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Abstract:    Resampling is a critical procedure that is of both theoretical and practical significance for efficient implementation 
of the particle filter. To gain an insight of the resampling process and the filter, this paper contributes in three further respects as 
a sequel to the tutorial (Li et al., 2015). First, identical distribution (ID) is established as a general principle for the resampling 
design, which requires the distribution of particles before and after resampling to be statistically identical. Three consistent met-
rics including the (symmetrical) Kullback-Leibler divergence, Kolmogorov-Smirnov statistic, and the sampling variance are 
introduced for assessment of the ID attribute of resampling, and a corresponding, qualitative ID analysis of representative 
resampling methods is given. Second, a novel resampling scheme that obtains the optimal ID attribute in the sense of minimum 
sampling variance is proposed. Third, more than a dozen typical resampling methods are compared via simulations in terms of 
sample size variation, sampling variance, computing speed, and estimation accuracy. These form a more comprehensive under-
standing of the algorithm, providing solid guidelines for either selection of existing resampling methods or new implementations. 
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1  Introduction 
 
Dynamic state estimation, namely filtering, is 

concerned with the sequential process of estimating a 
state that evolves over time and that is periodically 
observed. The Bayesian filter forms the standard 
solution to infer the state from noisy observations, 
which requires the complete posterior density of the 
state to be determined as a function of time. The pos-
terior probability density function (PDF) can be ana-

lytically computed for systems only with linear dy-
namics and additive Gaussian noises, for which the 
known Kalman filter gives the optimal estimate 
(Kalman, 1960). In the general case of nonlinear sys-
tems and/or non-Gaussian noises, it is impossible to 
compute the exact form of the posterior PDF. Simply, 
a Gaussian variable after nonlinear transformation or 
affected by non-Gaussian noises will be no more 
Gaussian; instead, one has to resort to approxima-
tions. Approximations can be parametric or nonpara-
metric. In the former case, the posterior PDF is rep-
resented by a family of functions that are fully char-
acterized by the parameters. For example, the first 
and second statistical moments (namely, mean and 
variance) are sufficient to determine a Gaussian dis-
tribution. However, they are not sufficient to repre-
sent a general probability distribution. In the latter 
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case where the posterior PDF can be an arbitrary 
distribution (whether non-Gaussian or multimodal), 
parameterization is impossible or will suffer from 
significant approximation errors. In these cases, the 
posterior PDF must be approximated with a nonpara-
metric PDF. Among them, the particle filter (PF), 
also referred to as the sequential Monte Carlo (SMC) 
approach, has gained the most popularity (Doucet et 
al., 2001; Arulampalam et al., 2002; Djurić et al., 
2003; Cappé et al., 2007; Gustafsson, 2010; Li et al., 
2014), especially for strong nonlinear filtering  
models that may be affected by non-Gaussian noises. 

The PF drives the Bayesian recursions over 
time using a set of weighted particles, where the ran-
dom measure formed is theoretically qualified to 
represent any filtering distribution. The filter evalu-
ates how well each particle conforms to the dynamic 
model and explains the observations, using this  
assessment to update the particle set online and 
hence form Bayesian posterior estimates. The three 
key operations forming the basis of the most com-
monly used type of the PF called the sampling im-
portance resampling (SIR) or sequential importance 
sampling and resampling (SISR) filter (Rubin, 1987; 
Gordon et al., 1993) are: 

1. Particle propagation: updating the state of 
particles according to the state transition process or 
an alternative proposal;  

2. Weight computation: updating the weight of 
particles that are probability masses associated with 
the particles with reference to the observation;  

3. Resampling: sampling a new set of particles 
from the original particle population for better parti-
cle representation of the filtering distribution. 

The former two steps comprise the sequential 
importance sampling (SIS) paradigm. Resampling is 
an essential component for the PF because without it, 
the SIS will quickly produce a degenerate set of par-
ticles (Gordon et al., 1993; Kong et al., 1994; Aru-
lampalam et al., 2002; Pérez et al., 2005; Li et al., 
2014) as the weight discrepancy between particles 
increases with time. This means that, with very few 
exceptions, most particles will have negligible 
weights and, as a result, the random measure they 
form is unreliable. To combat this, resampling re-
places the particle set by a new set of equivalently or 
similarly weighted particles, resembling the pruning 
and enrichment operation (Crisan et al., 1998; Chen 

et al., 2005). Our recent tutorial (Li et al., 2015) 
(hereafter referred to as ‘the tutorial’) has provided a 
comprehensive overview and classification of state-
of-the-art resampling methods. To serve as a further 
extension and supplement to the tutorial, this paper 
puts forward identical distribution (ID) as a basic 
principle for resampling and correspondingly pro-
poses a new resampling algorithm that has the best 
ID and compares representative resampling methods. 
In addition, more works on resampling will be re-
viewed with a minimum overlap to the works that 
have been introduced in the tutorial. By combining 
the new findings with the tutorial, a solid guideline 
for designing new resampling methods is formed 
while a more comprehensive understanding of the 
resampling is expected. 

It is necessary to note that resampling is a 
broadly-used concept involved in many statistical 
problems such as data analysis (Efron et al., 2015), 
exhibiting very different contents therein. The first 
standard PF is referred to as the bootstrap filter 
(Gordon et al., 1993), where the bootstrapping that 
relies on random sampling with replacement falls 
just in the broader class of resampling methods. It is 
fair to say, algorithms and applications of resampling 
are general, but this paper concentrates only on its 
implementation and application within particle filter-
ing to avoid over-wide discussion. Since this is a 
sequel to the tutorial, we have no intention of repeat-
ing materials; the reader is referred to the tutorial for 
the details of existing resampling methods. 

 
 

2  Why resampling? 
 
Since resampling is a relatively independent 

procedure that is in general not correlated with the 
other operations required by the PF, we focus on the 
resampling operation only while omitting the other 
filtering operations for which there exist a variety of 
different versions. This allows a clear understanding 
of our contributions. We start basically with the 
SMC approximation of the Bayesian posterior distri-
bution of the state 
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observation, ( )m
tx  and ( )m

tw  the state and weight of 

the mth particle respectively, M the total number of 
particles, and δ(·) the Dirac delta impulse. 

Resampling was initially employed to combat 
sample degeneracy (Gordon et al., 1993; Kong et al., 
1994) by sampling a new (equivalently or similarly 

weighted) particle set ( ) ( )
1{ , }n n N

t t t nx w     from the 

degenerate set ( ) ( )
1{ , }m m M

t t t mx w   for replacement 

at time t, where ( )n
tx  and ( )n

tw  give the state and 

weight of a resampled particle, respectively, and N is 
the number of particles obtained from resampling 
(which is specified by the user and is often equal to 
M). There are different aspects to understand this 
process. In what follows, we investigate from the 
perspective of tracking loss.  

Note that if a sample is too far away from the 
true state, we say it has lost the estimate; i.e., under a 
certain confidence level, we believe that the particle 
is lost. To measure this, we define the tracking loss 

probability function ( )( )m
t tR x x  that can be con-

veniently interpreted as a risk function of the loss of 
a particle, which gives the probability that particle 

( )m
tx  has lost the true state tx  as follows: 

 
( ) ( )( ) : | | ,m m

t t t tR x x x x                 (2) 
 

where |·| is a distance defined in the state space and α, 
β are nonnegative coefficients. This probability can 
be interpreted to mean that the farther a sample is 
from the true state, the higher the probability that it 
loses the estimate is. On the other hand, the likeli-
hood principle indicates that the farther a sample is 
from the true state, the lower its likelihood is and the 

smaller its weight ( )n
tw  is; i.e., 

 
( ) ( ) ( ) 1( ) | | ( ) .m m m

t t t t tR x x x x w               (3) 
 

Following these two lines of thinking, the estimate is 
lost by all the particles with probability 
 

( ) ( ) 1

1 1

( ) : ( ) ( ) .
M M

m m
t t t t

m m

R R x x w 

 

           (4) 

 

This can be taken as the probability that the filter (or 
the random measure χt) loses tracking.  

Resampling, generally replicating high-
weighted particles to replace low-weighted particles, 
is essentially reducing the probability that the filter 

loses tracking, obtaining ( ) ( ).t tR R    However, 

this comes at the price of discarding low-weighted 
particles (except few special implementations that 
advocate preserving low-weighted particles through 
special strategies (Godsill et al., 2007; Li et al., 2012; 
Choe et al., 2014)), which are generally located in 
the tail of the distribution, and are helpful in dealing 
with outlier/disturbances, potentially leading to sam-
ple impoverishment. That is, most of the particles are 
duplicated from the same few ancestors, suffering 
from a problem of the same nature as degeneracy. 
The trade-off between degeneracy and impoverish-
ment, and their treatments have been reviewed in Li 
et al. (2014), while the side effects of resampling and 
corresponding compensative strategies have been 
discussed in the tutorial. We reiterate that there is a 
trade-off between robustness and accuracy during 
filtering. The former requires maintaining good di-
versity of the particle population (to form a relatively 
heavy tail of the filtering distribution) to deal with 
outliers, while the latter requires the particle popula-
tion to be concentrated. More in-depth results on 
convergence (Crisan and Doucet, 2002; Hu et al., 
2011; Stano et al., 2013; Mbalawata and Särkkä, 
2016), stability (Whiteley, 2013; Beskos et al., 2014; 
Douc et al., 2014), and concentration (Del Moral et 
al., 2012) of the PF can be found.  

The motivation of resampling includes, but is 
not limited to, combating sample degeneracy (while 
avoiding impoverishment) and adjusting the number 
of particles online (Li et al., 2013b; 2016). The 
achievement of resampling tends to be less restricted 
to a specified form but indeed provides much free-
dom for the user to improve the quality of the parti-
cle set from different aspects. In particular, four spe-
cial classes of resampling strategies are worth noting 
here and may inspire further developments. 

1. Instead of sampling from the original particle 
set χt, resampling may be applied on an alternative of 
the original measure χt as addressed in the tutorial 
about resampling (Liu et al., 2001), and there are 
many other alternatives (Kwak et al., 2008; Choe et 
al., 2015). These resampling implementations are 
almost surely biased. 
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2. Instead of sampling in the one-dimensional 
weight space only, there are a few exceptions that 
take into consideration the state of particles for 
resampling. In spite of the computational complexity, 
this seems to be particularly helpful in the context of 
robot Monte Carlo localization (Li and Sun, 2010; 
Adiprawita et al., 2011; Morelande and Zhang, 2011; 
Li et al., 2012). 

3. Instead of resampling at most once during 
each filtering iteration, the frequency of resampling 
can be higher. For example, a double-resampling 
strategy was used by Li and Sun (2010) and Lang et 
al. (2015), where resampling was implemented twice 
per filtering iteration. One is before the weight-
updating step, which is a particle-merging process to 
reduce the number of particles that need weight up-
dating, and the other is after the weight-updating step, 
with the goal to restore/increase the number of parti-
cles involved in the state-prediction step. As a result, 
a good trade-off between filtering accuracy (the 
more particles for state prediction, the better) and 
computational efficiency (the fewer particles for 
weight updating, the better) can be achieved. 

4. In the case of a time-varying number of tar-
gets, e.g., the SMC implementation of the probability 
hypothesis density filter (Li et al., 2016), where tar-
gets may appear or disappear randomly both in the 
state space and in time, resampling is responsible for 
the control of the number of particles: increasing it 
when new targets appear and reducing it when exist-
ing targets disappear. Here, what convenient for 
resampling parallelization is that particle weights do 
not need to be normalized, which is different from 
the implementation in the general PF. 

Furthermore, hybrid methods that integrate dif-
ferent sampling strategies (Zhi et al., 2014) can bene-
fit in multiple aspects. Despite these special imple-
mentations, resampling must still follow certain rules 
in the general sense, one of which is that the random 
measure formed by the weighted particles shall not 
be changed significantly because of resampling, un-
less it is required to do so with a reason—we state 
this because there are cases in which one may tend to 
change the distribution for one reason or another, 
e.g., the former two classes of special implementa-
tions mentioned above and the study by Das and 
Mazumdar (2013). We will focus on this in the fol-
lowing section. 

3  Identical distribution for resampling 
 
The strength of the nonparametric PF over para-

metric filters is the ability to approximate the com-
plete distribution of interest, which can be arbitrary. 
To guarantee this strength, the resampled particle 
system shall be as good an approximation to the 
original distribution as possible, in some suitable 
sense (Douc and Cappé, 2005). First, resampling 
should be unbiased so that it will not ‘drift’ the esti-
mate (which is often given by the mean of the distri-
bution). Apart from the unbiasedness, greater atten-
tion should be paid to a higher-level measure of the 
change of the underlying posterior distribution 
caused by resampling. 

We argue that as long as no new observation is 
used in the process of resampling, the distribution of 
particles before and after resampling should be iden-
tical; namely, identical distribution (ID) should be 
followed. However, except in very rare cases, the 
distributions before and after resampling are more or 
less different. Therefore, it is necessary both in theory 
and in practice to know how much change the 
resampling process makes to the distribution or, ra-
ther, how well the resampling is able to preserve the 
original distribution. Three metrics are introduced 
below in order to assess the ID attribute of different 
resampling methods. 

3.1  Kullback-Leibler divergence 

The Kullback-Leibler (KL) divergence (KLD) 
(Kullback and Leibler, 1951), also known as infor-
mation divergence or relative entropy, is a widely 
used asymmetric measure of the difference between 
two probability distributions. Specifically, the KLD 
of q from p, denoted as DKL(p||q), is a measure of the 
information lost when q is used to approximate p. 
For the discrete probability distributions p and q, 
DKL(p||q) is given by 

 

KL

( )
( || ) ( ) ln .

( )i

p i
D p q p i

q i
                (5) 

 

Given that p is the probability distribution of the 
particles before resampling and q is that after 
resampling, Eq. (5) provides a measure of the infor-
mation loss caused by resampling, which can be in-
terpreted as an index of the ID attribute of the 
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resampling process. Obviously, a smaller KLD (less 
information loss) indicates a better ID. However, the 
KLD is not really a metric since it is not symmetric 
(Topsoe, 2000), but it can be easily extended to be a 
symmetry-enhanced KL-divergence (S-KLD), e.g., 

 

KL KL
S-KL

( || ) ( || )
( || ) :

2
1 ( )

( ( ) ( )) ln .
2 ( )i

D p q D q p
D p q

p i
p i q i

q i




 
        (6) 

 
Eq. (6) in fact gives the average of the cross-

entropies minus the average of the entropies. One of 
the drawbacks of the KLD and S-KLD is that they 
may be unbounded. For more symmetric divergences 
inspired by KLD and related models such as the  
Jensen-Shannon divergence and Bhattacharyya dis-
tance, please refer to Nielsen (2010). 

Arguably, a larger number of particles (namely, 
smaller KLD of the resampled particle set from the 
original particle set) is helpful in reducing infor-
mation loss, but will also increase computation. This 
is another trade-off between the computing efficiency 
and ID attribute for resampling. Therefore, a princi-
ple that determines the minimum number of particles 
to resample conditioned on a sufficient ID quality is 
that the KLD of the resampled particle set from the 
original set does not exceed a prespecified error 
bound; i.e., the information lost because of 
resampling needs to be bounded. The readers are 
referred to Fox (2003) and Li et al. (2013b) for de-
tails. The KLD has also been used for distributed 
filtering assessment (Wang and Djurić, 2013). In 
addition to the number of particles to be resampled, 
another critical factor affecting the ID quality of the 
resampling is the sampling procedure used. 

3.2  Kolmogorov-Smirnov statistic 

The Kolmogorov-Smirnov (K-S) statistic, also 
referred to as F-discrepancy, is the maximum verti-
cal distance between two empirical distribution func-
tions (EDF): 

 

K-S 1, 2,sup | ( ) ( ) |,M N
x

D F x F x
 

            (7) 

 
where F1,M(·) and F2,N(·) are the EDFs of two distri-
butions, respectively. For our case, the discrete EDF 

FN for N independent samples ( )n
tx  (that is weighted 

( )n
tw ) is defined as follows: 

 

( )

( )

1

( ) ,n

N
n

N t x x
n

F x w I




                    (8) 

 

where ( )nx x
I


 is the indicator function. If x(n)≤x, it is 

equal to 1; otherwise, it is equal to 0. 
The K-S statistic aims to identify and capture 

the largest discrepancy between two empirical distri-
butions. It has been used for model assessment 
(Djurić and Miguez, 2010) and for measuring the 
difference between two distributions before and after 
resampling (Li and Sun, 2010; Li et al., 2012). Ob-
viously, the smaller the F-discrepancy, the better the 
ID quality of resampling. We investigate the largest 
possible F-discrepancy caused by several typical 
unbiased single-resampling methods, including multi-
nomial resampling (MR) (Gordon et al., 1993), re-
sidual resampling (RR) (Liu and Chen, 1998), strati-
fied resampling (StR), systematic resampling (SyR) 
(Kitagawa, 1996), residual systematic resampling 
(RSR) (Bolić et al., 2003), branch-kill resampling 
(B-k) (Crisan and Lyons, 1999), and rounding-copy 
resampling (R-c) (Li et al., 2013a). The F-
discrepancy analysis is given in Appendix A (assum-
ing that the same number of particles is resampled in 
all resampling methods), which concludes that 
 

DMR>DStR≥DSyRDRSRDB-kDR-c.         (9) 
 

Furthermore, the deterministic resampling (Li et 
al., 2012) that avoids discarding particles can 
achieve the lowest F-discrepancy, given that the state 
space is properly partitioned. However, the number 
of particles it outputs is not constant. Relevantly, the 
quasi-Monte Carlo-based SIR is verified to be empiri-
cally better than the original SIR (Pérez et al., 2005) 
for obtaining smaller F-discrepancy. More strategies 
to obtain smaller sampling discrepancy, or to say 
better ID performance, can be found in Crisan et al. 
(1998) and Robert and Casella (1999). 

Generally, it is not easy to calculate the KLD or 
the F-discrepancy apart from the state space. In what 
follows, we advocate a new metric that is insensitive 
to the dimension of the state space and is much easier 
to calculate for any particle set. 
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3.3  Sampling variance 

The real number of times that each particle is 

resampled ( )( )m
tN  must be an integer and is therefore 

often different from the expectation ( )( )m
tNw  even 

given that the resampling is unbiased such that 
( ) ( )( ) .m m
t tE N Nw  We define the sampling variance 

(SV) as the mean of the quadratic discrepancies be-
tween the numbers of times that the particles are 
resampled and the expectations: 

 

( ) ( ) 2

1

1
SV ( ) .

M
m m

t t
m

N Nw
M 

              (10) 

 
The SV given in Eq. (10) is essentially a cost 

function that provides an efficient metric to measure 
the discrepancy between the discrete distributions of 
weighted particles before and after resampling. 
Based on the high-order moment of the discrepancy, 
it has a finer ability than the first statistical moment 
(e.g., the mean) to describe the discrepancy and 
should, therefore, be emphasized. The smaller the 
SV is, the better the ID quality of the resampling 
method is. If and only if the two distributions are 
exactly the same, the SV as well as the KLD or the 
F-discrepancy is zero. From this aspect, the SV 
measure is consistent with the KLD and the K-S sta-
tistic. They all measure the discrepancy of two dis-
tributions, differing in the statistics of interest. The 
next section gives the minimum condition for SV, 
resulting in a novel resampling algorithm. 

 
 

4  Minimum-sampling-variance resampling 
 
We now concern ourselves with optimizing the 

resampling algorithm under certain reasonable con-
straints. First, to minimize the variance of the 
weights (which to the largest extent reduces the de-
generacy), the weight of the resampled particles shall 
be set equal, as commonly done; i.e., 

 

( ) 1
.n

tw
N

                              (11) 

 
We call this the optimal-weight condition, 

which fully removes the degeneracy. It is satisfied in 

most conventional resampling methods but possibly 
not in others, especially the compound sampling 
method (Li et al., 2015). Under the optimal-weight 
condition, resampling is as simple as determining the 
number of times that each particle should be sampled, 
which reduces to an integer programming problem 
(Lenstra, 1983). 

While satisfying Eq. (11), Eq. (10) can be mini-
mized using a sampling scheme as given in Algo-
rithm 1, where Floor(·) gives the largest integer not 
exceeding the content and TopRanks[S] returns the 
largest s elements in set S. As is shown, the new 
resampling method is a deterministic sampling 
scheme, called minimum-sampling-variance (MSV) 
resampling, which consists of two main steps: 

Step 1: Each particle is first resampled 
( )Floor( )m
tNw  times, leaving a weight residual 

( ) ( ) ( )ˆ = Floor( ) /m m m
t t tw w Nw N ; this step will yield, in 

total, L particles, where ( )

1
= Floor( ).

M m
tm

L Nw
  

Step 2: The particle with relatively large weight 
residual, top N−L, will be further sampled one more 
time each. 

 
Algorithm 1    MSV resampling 

( ) ( ) ( )
1 1[{ } ] ResampleMSV[{ , } , ];n N m m M

t n t t mx x w N   

n=0; L=0; 
For m=1:M 

    ( ) ( )Floor( );m m
t tN Nw  

    ( ) ( ) ( )ˆ / ;m m m
t t tw w N N   

    ( ) ;m
tL L N   

End 
For m=1:M 

    If ( ) ( )
1ˆ ˆTopRank [{ } ]m m M

t N L t mw w   

        ( ) ( ) 1;m m
t tN N   

    End 

    For ( )1: m
th N  

        n=n+1; 

        ( ) ( ) ;n m
t tx x  

    End 
End 

 
The MSV resampling is guaranteed to achieve 

the minimum SV for an arbitrary sample set while 
satisfying the optimal-weight condition and achieving 
exactly the specified number of particles. This, how-
ever, comes at the price of relaxing the unbiasedness 
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condition to be only asymptotically satisfied. We 
have Theorem 1 on the necessary condition to obtain 
MSV for resampling and Theorems 2–4 on the  
properties of the proposed MSV resampling  
approach; the proofs of these theorems are provided 
in Appendix B. 
Theorem 1    The minimum condition of Eq. (10) 

requires ( ) ( )| | 1m m
t tN Nw   for any 1≤m≤M. 

Theorem 2    The MSV resampling approach satis-

fies ( ) ( )| | 1m m
t tN Nw   for any 1≤m≤M. 

Theorem 3    The MSV resampling approach mini-
mizes SV. 
Theorem 4    The MSV resampling approach is  
asymptotically unbiased.  

The optimal ID quality obtained by MSV 
resampling indicates an ability to maximally pre-
serve the posterior distribution or, to say, an ability 
to maximally reduce information loss in the process 
of resampling, which is highly preferable in theory. 

Similarly, the so-called optimal sampling (OS) 
(Fearnhead and Clifford, 2003) and the stratified OS 
(Fearnhead and Liu, 2007) minimize the following 
discrepancy of the weight of particles before and 
after resampling: 

 

( ) ( ) 2

1

( ) ,
M

m m
t t

m

w w


                      (12) 

 

where ( )m
tw  is the new weight of particle ( )m

tx  if 

resampled and is equal to zero if not resampled. 
The OS resampling, the detail of which can be 

found in the tutorial, attributes sample impoverish-
ment to the replication of large-weighted particles 
and therefore, instead of replication, it reverses them. 
This is not so true since it is discarding (small-
weighted) particles but not replication of particles 
that causes the problem. The particle weights after 
OS resampling can still have a high variance and 
suffer from degeneracy. In addition, the number of 
particles will surely decrease (i.e., N<M), which 
makes it suitable only for PFs with an increasing 
number of particles (e.g., new particles are added at 
some other steps). In contrast, the proposed MSV 
resampling avoids these problems while achieving 
the optimal SV.  

It is also interesting to note that maintaining a 
stable/controllable (whether constant or adaptive) 
number of particles is critical for the PF in practice. 

For this, the largest discrepancy given in Eq. (12) 
was suggested to be bounded so that the smallest N 
can be determined (Fearnhead and Liu, 2007). This, 
however, is underestimated in the distributed PF de-
veloped by Sutharsan et al. (2012), where the num-
ber of particles based on a simple ‘rounding’ opera-
tion varies but is ignored throughout that study; 
please refer to Remark 1 of Li et al. (2013a), wherein 
a relevant resampling algorithm of a time-varying 
number of particles was proposed based on the 
‘rounding’ operation. These indicate that resampling 
needs to be carefully treated, although it may be ap-
parently simple in algorithm design. 

 
 

5  Comparable study 
 
A comprehensive quantitative comparison of 

the resampling methods is worth considering. Exist-
ing works such as those by Bashi et al. (2003), Hol 
et al. (2006), Murray (2012), Li et al. (2013a), and 
Sileshi et al. (2013) have compared no more than 
five resampling methods. In this section, we will 
compare numerous representative resampling meth-
ods based on a classic univariate state space model 
with a strong nonlinear state process equation and an 
observation equation given respectively by 

 

1 1
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25
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2 1
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where xt and yt are the state and observation at time t, 

respectively, and Gaussian noises ut~(0, 10), 

vt~(0, 1). 

The resampling methods used for simulation in-
clude single-sampling (including multinomial (Gor-
don et al., 1993), stratified, systematic (Kitagawa, 
1996), residual (Liu and Chen, 1998), RSR (Bolić et 
al., 2003), branch-kill (Crisan and Lyons, 1999), and 
rounding-copy (Li et al., 2013a)), reallocation (Liu et 
al., 2001), deterministic resampling (Li et al., 2012), 
simplified partial resampling (PR) (Hong et al., 
2010), KLD resampling (Li et al., 2013b), Metropo-
lis resampling (Murray, 2012), local selection 
resampling (Míguez et al., 2004), and MSV 
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resampling given in Algorithm 1. For the details of 
these algorithms, the readers are referred to the 
pseudocodes given in the tutorial (the MATLAB 
codes for these resampling algorithms can be found 
at https://sites.google.com/site/tianchengli85/matlab-
codes/resampling-methods). 

The simulation adopts different resampling 
methods but the same observation data at all time-
steps and the same starting number of particles N0 
for each filter. All resampling algorithms maintain a 
constant number of particles that is equal to N0, ex-
cept KLD resampling, which automatically adapts its 
number of particles. The SIS, which does not use 
resampling, is also simulated. However, we omit 
here the selective resampling strategy that imple-
ments resampling only at selected steps. The filter 
estimate given by the weighted mean of all particles 
is extracted after resampling in each filter in order to 
directly reflect the impact of resampling. 

Some resampling methods are parametric and 
their parameters are set as follows: 

1. The length of grid (one-dimensional) used in 
the fixed-size grid-based deterministic resampling is 
R=1. 

2. The length of grid (one-dimensional) used in 

KLD resampling is / 2 0.5R   and the number of 
particles in KLD resampling is determined online by 

 
3

1

1 2 2
1 ,

2 9( 1) 9( 1)

g
N z

g g  

 
      

   (15) 

 

where g is the number of support grids that contain at 
least one particle, z1−δ is the upper quartile of the 
standard normal distribution, ε=0.10, δ=0.01. In our 
case, N is further hard-limited to be no larger than 
2N0. 

3. For threshold-based simplified partial 
resampling, the threshold T=1/(5N) for Code 8 in the 
tutorial is used. 

4. For Metropolis resampling, the threshold 
B=N/10 for Code 9 in the tutorial is used. 

Results of these filters using different 
resampling methods are plotted in subsequent figures. 
In the figures, ‘others’ indicates all the resampling 
methods that have not been particularly specified in 
the legend. The true state and the filter estimates 
(when N0 is assigned 100) are given in Fig. 1. The 

number of particles and the SV obtained using dif-
ferent resampling methods against time are given in 
Figs. 2 and 3, respectively. Here, we give only the 
SV but not the KLD or K-S statistic as it is much 
easier to compute. For 100 trials, the average root 
mean square error (RMSE) results are given in Fig. 4. 

5.1  RMSE and SV 

Regarding RMSE and SV, the key findings can 
be summarized in the following five points: 

1. Resampling is critical for this filtering model 
as demonstrated by the obviously low accuracy of 
the SIS filter. In the following, we will not discuss 
the SIS filter further. 

2. All unbiased resampling methods (including 
single sampling, reallocation, deterministic, and 
KLD resampling) and the asymptotically unbiased 
MSV resampling method, yield equivalent estima-
tion accuracy in terms of RMSE (Fig. 4), especially 
when the number of particles is larger than 100. 
Even at each single run, their resampling results are 
almost the same (Fig. 1). This agrees with the quali-
tative study given in the tutorial, confirming that 
there is little difference between unbiased algorithms. 
The resampling methods of good ID quality, such as 
deterministic resampling and MSV resampling, do 
not show a significant advantage, except obtaining 
slightly better RMSEs when the number of particles 
is relatively small (e.g., <50). This indicates that the 
ID quality is more important for resampling when a 
small number of particles are used. 

3. KLD resampling obtains better results when 
N0<50 but worse results when N0>80, as compared 
with unbiased (and asymptotically unbiased) methods. 
This is because the number of particles is adjusted 
online in KLD resampling, which is on average larger 
than N0 when N0<80 and smaller than N0 when 
N0>80. It internally performs random sampling, the 
same as multinomial resampling, but with an auto-
matically determined number of particles and its  
superiority/inferiority is attributed only to the different 
numbers of particles used. 

4. Local selection and Metropolis resampling 
produce obviously worse results than the others do. 
This is because they are significantly biased, which 
can deviate the estimate in this model. Their easy-to-
parallelize advantage is not shown here and their bias 
may not lead to such bad results in other models; see,  
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 Fig. 3  Sampling variance of different resampling methods that satisfy the optimal weighting condition

Fig. 2  Fluctuation of the number of particles against time (references to color refer to the online version of this figure)

Fig. 1  True state and estimates against time when the starting number of particles is 100 (references to color refer to 
the online version of this figure) 
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e.g., Simonetto and Keviczky (2009). In addition, it 
is proven that parameter B is critical for Metropolis 
resampling, which is a trade-off between computing 
speed and reliability; B=N/10 is by no means the best 
choice for this model. 

5. The proposed MSV resampling obtains the 
smallest SV (Fig. 3) among all methods that produce 
a constant number of equally weighted particles. 
This agrees with the theoretical justification. 

5.2  Sample size 

The fluctuation of the number of particles 
(namely, sample size) against time is plotted in  
Fig. 2, which shows that the number of particles var-
ies in the range of 90–110 in both branch-kill and 
rounding-copy methods, in the range of 80–100 in 
the reallocation method, in the range of 80–120 in 
deterministic resampling, and in a larger range of 
20–120 in KLD resampling. It remains constant in 
the other resampling methods for which no mecha-
nism is designed to change the number of particles. 

For a simulation period of 100 steps, the mean 
number of particles obtained by different resampling 
methods against the starting number of particles 
from 20 to 500 in 100 trials is given in Fig. 5. The 
following inferences can be ascertained: 

1. The branch-kill, rounding-copy, deterministic 
resampling, and reallocation, in descending order, 
obtain the closest number of particles to N0. Compa-
rably, branch-kill performs the most stably. On aver-
age, rounding-copy has obtained a slightly smaller 
number of particles than the reference even though 
its mean is equal to the reference in theory (Li et al., 
2013a). We conjecture this is because the MATLAB 
software that uses limited-precision storage truncates 
the float number. The change of the number of parti-
cles in deterministic resampling is primarily due to 
its merging operation. 

2. KLD resampling adjusts the number of parti-
cles online according to the system situation. In this 
highly nonlinear model, the state changes very sharply, 
so is the obtained number of particles. The advantage 
of adjusting the sample size online according to the 
system requirement can be very useful in real-time 
applications for complicated problem models, but it 
is not shown here. 

5.3  Processing time 

For the trial period of 100 steps, the mean pro-

cessing time of different resampling methods against 
the starting number of particles N0 from 20 to 500 in 
100 trials is given in Fig. 6. It is worth noting that the 
computing speed depends on the hardware platform 
and the programming technology, for which all the 
resampling methods have been speeded up as 
equivalently as possible. Given this prerequisite, the 
results given in Fig. 6 indicate the following key 
findings: 

1. With the same starting number of particles N0, 
different resampling algorithms have significantly 
different computing speeds and they do not rank in 
the same order always. For example, when N0 is very 
small, Metropolis (whose computing speed depends 
on parameter B) and multinomial resampling run 
very fast. However, by increasing N0, the computing 
time required by them increases more significantly 
than for others. In addition, whether RSR (or reallo-
cation) is faster or slower than the rounding-copy (or 
stratified resampling) method depends on the number 
of particles. This shall be carefully considered when 
choosing a resampling method. 

2. Deterministic resampling and KLD resampling 
(when N0<300) are the slowest since they need to 
create grids in the state space, which is computing-
intensive. Next to them, simplified PR, local selec-
tion, and multinomial resampling (except very small 
sample size) are also slow. Roughly, the fewer the 
random number and the number of iterations used, 
the faster the speed of unbiased resampling. 

3. Rounding-copy and RSR compute the fastest, 
followed by the branch-kill, systematic/stratified, 
and MSV resampling approximately in order, which 
use fewer/nil random numbers. This indicates that 
deterministic sampling is more computationally effi-
cient than random sampling, while the former is also 
more efficient in gaining good ID property. 

4. Comparably, KLD resampling maintains a 
relatively stable number of particles (Fig. 5) and 
therefore, its computational requirement will not in-
crease with the number of particles (when N0>60, the 
computing time of KLD resampling is fairly stable). 
In particular, when N0>350, KLD resampling can be 
faster than multinomial resampling. The advantage 
of adjusting the sample size online according to the 
system requirement can be very useful in real-time 
applications in which likelihood calculation is  
computing-intensive, but it is not shown here. 
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Overall, the simulation results demonstrate: 

First, the resampling methods can rarely produce 
very different results if they satisfy the unbiasedness 
(even asymptotically) condition, preserving a con-
stant number of particles and equally weight 
resampled particles. Second, if these restrictions are 
removed, special benefits may be obtained, e.g., 
adaptively adjust the number of particles according 
to the system requirement, disregard unbiasedness in 
order to preserve particle diversity and thus to allevi-
ate impoverishment or to enable parallel processing. 
However, these new advantages come at the price of 
more computational requirements (because of so-
phisticated algorithm design) and are generally model  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
specific. Third, different resampling methods may 
have significantly different computational speeds, 
depending on the number of particles and the prob-
lem model. In general, deterministic and single-
sampling algorithms are computationally faster than 
the random and compound sampling methods and 
are more suitable for parallel implementation. 

 
 

6  Conclusions 
 
Resampling is an essential procedure for parti-

cle filtering, which is of both theoretical and practi-
cal importance. As a sequel to the tutorial (Li et al., 
2015), this paper has contributed in three more as-
pects. First, ID has been established as a fundamental 
principle for resampling, which can be measured by 
the KL divergence, K-S statistic, and the sampling 
variance. This affords a useful measure and perspec-
tive to compare and assess existing resampling 
methods or to design new methods. Second, follow-
ing the ID principle, a simple albeit efficient 
resampling method, called MSV resampling, is pro-
posed for general use that obtains the optimal ID 
attribute in terms of SV. Third, a comprehensive 
comparable study of more than a dozen representa-
tive resampling methods, including the proposed 
MSV resampling based on a classical state space 

Fig. 5  Average numbers of particles of 100 steps of differ-
ent particle filters (after resampling) against different 
starting numbers of particles 

Fig. 6  Average processing time of 100 runs of different 
resampling methods against different starting numbers 
of particles 
The legend is the same as that of Fig. 1. References to color 
refer to the online version of this figure 
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model, is given. The results show that, most unbiased 
resampling methods do not exhibit much difference 
in terms of estimation accuracy (despite significantly 
biased resampling methods performing very badly), 
but they show significant differences in terms of SV 
and computing time and may provide special benefits 
in specific problems. 
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Appendix A: Assessment of different resam-
pling methods in terms of the K-S statistic 

 
A random selection process indicates that any 

particle can be missed randomly in the MR algorithm 
or be duplicated N times. Thus, the worst case (gene-
rating the largest F-discrepancy) is when the highest-
weighted particle is abandoned (denoted with the 

subscript ‘I’), i.e., ( )
I,MR max( ),m

tD w  or the smallest-

weighted particle is duplicated N times (denoted with 

the subscript ‘II’), i.e., ( )
II,MR 1 min( ).m

tD w   

In the RR algorithm, random sampling is per-
formed only to the weight residual. Therefore, we 

have ( )
I,RR ˆmax( ),m

tD w  and II,RR 2 /D N N   

( )ˆmin( ),m
tw  where ( )

2 1
.

M m
tm

N N Nw


   It is obvi-

ous that 

( ) ( )1
ˆmax( ) max( ),m m

t tw w
N

           (A1) 

and 

( ) ( ) 1
ˆmin( ) min( ) .m m

t tw w
N

              (A2) 

Then we obtain 

DI,MR>DI,RR,                          (A3) 
DII,MR>DII,RR.                         (A4) 

 
This means that both ‘I’ and ‘II’ worst F-

discrepancy of RR are smaller than that of MR.  

Writing 
 

DMR=max(DI,MR, DII,MR),             (A5) 
DRR=max(DI,RR, DII,RR),              (A6) 

we have 

DMR>DRR.                      (A7) 
 

Since there is no random sampling in StR, SyR, 
RSR, and B-k algorithms, there is no so-called ‘I’ 
and ‘II’ worst cases as discussed above. However, 
the variation scope of the number of times that each 
particle will be resampled just indicates a level of the 
F-discrepancy; a larger varying scope indicates a 
larger discrepancy from the unbiased expectation. 
Therefore, according to Table III of the tutorial (Li et 
al., 2015), we have Conclusion (9) as stated. We 
note these differences are slight. 

 
 

Appendix B: Proofs of Theorems 1–4 
 

Proof of Theorem 1    Without loss of generality, 

assuming the qth particle is resampled ( )q
tN  times 

satisfying ( ) ( )( ) 1,q q
t tN Nw   there must exist at least 

one particle ( ) ( ): ( ) 1p p
t tp N Nw   due to the overall 

condition ( ) ( )

1
( ) 0.

M m m
t tm

N Nw


   

If we change the resampling results to be ( )
,new
p

tN   
( ) 1p
tN   and ( ) ( )

,new 1,q q
t tN N   while ( ) ( )

,new ,i i
t tN N   

i≠p, q, then we have the variance change as follows: 
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
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This indicates that in the resampling result of 

MSV, no particle is possible to be resampled ( )q
tN  

times such that ( ) ( )( ) 1.q q
t tN Nw   A similar result 

holds in the case of ( ) ( )( ) 1q qN Nw    and the 

proof is omitted here. Therefore, we conclude that 

the minimization of SV requires	 ( ) ( )| | 1m m
t tN Nw   

for any 1≤m≤M. 
Proof of Theorem 2    Given the sampling result 

( )
1{ }m M

t mN   obtained by the MSV resampling method 

as shown in Algorithm 1, it is obvious that, if  
 

( ) ( )
1ˆ ˆTopRank [{ } ],m m M

t N L t mw w   

then  

( ) ( )Floor( ) 1;m m
t tN Nw   

 

otherwise, ( ) ( )Floor( ).m m
t tN Nw  Therefore, we have 

the results as stated. 
Proof of Theorem 3    Theorems 1 and 2 indicate 
that the result of the MSV resampling approach and 
the minimum condition of SV are the same or they 

can become each other by adjusting ( ) .m
tN  If we can 

prove that any change in ( )m
tN  determined by the 

MSV resampling approach will cause an increase in 
SV, we will be certain that the MSV resampling  
approach achieves the minimum condition of SV. 

Denote the numbers of times that these two par-
ticles are resampled according to the proposed ap-

proach as ( )p
tN  and ( ) .q

tN  Without loss of generality, 

we change the resampling results to be 
( ) ( )
,new
p p

t tN N l   and ( ) ( )
,new ,q q

t tN N l   where 

( )1 min( , ),q
tl N L N    while ( ) ( )

,new ,i i
t tN N  i≠p, q; 

then, we have 
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  (B1) 

The proposed method satisfies the following bounds: 

( ) ( ) ( )
( ) ( )

( ) ( ) ( )

ˆ , ,

ˆ1 , ,

i i i
t t ti i

t t i i i
t t t

w N Nw
N Nw

w N Nw

   
 

       (B2) 

 

and ( )ˆ0 ,p
tw  ( )ˆ 1 .q

tw l   Specifically, if ( )p
tN   

( ) ,p
tNw  ( ) ( )q q

t tN Nw  (i.e., the latter is sampled once, 

while the former is not in the second part), then we 

have ( ) ( )ˆ ˆ .q p
t tw w  Therefore, Eq. (B1) will go to the 

following four cases: 

1. If ( ) ( ) ,p p
t tN Nw  ( ) ( ) ,q q

t tN Nw  Eq. (B1) will 

reduce to 
 

( ) ( )
new

2
ˆ ˆVar Var ( ) 0.p q

t t

l
l w w

M
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2. If ( ) ( ) ,p p
t tN Nw  ( ) ( ) ,q q

t tN Nw  we have 
( ) ( )ˆ ˆq p
t tw w  and Eq. (B1) will reduce to 

 

( ) ( )
new

2
ˆ ˆVar Var ( 1 ) 0.q p

t t

l
l w w

M
       

 

3. If ( ) ( ) ,p p
t tN Nw  ( ) ( ) ,q q

t tN Nw  Eq. (B1) will 

reduce to 
 

( ) ( )
new

2
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l
l w w

M
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4. If ( ) ( ) ,p p
t tN Nw  ( ) ( ) ,q q

t tN Nw  Eq. (B.1) will 

reduce to 
 

( ) ( )
new

2
ˆ ˆVar Var ( ) 0.p q

t t

l
l w w

M
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It is shown that all these possible changes in the 

output of the MSV resampling method will lead to  
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an increase of SV. This demonstrates that the pro-
posed method outputs the minimum SV. 
Proof of Theorem 4    For the proposed MSV ap-
proach, we have 
 

( )
( ) ( ) Floor( ) 1

ˆ .
m

m m t
t t

Nw
w w

N N
           (B3) 

 
With the increase in the number of particles N,  
Eq. (B3) yields  

 
( ) yields ( ) ( )ˆlim 0 lim .m m m
t t tN N

w N Nw
 

       (B4) 

 
This indicates that the proposed approach is  

asymptotically unbiased. Furthermore, as shown in 
Theorem 2, the sampling bias is bounded by 

( ) ( )| | 1m m
t tN Nw   for any 1≤m≤M. 
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