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Abstract:    Geometric changes present a number of difficulties in deformable image registration. In this paper, we propose a 
global deformation framework to model geometric changes whilst promoting a smooth transformation between source and target 
images. To achieve this, we have developed an innovative model which significantly reduces the side effects of geometric changes 
in image registration, and thus improves the registration accuracy. Our key contribution is the introduction of a sparsity-inducing 
norm, which is typically L1 norm regularization targeting regions where geometric changes occur. This preserves the smoothness 
of global transformation by eliminating local transformation under different conditions. Numerical solutions are discussed and 
analyzed to guarantee the stability and fast convergence of our algorithm. To demonstrate the effectiveness and utility of this 
method, we evaluate it on both synthetic data and real data from traumatic brain injury (TBI). We show that the transformation 
estimated from our model is able to reconstruct the target image with lower instances of error than a standard elastic registration 
model. 
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1  Introduction  
 

Deformable image registration has been used as 
a vital tool in a wide range of fields in image analysis, 
for example, atlas building, object tracking, and au-
tomatic target recognition. It can also be used in dis-
ease diagnosis and treatment verification by com-
paring patients’ data with an anatomical atlas for 
clinical studies. Standard image registration methods 
predominantly measure structural similarity between 
a source and a target image. The standard method of 
defining similarity is based on intensity discrepancy, 
cross correlation (CC), or mutual information. The 
earliest attempt to measure high dimensional non- 
rigid transformation in a medical image system was 
proposed by Bajcsy and Broit (1982) after image 
matching rules were described in a hierarchical 
searching technique (Hall, 1979). Herbin et al. (1989) 

proposed a mathematical model to further study reg-
istration for dissimilar images by estimating the un-
known transformation as a parameter. These methods, 
as discussed above, solve the registration problem in a 
small deformation framework. Work has also been 
done to optimize registration over a large deformation 
field. Christensen et al. (1996) presented a fluid dy-
namic system which allows large magnitude defor-
mations by numerically solving partial differential 
equations associated with a constrained problem. 
Subsequently, to reduce the computation complexity 
of processing data with high dimensionality in 
Christensen et al. (1996), Beg et al. (2005) introduced 
the concept of tracking optimal flow (the shortest 
transforming path under a regularized metric) be-
tween template and target images. They defined a 
large deformation diffeomorphic metric mapping and 
explained the geodesic deformation flowing along the 
time-dependent velocity fields.   

Statistical modeling is commonly used in the 
image registration area. Markov chain Monte Carlo 
sampling coupled with the Markov random field has 
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been proved to be a powerful tool for both parametric 
and non-parametric registration problems (Luck et al., 
2000; Richard and Samson, 2007; Zhang et al., 2013). 
This algorithm samples a new displacement vector 
which is assumed to have joint Gaussian distribution 
at exactly one state in each iteration. A state space 
model (Trouvé and Younes, 2005) was effectively 
established by constructing the energy functional 
using the summation of similarity and regularization 
terms. Simulated annealing was applied to drive the 
total energy down until converging to a global  
minimum.  

However, the large geometric and intensity 
changes, combined with limited image information 
available, make image registration challenging under 
these settings. Direct application of current method-
ology may lead to an unpredictable and unrealistic 
estimation of the deformation field. For instance, the 
infiltration caused by traumatic injury, tumor, or 
blood perfusion dramatically decreases the traditional 
registration’s accuracy due to the topological changes 
and missing local information. It distorts the model’s 
progress towards a global optimal transformation. 
This is further compounded by slow convergence and 
poor numerical stability. To solve this problem, 
Niethammer et al. (2011) developed a geometric 
metamorphosis formulation that takes geometric 
changes into consideration by registering those areas 
separately from the global image registration problem. 
To the best of our knowledge, our model proposed in 
this paper is the first to estimate an optimal global 
transformation whilst seeking control of the side ef-
fects of geometric changes in the same framework. To 
achieve this, we have designed a sparse model which 
provides different levels of constraints on local de-
formations, and which uses a new energy optimiza-
tion scheme derived from the inverse consistent 
principle (Christensen and Johnson, 2001) to preserve 
the topology and uniquely describe the correspond-
ence between images. A numerical dual algorithm is 
used to speed up the convergence. We demonstrate 
the utility of our approach on both synthetic data and 
real traumatic brain injury (TBI) data from patients. 
Experimental results show that our method outper-
forms traditional elastic image registration by signif-
icantly improving the registration accuracy. 

 

2  Background 
 
The main idea behind our model is enforcing a 

sparsity to eliminate the side effects of the geometric 
change area. Before introducing our model, we re-
view the current framework of image registration.   

Our model is based on inverse consistency im-
age registration as proposed in Christensen et al. 
(1996). It is stated as finding the optimal transfor-
mation p that maps the template image I0 into the 
target image I1, where x is a column vector which 
denotes each voxel coordinate of an image. In this 

framework I0, I1L2(, ), where  denotes the 

discretized grid on the continuous image domain. 

L2(, ) is the infinite dimensional Hilbert space. 

One of the classical measurements to determine an 
optimal transformation p(x) is based on image inten-
sity discrepancy and smoothness penalty on the image 
transformation. The common cost function is given 
by  
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where λ is a balance parameter between the image 
match term and regularization. The term λ|p(x)| is 
the total variation regularization that smooths the 
deformation field p but still preserves the edge in-
formation of the deformation field. 

A typical problem with image matching regis-
tration in Eq. (1) is that minimizing the similarity 
function does not uniquely determine the corre-
spondence between two images. In addition, the sim-
ilarity based cost function has a large number of local 
minima, due to the complexity of the images and the 
high dimensionality of the transformation. This 
causes difficulties in producing a consistent set of 
transformations. To overcome the correspondence 
ambiguities, Christensen and Johnson (2001) derived 
a joint estimation of forward transformation from 
image I0 to I1 and its inverse (backward) transfor-
mation from I1 to I0 simultaneously. One advantage of 
this model is that it can encourage a consistent 
transformation between images by including addi-
tional correspondence information from backward 
registration. Another advantage is that the difference  
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between a deformed template and a deformed target is  
smaller than that between a deformed template and a 
fixed target, or that between a deformed target and a 
fixed template. Thus, the deformation error in the 
former case is smaller, which results in a more accu-
rate and smoother registration result. The energy 
formulation of inverse consistency is defined by 
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where p denotes the forward transformation, and q is 
the backward transformation. λ and γ are the balance 
parameters for forward and backward transformations, 
respectively. Assume that p and q are continuous 
differentiable transformations that map onto each 
other and have positive Jacobian for all xΩ(pq). 
This implies local one-to-one mapping for both di-
rectional transformations, and therefore has a local 
inverse. Based on the above assumption, it is theo-
retically possible to iteratively find a point in q so that 
p(x)+q(x+p(x))=0 or a point in p so that 
q(x)+p(x+q(x))=0. However, in practice, it is more 
reasonable to express this as p(x)+q(x+p(x))0 for all 
q(x) and q(x)+p(x+q(x))0 for all p(x). β, η[0, 1] 
are parameters which determine the strength of in-
verse consistency: the larger β and η are, the more 
inverse consistency is enforced. 
 
 
3  The proposed algorithm 
 

As noted in the introduction, although geometric 
changes might be appropriate for traditional registra-
tion models with low dimensional image transfor-
mation, a direct application of classical deformable 
registration methods produces inaccurate information 
in estimating deformation fields. To solve this prob-
lem, Trouvé and Younes (2005) proposed an image 
metamorphosis method which uses weak models to 

transform the image from the template to the target 
image smoothly; however, the transformations or 
composition of the pathologies estimated in this 
method do not have an explicit formulation. We will 
propose an innovative approach which is related to 
the classical registration model but identifies geo-
metric change areas that cannot be matched due to a 
missing correspondence (non-invertible). The patho-
logical deformations are then detected using under-
lying image deformations. The energy functionality 
of our model is defined as 
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where b and c are used to identify the non-invertible 
area. Ideally, if the forward transformation p(x) and 
backward transformation q(x+p(x)) are continuously 
invertible, values in b and c become zero; otherwise, 
non-zero values are produced. The sparsity term 
forces the invertible area to be registered as exactly 
zero, but keeps the non-invertible area regularized. In 
other words, |b(x)|>0 denotes a non-invertible area 
and |b(x)|=0 denotes an invertible area. ε and θ are 
fudge factors that control the sparsity on the local 
deformation field.  

As all the unknown variables in Eq. (3) are 
coupled with each other in the energy functional, it is 
difficult to produce explicit derivatives. To effectively 
minimize the energy functional on symmetric forward 
and backward transformations, we use a split 
variation scheme to rewrite the energy functional with 
regard to p and q separately: 
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For the purpose of effective optimization, we 
will develop an alternative scheme to update the 
transformations iteratively using the Lucas-Kanade 
algorithm (Lucas and Kanade, 1981). We use it to 
estimate additive transformation Δp and Δq at each 
iteration rather than updating the transformations p 
and q directly as in traditional image registration 
models. This leads to the following optimization 
formulations of our model: 
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followed by updating p(x) and q(x) until they con-
verge, where p(x)←p(x)+Δp(x) and q(x)←q(x)+ 
Δq(x). 

3.1  Numerical solution on data fidelity, regulari-
zation, and inverse consistency 

Since the problems of forward and backward 
transformations are symmetrical, we present only 
algorithms related to forward transformation in this 
subsection. The solution for backward transformation 
is the same in reverse. 

To reduce computation complexity while gain-
ing more accuracy, we introduce an auxiliary variable 
u, and then minimize the following convex 
approximation of Eq. (4): 
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where µ is a small constant such that u(x) is a close 
approximation of p(x)+Δp(x). This convex minimi-
zation problem can be optimized by alternating steps 
between updating u and Δp iteratively. 

Fixing Δp, we solve 
 

2
min ( ) ( ) ( ) ( ) .

2u u p p u


      
  x x x x  

 

This function is similar to an image denoising 
model with total variation regularization as presented 
by Rudin et al. (1992). We apply Chambolle’s dual 
algorithm (Chambolle, 2004) in the optimization 
procedure as the total variation is a non-differentiable 
convex function. Our numerical scheme enhances the 
computational efficiency and accelerates the speed of 
convergence. We formulate the problem in a fixed 
point iteration by simply performing a projected gra-
dient descent method. Note that for notational sim-
plicity, we denote p(x), q(x), u(x), k(x) on the whole 
image domain  as p, q, u, k, respectively. The 
closed-form solution for updating u is 
 

div ,u p p k                           (8) 
 

where ρ=λ/µ. We evaluate Eq. (8) by an iterative ap-
proximation in the following step:  
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with an initial value k0=0 and τ is the step size. 
Fixing µ, we solve 
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Note that the sub-problem above does not de-
pend on the spatial derivatives of u, and thus we can 
solve it using a point-wise method. To obtain the 
closed-form solution, we use the Taylor expansion to 
obtain 
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The optimization problem becomes 
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where Δp(x)n+1=M(x)/N(x). By setting 0,
p
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where I is an identity matrix, ( ( ) )n nq p x x  is the 

Jacobian matrix with regard to the gradient of each 
component of deformed deformation fields p(x) and 
q(x). 
 

3.2  Numerical solution on L1 sparsity-inducing 
norm 

The L1 optimization problem has been used and 
exploited in several areas. One reason for this is its 
high computation intractability, and another reason is 
that it requires techniques that are very problem- 
specific. In our model, we adopt a fast iterative 
shrinkage thresholding framework which was pre-
sented by Beck and Teboulle (2008). It has a global 
rate of convergence that was significantly improved 
compared with the classical methods. By setting the 
gradient with regard to b as 0, we obtain 
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where sgn(b(x)) indicates the sign of b(x), which 
means sgn(b(x))=1 if b(x)>0 and sgn(b(x))=−1 oth-
erwise. This shrink operator provides a strategy to 
yield an estimation of the components to reach 
non-zero in an optimal solution, and it is defined as 
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Fig. 1 is the main algorithm flow of the proposed 

algorithm. 
 
 
4  Experimental results 

4.1 Image matching accuracy and inverse  
consistency 

In this subsection, we show the utility of our 
proposed model in quantifying the temporal evolution 
of image matching criteria. Our technique is applied 
to two normal 3D magnetic resonance (MR) brain  
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scans acquired from two persons, one aged 3 and the 
other aged 38. To obtain a smooth and accurate match 
for these sets of experimental data, we set smoothness 
parameters λ, γ to 0.05, inverse consistent parameters 
β, η to 0.01, and factors ε, θ to 0.001. Fig. 2 shows the 
original source and target images as well as the for-
ward and backward deformed images.  

The different scaling levels of brain shape and 
the large topological changes in the white matter 
usually cause problems in traditional image registra-
tion models. Our methodology resolves the problems 
caused by these topographical changes and decreases 
the consistent error of forward and backward trans-
formations, which is demonstrated in Fig. 2. Exper-
imental results show that our method is able to jointly 
estimate forward and backward transformations, 
which makes the forward and backward transfor-
mations invertible. An additional benefit of our model 
is that the topology of the transformation is preserved. 
In general, the transformation between the large de-
formation images should result in continuous differ-
entiable one-to-one mapping, to preserve the topology. 
Non-negative determinate Jacobian fields in Fig. 2 
show that our model produces diffeomorphic and 
topology preserving maps between images. 

To demonstrate the ability of our method to find 
an optimal, smooth deformation, we applied it to a 
series of 73 frames of moving camera video and an-
alyzed the real-time deformation and direction vec-
tors of pixels over time. An example of video frames 
and related deformation fields is shown in Fig. 3. We 
set β, η to 0.01 to enforce the invertible property on 
deformation fields, and ε, θ to 0.001 to control the 
sparsity. Another advantage that our model has over 
the traditional elastic model is that, discontinuities are 
preserved rather than over-smoothed; for example,  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
transformation on the edge of images is well con-
strained. A comparison of the deformation fields is 
also given in Fig. 3. 

Initialize p, q, b, c 
for i=1:M do 

Forward image registration (source: I0; target: I1) 
 Step 1: Update dual variable u in forward registration 

by Eq. (8) 
Step 2: Update incremental variable Δp by Eq. (11)
Step 3: Compute sparsity term b by Eq. (12) 

Backward image registration (source: I1; target: I0) 
 Repeat steps 1–3 for updating u in backward regis-

tration, Δq, and c 
end 

 Fig. 1  Main algorithm flow 

Fig. 2  Demonstration of forward and backward trans-
formations between two images 
(a) is the template image I0 and (b) is the target image I1. (c) is 
the time series of forward transformation from template to 
target images and (d) is the consistent error between each 
deformed template I0 and target I1 in forward transformation.
(e) is the time series of backward transformation from target 
to template images and (f) is the consistent error between 
each deformed template I1 and target I0 in backward trans-
formation. (g) is the determinant of the Jacobian fields for 
forward transformation and (h) for backward transformation
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4.2  Sparsity-inducing influence 

In the following experiments, we first tested our 
proposed model on a set of synthetic data (size 
50×50). Fig. 4 illustrates image change caused by 
global deformation and local infiltration. The 
smoothness parameters λ, γ were set to 0.01, inverse 
consistent parameter β, η 0.01, and factors ε, θ 0.005.  

By using our method, image matching between 
the template and the target is processed appropriately 
by leaving the infiltration area. The sparsity-inducing 
term in our methodology controls the local defor-
mation of geometric metamorphosis, which hinders 
global image registration. Conversely, from the grid 
information of deformation in Fig. 4, the infiltration 
part is well detected in our system, which is of great 
utility in clinical medical imaging, for instance, brain 
tumor tracking and TBI detection. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
To demonstrate the application of the proposed 

method in solving practical problems, we used real 
TBI data (size 128×128×128). We considered the TBI 
data set of two images obtained from human subjects 
(Fig. 5). A rigid transformation was applied to remove 
rotations, translations, or reflections. In these patho-
logical images, the large differences inside the brain 
(highlighted by a white circle) normally cause a large 
mis-registration (Fig. 6), despite the similarity in the 
procedure of acquiring these images. Results in Fig. 5 
show that our method precisely detects both global 
deformation and local infiltration in 3D brain image 
registration. The deformation grid also presents fairly 
smooth forward and backward transformations. The 
parameters we used in this experiment were: λ= 
γ=0.05, β=η=0.06, and ε=θ=0.01. 

We showed the registration accuracy and pro-
cessing time of our method on the TBI images. 
Comparisons were made with the traditional con-
sistent image registration (Christensen and Johnson, 
2001), large deformation diffeomorphic metric map-
ping (LDDMM) (Beg et al., 2005), and stationary 
velocity field (SVF) (Hernandez et al., 2008) methods. 
Table 1 shows the comparison of registration accu-
racy as measured by the average of the mean squared 
errors (MSEs) between the forward and backward 
registrations. In addition, we show the convergence 
graph of each model in Fig. 7. It indicates that our  

Fig. 3  Comparison of deformation fields calculated using 
the proposed algorithm and the traditional algorithm 
without penalty terms  
(a) The 2nd, 6th, 10th, 19th, 27th frames of video series; 
(b) Corresponding deformation fields using the proposed 
algorithm; (c) Corresponding deformation fields using the 
traditional algorithm with no penalty term	

(a)                             (b)                            (c) 

Fig. 4  Results on synthetic data (the movement and the 
hole which leads to image appearance change are well 
detected)  
(a) Template image I0; (b) Target image I1; (c) Deformed 
template image; (d) Grid information for deformation field 
from I0 to I1 
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method converges to a smaller error with fewer iter-
ations than LDDMM and SVF. However, the con-
vergence fails in the traditional consistent image 
registration method. As shown in Fig. 7 (blue line), 
the jump occurs around iteration 80, and will appear 
later as the iteration goes on. Table 2 shows the pro-
cessing time of each method. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
5  Conclusions 
 

This paper presents a new algorithm for image 
registration with geometric changes. A sparsity- 
inducing penalty was proposed to regularize the  
geometric change (non-invertible) region in an effec-
tive global framework. A new energy optimization 
scheme derived from the inverse consistent principle 
was analyzed. It preserved topology and uniquely 
described the correspondences between two matching 
images. A numerical method was applied to speed up 
the convergence and enhance the stability of the al-
gorithm. Experimental results on real TBI image data 
demonstrated that our proposed approach can effec-
tively reduce the side effects of geometric change. 
The sparsity-inducing penalty made a significant 
contribution to global deformation computation. The 
ability to optimize and control metamorphosis in the 

Table 1  Comparison of the average registration MSEs 
obtained using four different methods 

Method 
Average registration MSE 

Forward Backward 
Consistent image 

registration 
0.089 0.144 

LDDMM 0.070 0.134 

SVF 0.091 0.156 

Proposed 0.040 0.048 

 

Fig. 7  Convergence of forward registration using elastic 
image registration, LDDMM, stationary velocity, and the 
proposed algorithm 
References to color refer to the online version of this figure

0 20 40 60 80 100 120 140 160 180 200
0

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Iteration

Elastic image registration
LDDMM
Stationary velocity
Proposed

Table 2  Processing time of forward registration ob-
tained using four different methods 

Method Processing time (s) 
Consistent image registration 4.8 

LDDMM 960.0 

SVF 7.0 

Proposed 6.6 

 

Fig. 6  Classical image registration results (the template 
and target images are the same as those in Fig. 5) 
(a) Forward transformation; (b) Backward transformation 

(a)                                            (b) 

Fig. 5  Results on TBI images with infiltration 
(a) and (b) are TBI images with different infiltration; (c) 
Deformation field of forward transformation; (d) Defor-
mation field of backward transformation 
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geometric approach could produce many interesting 
opportunities for new applications and analyses in the 
medical imaging area. In the future we aim to conduct 
further research in this area with the expectation of 
applying our approach in an atlas building framework. 
 
References 
Bajcsy, R., Broit, C., 1982. Matching of deformed images. 

Proc. 6th Int. Conf. on Pattern Recognition, p.351-353.  
Beck, A., Teboulle, M., 2008. A fast iterative shrinkage- 

thresholding algorithm for linear inverse problems. SIAM 
J. Imag. Sci., 2(1):183-202. [doi:10.1137/080716542] 

Beg, M.F., Miller, M.I., Trouvé, A., et al., 2005. Computing  
large deformation metric mappings via geodesic flows of 
diffeomorphisms. Int. J. Comput. Vis., 61(2):139-157.  
[doi:10.1023/B:VISI.0000043755.93987.aa] 

Chambolle, A., 2004. An algorithm for total variation mini-
mization and applications. J. Math. Imag. Vis., 20(1): 
89-97. [doi:10.1023/B:JMIV.0000011325.36760.1e] 

Christensen, G.E., Johnson, H.J., 2001. Consistent image 
registration. IEEE Trans. Med. Imag., 20(7):568-582. 
[doi:10.1109/42.932742] 

Christensen, G.E., Rabbitt, R.D., Miller, M.I., 1996. Deform-
able templates using large deformation kinematics. IEEE 
Trans. Image Process., 5(10):1435-1447. [doi:10.1109/ 
83.536892] 

Hall, E.L., 1979. Computer Image Processing and Recognition. 
Academic Press, New York, USA. 

Herbin, M., Venot, A., Devaux, J.Y., et al., 1989. Automated 
registration of dissimilar images: application to medical 
imagery. Comput. Vis. Graph. Image Process., 47(1): 
77-88. [doi:10.1016/0734-189X(89)90055-8] 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Hernandez, M., Olmos, S., Pennec, X., 2008. Comparing 
algorithms for diffeomorphic registration: stationary 
LDDMM and diffeomorphic demons. Proc. 2nd MICCAI 
Workshop on Mathematical Foundations of Computa-
tional Anatomy, p.24-35. 

Lucas, B.D., Kanade, T., 1981. An iterative image registration 
technique with an application to stereo vision. Proc. 7th 
Int. Joint Conf. on Artificial Intelligence, p.121-130. 

Luck, J., Little, C., Hoff, W., 2000. Registration of range data 
using a hybrid simulated annealing and iterative closest 
point algorithm. Proc. IEEE Int. Conf. on Robotics and 
Automation, p.3739-3744. [doi:10.1109/ROBOT.2000. 
845314] 

Niethammer, M., Hart, G.L., Pace, D.F., et al., 2011. Geometric 
metamorphosis. Proc. 14th Int. Conf. on Medical Image 
Computing and Computer-Assisted Intervention, p.639- 
646. [doi:10.1007/978-3-642-23629-7_78] 

Richard, F.J.P., Samson, A.M.M., 2007. Metropolis-Hasting 
techniques for finite-element-based registration. Proc. 
IEEE Conf. on Computer Vision and Pattern Recognition, 
p.1-6. [doi:10.1109/CVPR.2007.383422] 

Rudin, L.I., Osher, S., Fatemi, E., 1992. Nonlinear total varia-
tion based noise removal algorithms. Phys. D, 60(1-4): 
259-268. [doi:10.1016/0167-2789(92)90242-F] 

Trouvé, A., Younes, L., 2005. Metamorphoses through Lie 
group action. Found. Comput. Math., 5(2):173-198. 
[doi:10.1007/s10208-004-0128-z] 

Zhang, M., Singh, N., Fletcher, P.T., 2013. Bayesian estimation 
of regularization and atlas building in diffeomorphic 
image registration. Proc. 23rd Int. Conf. on Information 
Processing in Medical Imaging. p.37-48. [doi:10.1007/ 
978-3-642-38868-2_4] 

 


