance according to Eq. (16). The

Schedule_binding()
{

idx_sch <- 0;
P_old <- 0;
while(idx_sch < N_sch)
{

P_new <- Compute_performance(idx_sch,of);
if(P_new > P_old) /*New best schedule*/
{

P_old <- P_new; 
idx_best <- idx_sch;

/*The beginning address of the best schedule*/
ADDR_SCH<-ADDR_SCH_0+idx_best * OFFSET_SCH;

}
idx_sch <- idx_sch + 1;

}
}

Compute_performance(idx_sch, of)
{

total_freq <- freq_sch[0];
min_ratio <- of[0] / freq_sch[0];
i <- 1;
while(i < N_c)
{

total_freq <- total_freq + freq_sch[i];
if (op[i] / freq_sch[i] < min_ratio)

min_ratio <- op[i] / freq_sch[i];
}
P_temp <- total_freq * min_ratio;
return(P_temp);

}

Fig. 6 The pseudocode of schedule binding

schedule binding is done by comparing the perfor-
mance for every two candidate schedules. Let candi-
date schedules schm and schn be the optimal sched-
ules for chip operating points opm and opn, respec-
tively. To select the best candidate from these two
candidates for chip operating point opi, the through-
put of the target chip is predicted when the chip
adopts either schm or schn by using Eq. (6). To
compare these two values, the ratio of Pm

i to Pn
i is

computed as

RP =
Pm
i

Pn
i

=

Pm min
0≤k<Nc

( freqi,k
freqm,k

)

Pn min
0≤k<Nc

( freqi,k
freqn,k

) . (15)

Based on Eq. (7), Eq. (15) can be rewritten as

RP =

∑

0≤k<Nc

freqm,k min
0≤k<Nc

( freqi,k
freqm,k

)

∑

0≤k<Nc

freqn,k min
0≤k<Nc

( freqi,k
freqn,k

) . (16)

If RP > 1, schedule schm is considered to be better
than schedule schn for chips of chip operating point
opi. Otherwise, schn is better than schm. Since the
schedule binding is based on the assumption that
schedules schm and schn can achieve workload bal-
ance over all cores, the bound schedule may lead to
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performance degradation under a certain case. For
soft real-time systems, this is acceptable since lit-
tle degradation is observed on a small portion of the
chips as shown by the experimental results. For hard
real-time systems, such performance degradation can
be eliminated by comparing the performance of the
bound schedule and the performance of the sched-
ule derived under the worst case, and the one that
exhibits better performance is selected.

4.5 Discussion

4.5.1 Complexity analysis

The generation of each candidate schedule re-
quires the selection of a representative chip operating
point and the generation of each optimal schedule. In
the proposed scheme, the selection of the representa-
tive chip operating point is the most time-consuming
part. The complexity of this part is O(N2

OP) for each
candidate schedule, since the obtaining of the best
schedule for each chip operating point has the com-
plexity of O(NOP). Therefore, the complexity of can-
didate schedule generation is O(Nsch ·N2

OP). Accord-
ing to the pseudocode of schedule binding (Fig. 6),
the complexity of schedule binding is O(Nc ·Nsch).

4.5.2 Memory usage analysis

The amount of memory space to store the can-
didate schedules is determined by both the num-
ber of candidate schedules and the memory con-
sumed by each candidate. Denote the number of
tasks as Nt. As shown in Fig. 4, each candidate
consumes Nt(log2 Nc + log2 Nt + 32) bits to spec-
ify the executing core, the executing order, and
the idle time for each task (Khodabandeloo et al.,
2014). In the proposed scheme, the memory usage
can be reduced to NschNt(log2 Nc + log2 Nt + 32)

from NopNt(log2 Nc + log2 Nt + 32). For a system
with 8 cores, 16 tasks, 5 FMAXs, the memory cost
is reduced from 29.0 MB to 1.2 KB by setting Nsch

as 16.

5 Experiments

5.1 Experimental setup

To show the improvements in throughput, the
results of the proposed scheme are compared with
those of the heterogeneity-unaware approaches. We

set the throughput of the worst-case frequency-based
schedule on the processor with the lowest operating
frequencies as the base performance. The results of
the proposed scheme are also compared with those
of the conventional task scheduling approach (Mir-
zoyan et al., 2014), which is denoted as DTS for the
deterministic timing model, on the variation-aware
processor with multiple chip operating points.

Twelve synthetic applications generated by us-
ing TGFF (Dick et al., 1998) and three real-world
benchmarks (Stuijk et al., 2006) were adopted to
evaluate the proposed HASR scheme. The 12 syn-
thetic applications, TG1 to TG12, are generated
with four different patterns and each pattern with
three different task number specifications (Table 2).
The three real-world benchmarks, TG13 to TG15,
are H.263 decoder, MP3 decoder, and MODEM, re-
spectively, which cover both the DSP domain and
the multimedia domain (refer to Stuijk et al. (2006)
for details).

Table 2 Overview of the benchmark applications

Benchmark
Number of

Benchmark
Number of

tasks tasks

TG1 51 TG9 200
TG2 101 TG10 70
TG3 202 TG11 105
TG4 51 TG12 209
TG5 109 TG13 4
TG6 202 TG14 14
TG7 50 TG15 16
TG8 101

The applications are scheduled onto a multi-
core processor with two to eight homogeneous cores.
TGFF is adopted to generate the first 12 applica-
tions and the corresponding multi-core processors.
The execution time of each task is uniformly dis-
tributed between 40 and 70 ms, and the floorplans
of the processors are regular grids. For the last three
applications, each core of the multi-core processor is
an ARM7 core with the lowest maximum operating
frequency of 500 MHz. To obtain the probability
distribution of the relative maximum operating fre-
quency, we follow the model in Momtazpour et al.
(2013) and Khodabandeloo et al. (2014) by apply-
ing simplifying assumptions of uniformly distributed
critical paths and equally sized inverters for each
critical path (Bowman et al., 2009). The size of
the ARM7 core is scaled down to 22 nm technology
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based on the scaling factor in Huang et al. (2011).
We adopt parameter variations suggested by ITRS
(2014) and implement the model in R language.

To generate multiple candidate schedules, the
set of chip operating points is sampled to be fed into
the proposed scheme. Since the number of chip op-
erating points is exponential to the number of cores
in the processor, the runtime of the scheme quickly
climbs up to hours from less than one minute when
increasing the number of cores from four to eight.
The runtime of scheduling would be up to days,
which is unbearable, when the number of integrated
cores further increases to a large one, e.g., 12. To
reduce the complexity, the chip operating point set
is sampled to obtain an approximation of the distri-
bution to guide candidate schedule generation.

In the sampling method, a set of training sam-
ples are adopted to obtain the candidate schedules.
To validate the sampling method, the generated can-
didate schedules are applied onto another set of vali-
dation samples. In the experiments, the performance
improvement is obtained by averaging the perfor-
mance improvement on 10 different sets of validation
samples of the same size. In Fig. 7, the CDFs of the
chips are presented with the variation of throughput
improvement under different sizes of training sam-
ples. The target processor consists of eight cores and
the number of candidate schedules is set to 12. In
the figure, the throughput improvements over base
performance are shown for different sizes of training
samples (NTH varies from 1000 to 100 000). The
generated candidate schedules are applied onto a
validation sample with 100 000 chips to obtain the
throughput. It is shown that the differences between

Throughput improvement (%)
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Fig. 7 The cumulative distribution function (CDF) of
chips over the performance improvement achieved by
HASR against base performance with different sizes
of training samples for TG2

different training sample sizes are little. Similar re-
sults are observed for other applications. Thus, the
sampling method is able to collect enough informa-
tion to guide candidate schedule generation. For the
following experiments, the size of the training sample
(NTH) is set to 10 000. The runtime is in the order
of second for all tested applications.

5.2 Impact of the number of tasks

Fig. 8 presents the throughput improvements
of HASR and DTS over base performances for the
given validation sample. In this set of experiments,
the number of cores on the multi-core processor is set
to 8 and the number of candidate schedules is 12. It
is shown that the results of HASR and DTS are bet-
ter than the base performances for all applications.
This is because both approaches exploit hardware
heterogeneity induced by process variation. Further-
more, HASR behaviors are better than DTS behav-
iors for all applications. That is to say, for any given
throughput requirement, the CDF of chips meeting
the requirement by using HASR would be no less
than that of DTS. The reason is that HASR fur-
ther exploits the heterogeneity by adaptively chang-
ing the schedule. Specifically, the throughput im-
provements of DTS and HASR are 16% and 22.3%,
respectively, when CDF is set to 50%. The av-
erage performance improvements achieved by DTS
and HASR are 16.5% and 22.2%, respectively. The
results show that the adaptivity of the schedule to
hardware heterogeneity is important for enhancing
the performance.

The results above present throughput improve-
ments by considering the validation sample as a
whole. In addition, the change of throughput on
each chip is shown in Figs. 9 and 10. Since the
base performance keeps unchanged across chips, only
the differences of throughputs between results of
HASR and DTS are presented. Although the CDFs
in Fig. 8 show that HASR statistically outperforms
DTS, throughput degradation occurs on some chips
from the distribution of throughput improvement in
Fig. 9. These two observations are not conflicted,
because the statistical description does not guar-
antee that the set of chips meeting a given perfor-
mance requirement with DTS is the subset of that
with HASR. The reason of performance degrada-
tion is that the actual workloads on each core are
not perfectly balanced as it is supposed to be when
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applying the optimized schedules. This would lead
to the misjudgment during binding schedule to the
chip operating point. It can also be observed that
the chips with performance degradation account only
for a small portion, around 2%, of the total chips.
The performance improvement on chips can be up
to 12% across all tested applications. Taking a fur-

ther look at the results of applications generated by
the same pattern but with different task quantities,
it is concluded that the portion of chips with per-
formance degradation decreases with the increase of
the task number. The boxplots in Fig. 10 obviously
exhibit this observation. When the number of task
is around 200, HASR is able to achieve performance



Chen et al. / Front Inform Technol Electron Eng 2015 16(12):1018-1033 1031

15

10

5

0

−5

Im
p

ro
v
e

m
e

n
t 
(%

)

15

10

5

0

−5

Im
p

ro
v
e

m
e

n
t 
(%

)

TG1 TG3TG2 TG4 TG6TG5

TG7 TG9TG8 TG10 TG12TG11

Fig. 10 The throughput improvement achieved by
HASR against DTS for different applications

improvement over DTS across all chips except TG12.
Furthermore, the average throughput improvement
increases with the task quantity. The reason for both
is that the workload imbalance across cores is nar-
rowed with the increase of the task quantity. The
binding of the schedule to the chip operating point
would achieve a better result with the increase of the
task quantity.

5.3 Impact of the number of cores

Figs. 11 and 12 show the variation of throughput
improvement on processors with different numbers of
cores. Only the differences between results of HASR
and DTS on each chip are shown to study the impact
of different numbers of cores. In the first set of ex-
periments, applications with a task quantity around
100 are applied onto the multi-core processor with
two to eight cores. In the second set of experiments,
applications are applied onto the multi-core proces-
sor with two to six cores, because the task quantities
are lower than those in the first set. It is shown
that the improvement achieved by HASR over DTS
increases when the core quantity decreases to two.
Also, the portion of chips with performance degra-
dation decreases to zero when the processor has two
cores. The reason is that allocating an application
to fewer cores leads to slighter workload imbalance.
Even in the presence of workload imbalance, HASR
still outperforms DTS on most chips.

25

20

15

10

5

0

−5

Im
p

ro
v
e

m
e

n
t 
(%

)

25

20

15

10

5

0

−5

Im
p

ro
v
e

m
e

n
t 
(%

)

2 4 6 8

Number of cores

2 4 6 8

Number of cores

2 4 6 8

Number of cores

2 4 6 8

Number of cores

Fig. 11 The throughput improvement achieved by
HASR against DTS on different multi-core processors
for synthetic applications
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HASR against DTS on different multi-core processors
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5.4 Impact of the number of candidate
schedules

The throughput improvements achieved by
HASR over DTS under different candidate schedule
quantities are shown in Figs. 13 and 14. The test ap-
plications are the same as those in Section 5.3. The
applications shown in Figs. 13 and 14 are applied
onto a multi-core processor with eight or two cores,
respectively. As expected, the throughput improve-
ment increases by adopting more candidate sched-
ules, since a chip is more likely bound with a better
schedule with more candidate schedules. Simultane-
ously, the throughput improvement by adding can-
didate schedules is observed to decrease when the
original candidate schedule quantity becomes higher,
e.g., from four to eight. This is because the hetero-
geneity induced by process variation is not uniformly
distributed and the influences of representative chip
operating points are not equal to each other. It
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can be seen that in both figures the curves under
12 and 16 candidate schedules almost overlap with
each other. So, increasing the candidate schedule
quantity when it is larger than 16 would lead to less
or no benefit. In other words, the proposed multi-
ple candidate schedules scheme is practical since the
required number of candidate schedules is low.
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of results achieved by HASR and DTS against base
performance for synthetic applications with different
quantities of candidate schedules
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Fig. 14 The CDF of chips over the improvement
of results achieved by HASR and DTS against base
performance for real applications with different can-
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6 Conclusions and future work

The technology scaling leads to process vari-
ation induced heterogeneity for homogeneous de-
signed multi-core processors. We show that the ex-
ploitation of such heterogeneity during task schedul-
ing is necessary for performance improvement on
multi-core processors. This work presents HASR,
a heterogeneity-aware schedule refining scheme that
can adaptively refine schedules according to the het-
erogeneity of each chip. This scheme constructs
a representative chip operating point set to gener-
ate candidate schedules. Each chip is bound with
one of the candidate schedules to achieve optimal
performance during booting. Experimental results
show that HASR outperforms the traditional sin-
gle schedule based approach. The proposed HASR
scheme provides the opportunity for leveraging pro-
cess variation induced heterogeneity for task schedul-
ing. With the technology scaling further, the pro-
cess variation induced heterogeneity would be more
notable and the exploitation of such heterogeneity
would be more remarkable. While this work is fo-
cused on performance improvement, an extended
work of the proposed scheme is to take power con-
sumption into consideration during task scheduling,
since power consumption also shows large variation
under current technology. Another meaningful fu-
ture work is to adapt the scheduling to dynamic
variation and permanent faults caused by aging.
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