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Abstract: As a novel architecture, software-defined networking (SDN) is viewed as the key technology of future
networking. The core idea of SDN is to decouple the control plane and the data plane, enabling centralized, flexible,
and programmable network control. Although local area networks like data center networks have benefited from
SDN, it is still a problem to deploy SDN in wide area networks (WANs) or large-scale networks. Existing works
show that multiple controllers are required in WANs with each covering one small SDN domain. However, the
problems of SDN domain partition and controller placement should be further addressed. Therefore, we propose the
spectral clustering based partition and placement algorithms, by which we can partition a large network into several
small SDN domains efficiently and effectively. In our algorithms, the matrix perturbation theory and eigengap are
used to discover the stability of SDN domains and decide the optimal number of SDN domains automatically. To
evaluate our algorithms, we develop a new experimental framework with the Internet2 topology and other available
WAN topologies. The results show the effectiveness of our algorithm for the SDN domain partition and controller
placement problems.
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1 Introduction

Historically, control plane functions in tradi-
tional networks have been tightly coupled to the
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data plane. The software-defined networking (SDN)
concept (Kirkpatrick, 2013) has caused a paradigm
shift in communication networks, which allows the
separation of control and data planes, i.e., moving
complex functions from devices in a network to so-
phisticated dedicated controller instances. The most
popular example of SDN is OpenFlow (McKeown
et al., 2008), where an OpenFlow controller defines
rules for switches on how to handle packets. Thus,
the controller placement problems are becoming in-
creasingly important.

For the local area network (LAN), the controller
placement problem is simple. In general, only one
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SDN controller is adequate to work in most LANs be-
cause a LAN is less affected by the propagation delay
compared to a wide area network (WAN). However, a
WAN is normally characterized by long propagation
delay and scarce bandwidth. One of the most urgent
challenges in deploying SDNs in WANs is the con-
troller placement problem. For example, as shown in
Fig. 1, where should controllers C1 and C2 be placed
in a WAN and which controller, C1 or C2, should be
selected by the OpenFlow switch S1? These are still
open questions and have attracted much attention
recently.

Fig. 1 The placement problem in a wide area network

A large-scale network is usually partitioned
into several small ones due to numerous reasons,
e.g., privacy, scalability, incremental deployment,
and security (Xie et al., 2012; Lin et al., 2013). For
SDN partitioning, a large network is likely to be
divided into multiple SDN domains. Each SDN
domain runs one controller, such as Floodlight
(http://www.projectfloodlight.org/floodlight/),
NOX (Gude et al., 2008), and Beacon (https://
openflow.stanford.edu/display/Beacon/Home/).
An SDN domain can be a sub-network in a data cen-
ter (DC), an enterprise network, or an autonomous
system (AS). In this study, we consider the ‘best’
controller placement that minimizes propagation
delays and improves reliability in a WAN partitioned
into multiple AS domains.

The most relevant work can be found in Heller
et al. (2012). The authors examined the impacts
of placements on average-latency and worst-case la-
tency on real topologies. However, they treated
WAN as a whole rather than as multiple SDN do-
mains and ignored the reliability of each controller.

While propagation latency is certainly a significant
design metric, we argue that reliability and load bal-
ancing design are also essential parts for operational
SDNs. Heller et al. (2012) assumed that nodes are
always assigned to their nearest controller using la-
tency as the metric. In average-latency placement,
the number of nodes per controller is imbalanced and
ranges from 3 to 13 when the number of controllers
is 4 (Fig. 2). The more nodes a controller has to
control, the heavier the load on that controller will
be. From Fig. 2, we can see the imbalance between
controller 2 and controller 3. With regard to con-
troller failure tolerance, Hock et al. (2013) optimized
the placement of controllers, called Pareto-based op-
timal controller placement (POCO). However, their
method causes the inter-controller broadcast storm
and needs time to reassign nodes. Heller et al. (2012)
and Hock et al. (2013) assumed that the mapping
between a switch and a controller is configured dy-
namically, as in ElastiCon (Dixit et al., 2013). The
dynamic allocation can improve the scalability and
reliability of the SDN deployed in a LAN, but it is
not suitable for a WAN. Usually, the propagation la-
tency is larger than the queuing delay in the network,
and the dynamic mapping between a switch and a re-
mote controller will significantly affect the response
time of the WAN. Moreover, switch migrations are
complex tasks with more overhead.

Controller 1
The average-latency
placement (K=4)

Controller 2 Controller 3

Controller 4

Houston

Nashville

El Paso

Fig. 2 Four partitions based on the average-latency
placement

Motivated by these analyses, the SDN domain
partition problem for a WAN has been studied (Xiao
et al., 2014). We first use spectral clustering to par-
tition the WAN into several SDN domains, each with
its own controller, similar to the domain name sys-
tem (DNS). A single controller can be enough to
manage a small network, and the backup controller
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can reduce the impact of failure of a single controller.
There are at least four reasons why we adopt the
divide-and-conquer philosophy: (1) It facilitates load
balancing and ensures reliability in the SDN infras-
tructure; (2) The partition of SDN domains can help
reduce inter-controller broadcast storm, especially in
large-scale WANs; (3) There are no latencies in re-
assigning nodes to their new controller because of
static allocation; (4) It fits the layered model of a
WAN and is easy for maintenance and expansion.
In contrast, an over-complicated controller plane is
hard to achieve and maintain.

Although the placement algorithm (Xiao et al.,
2014) may obtain the SDN domain partition results,
the number of SDN domains (K) needs to be set
manually. In this study, we focus on finding a K self-
adaptive SDN controller placement for WAN and ex-
ploiting the structure of eigenvectors to determine
automatically the number of SDN domains.

Compared with Xiao et al. (2014), the major
contributions of this study are listed as follows:

1. We propose a K self-adaptive SDN controller
placement for a WAN based on the matrix perturba-
tion theory.

2. We propose an alternative approach which
relies on the structure of eigenvectors to estimate
the optimal number of SDN domains.

Experimental results show that our methods can
solve the SDN controller placement problem and de-
termine the number of SDN domains automatically.

2 Related work

Currently, there are mainly two categories of
controllers in the SDN control plane: single con-
troller and distributed controllers.

2.1 Single controller

Examples of the single controller include Flood-
light (http://www.projectfloodlight.org/flood-
light/), NOX (Gude et al., 2008), Beacon (https://
openflow.stanford.edu/display/Beacon/Home/),
Maestro (Cai et al., 2010), SNAC (http://groups.
geni.net/geni/raw-attachment/wiki/GEC9Demo-
Summary/), Trema (http://trema.github.io/
trema/), etc. Floodlight is an enterprise-class,
Apache-licensed, Java-based OpenFlow controller.
It is supported by a community of developers,

including a number of engineers from Big Switch
Networks. NOX is a typical example of controller
realization, aiming to simplify the management of
switches in enterprise networks. Its constituent
components, control granularity, switch abstraction,
and basic operation are discussed in a NOX-based
network. Beacon (Erickson, 2013) is a fast, cross-
platform, modular, Java-based OpenFlow controller
which supports both event-based and threaded oper-
ations. Shalimov et al. (2013) showed that Beacon is
a pretty good controller. Cai et al. (2010) proposed
Maestro, which keeps the simple programming
model for programmers and exploits parallelism in
every corner with additional throughput optimiza-
tion techniques. These physically centralized control
planes can be adapted for DCs but are not suitable
for wide multi-technology multi-domain networks.

Recently, the concept of physically distributed
SDN control plane has been proposed, including
DISCO (Phemius et al., 2014), Onix (Koponen
et al., 2010), HyperFlow (Tootoonchian and Ganjali,
2010), DIFANE (Yu et al., 2010), Devolved (Tam
et al., 2011), and ElastiCon (Dixit et al., 2013).
Kreutz et al. (2015) found that most distributed con-
trollers offer weak consistency semantics; i.e., data
updates on distinct nodes will eventually be updated
on all controller nodes. This implies that there is a
period of time, in which distinct nodes may read dif-
ferent values (old value or new value) for the same
property. On the other hand, the controller will take
more time to communicate with other controllers and
switch in WANs with long propagation delay, aggra-
vating the system performance significantly.

2.2 Distributed controllers

Two key problems in SDNs with distributed con-
trollers are: (1) how to obtain a global view of the
entire network at each controller so as to maintain
a consistent network state, and (2) how to deploy
an optimal number of controllers such that the best
performance can be achieved.

To address the first problem, Yin et al. (2012)
have proposed the inter-SDN (SDNi) domain proto-
col, which acts as an interface mechanism to coordi-
nate the behaviors of SDN controllers in the SDN do-
mains. However, SDNi still lacks a semantic network
model and an ontology-based model to ensure the ex-
tensibility of its transport mechanisms and syntax.
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Lin et al. (2013) have proposed the east-west bridge
solution to enable different controllers from differ-
ent vendors to work together. They have deployed
this solution with two use cases to four SDN net-
works, such as Internet2 in the USA and CERNET
in China. In this study, we focus on the controller
placement problem in WANs. We assume that the
first problem has been solved perfectly, and the con-
troller working in each SDN domain can exchange
information.

The second problem is about controller place-
ment. Heller et al. (2012) over-simplified the problem
by modeling it as a facility or a warehouse location
problem, in which only the latency of transmission
from nodes to their controllers was considered and
the WAN topology was treated as a whole rather
than as multiple SDN domains. These lead to heavy
load or failure at some controllers near the switches
with intensive traffic. In view of the characteristics of
the traditional WAN, a divide-and-conquer philoso-
phy is desired for the deployment of SDNs in WANs.
A large WAN is always partitioned into several small
SDN domains to ensure stability, privacy, manage-
ment, security, and so on. Therefore, it is necessary
to develop a method to address these challenges for
the SDN controller placement problem in a WAN. In
this study, we focus on using a K self-adaptive SDN
controller placement to partition a WAN topology
into several small SDN domains, as well as on placing
controllers to achieve low latency and high reliability
in each SDN domain.

3 Problem description and system
model

In this section, we briefly introduce the defini-
tion of SDN domain partition for a WAN and dis-
cuss the optimization placement metrics we intend
to study.

3.1 Problem description

WAN is a network that covers a broad area, in-
cluding many regions or countries. In the SDN, the
controller acts as an information collector and oper-
ator for its managed switches. In this regard, the
response time between the switch and controller sig-
nificantly affects the performance of the SDN. Fur-
thermore, the response time of the controller is deter-

mined by the propagation delay and the controller’s
load. For example, as shown in Fig. 2, the propaga-
tion delay between Houston and Nashville is about
5.01 ms, and the time delay between Houston and El
Paso is about 5.44 ms. In average-latency placement,
Heller et al. (2012) considered only the propagation
delay, so the switches in Houston were assigned to
the third controller deployed in Nashville but not the
second controller deployed in El Paso. In general, the
queuing delay of a network is much longer than the
propagation latency. From Fig. 2, we can see the
imbalance between the second and third controllers.
When the third controller is overloaded, the queuing
delay in the network is longer than the propagation
latency and is rising steadily. Therefore, Heller et al.
(2012) simply assigned switches to their closest con-
troller, which may lead to controller overload and
instability.

As a new deployment in a WAN, controller
placement influences every aspect of the SDN net-
work in WAN, from performance to security. In this
study, we narrow our focus to two essential factors,
balanced partition and propagation latency.

1. Balanced partition
Load balancing and reliability are two im-

portant indicators of controller performance.
Tootoonchian et al. (2012) focused on controller per-
formance and found the limitations of a controller’s
service ability. With enough delay and overload
of the controller, real-time tasks become infeasible,
while others may slow down unacceptably. By par-
titioning the WAN into several small balanced SDN
domains, the service ability of a controller with fewer
and balanced nodes will be improved greatly, and
the inter-controller broadcast storm will be reduced
sharply, which will greatly reduce the queuing delay.

2. Propagation latency
After considering the reliability of partition,

network latency is certainly a significant design met-
ric in long-propagation-delay WAN. Network latency
includes four parts: propagation latency, processing
latency, queuing latency, and transmission latency.
For WANs, the propagation latency is longer than
the other latencies, and the effect of the other laten-
cies is so small that it can be ignored. Regardless
of the exact form, in the case of WAN, the propaga-
tion delay affects the controller’s ability to respond
to network events. Based on Heller et al. (2012), we
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also narrow our focus to propagation latency and se-
lect it as a significant design metric. We assume that
propagation latency is the response time of the con-
trollers, and the ‘best’ placement must ensure that
the latency of each SDN domain is the minimum.

We need to find a placement solution to balance
the load and reduce the latency. In the next subsec-
tion, the quantitative analysis of our placement with
a global optimization goal will be proposed.

3.2 System model

We model the network as a graph, G(S,E).
The node set S represents the nodes in the net-
work topology, i.e., the OpenFlow switches deployed
to the different cities, and the edge set E repre-
sents the network links between the cities. We par-
tition G into K subgraphs, namely, SDN domains
Ni (i = 1, 2, . . . ,K).
Definition 1 If we partition G into K subgraphs,
namely, Ni (i = 1, 2, . . . ,K), then Ni can be defined
as Ni(Si, Ei). Clustering the nodes in S is equivalent
to partitioning the set of vertices S into mutually
disjoint subsets S1, S2, . . . , SK according to some
similarity measure, namely,

S =
K⋂

i=1

Si, Si ∩ Sj = �, i �= j, i, j = 1, 2, . . . , K,

(1)
where K is the number of SDN domains and Si de-
notes the ith SDN domain. The nodes in S are or-
dered according to the cluster they are in:

{s1, s2, ..., si1}︸ ︷︷ ︸
n1

∈ S1, {si1+1, si1+2, ..., si2}︸ ︷︷ ︸
n2

∈ S2,

. . . , {siK−1+1, siK−1+2, . . . , siK}
︸ ︷︷ ︸

nK

∈ SK .

(2)
We want to find a partition of the SDN domains

such that the edges in different clusters have a very
low weight (which means that OpenFlow switches
in different clusters are dissimilar from each other)
and the edges within a cluster have a high weight
(which means that OpenFlow switches within the
same cluster are similar to each other). Further-
more, controller must be placed in the clustering
center to ensure the maximum performance of the
sub-network. Obviously, we want many edges within
clusters and few edges between clusters. In addition

to the minimum cut requirement, we require that
the partition be as balanced as possible. This is a
typical data clustering problem using a graph model.
Inspired by previous work on spectral clustering (Shi
and Malik, 2000; Wauthier et al., 2012; Mall et al.,
2013; Liu et al., 2014), we propose our methods to
solve the SDN partition problem, which can pro-
vide balanced partitions and average the load of each
controller.

The weight on each link, wij , is a function of
the similarity between switches si and sj . The
weighted adjacency matrix of the graph is W =

(wij)i,j=1,2,...,n. Inspired by the ‘Ncut’ proposed by
Shi and Malik (2000), we can obtain some balanced
SDN domains that minimize similarity between sets
and maximize similarity within a set, satisfying the
following partition objective function:

SDNcut =

K∑

i=1

∑
x∈Ni,y∈G−Ni

wxy

∑
x∈Ni,y∈G

wxy
. (3)

This objective function favors balanced SDN do-
mains and minimizes the number of domain edges,
which results in balanced switches and links in each
SDN domain.

After solving the WAN partition problem, we
now introduce the controller placement problem in
each sub-network. Each SDN domain has only one
master controller. Where should the controller be
located to ensure the performance of a single SDN
domain? It is called a facility location problem and
occurs in much context (Heller et al., 2012). Let our
placement model be

min
∑

ci∈C

∑

s∈Ni

dist(s, ci), (4)

where C is a given placement solution and dist(s, ci)
represents the shortest path from node s ∈ Ni to
node ci ∈ C.

The key idea behind is to first identify the par-
titions with balanced cuts, and then assign the con-
troller location to the center of each partition, which
has the shortest paths to all switches in the same
SDN partition. Clearly, we can use the function to
find the ‘best’ placement solution C from the set of
all possible placements, along with the minimum ob-
jective, which can balance the load and reduce the
latency.
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In the following section, we introduce an ap-
proximation algorithm to optimize the problem by
using spectral clustering.

4 Controller placement algorithm

Our approach for SDN controller placement is
based on concepts from the spectral graph theory.
The core idea is to use matrix theory and linear alge-
bra to study the properties of the similarity matrix
W and the Laplacian matrix. All the related theories
and the idea of using eigenvectors of the Laplacian
for finding partitions of graphs can be traced in Shi
and Malik (2000), Wauthier et al. (2012), Mall et al.
(2013), and Liu et al. (2014). In this section, we
first introduce our methods for building the similar-
ity matrix W and the Laplacian matrix L. This is
the first and the most important step of the spec-
tral clustering algorithm. Then the K self-adaptive
method is proposed to decide the optimal number of
SDN domains automatically, which can help achieve
the partition objective. Lastly, we describe the whole
placement algorithm based on the spectral theory.
To achieve the placement objective, we use the k-
means method to cluster the nodes and select the
center of each domain as the controller location.

4.1 Similarity function

In recent years, spectral clustering has become
one of the most popular modern clustering algo-
rithms, and it has been applied in machine learn-
ing, text summarization, social networks, etc. The
success of such algorithms depends heavily on the
choice of the similarity matrix W . From the anal-
ysis of the propagation delay of WAN topology, we
tend to select the propagation delay as the weight of
the similarity matrix.

In the WAN topology G, the switches s1, s2,
. . ., sn can be deployed in the nodes of the WAN
topology, and their similarities wij can be measured
according to the similarity function (which is sym-
metric and non-negative):

ξ = sin2(α/2) + cos(lati) cos(latj) sin2(β/2), (5)

wij =
2 arcsin

√
ξ × 6378.137

Vc
, (6)

where si(lati, loni) and sj(latj , lonj) represent the
latitude and longitude of points si and sj , respec-

tively, α = |lati − latj |, β = |loni − lonj |, Vc is
the speed of light propagation in optical fibers, and
the radius of the Earth is 6378.137 km. We de-
note the corresponding similarity matrix by W =

(wij)i,j=1,2,...,n, which can be used to evaluate the
propagation latencies between the nodes.

Finally, the Laplacian matrix L = [Lij ] for the
SDN domain partition is defined, where

Lij =

⎧
⎪⎨

⎪⎩

−wij , i �= j,∑n
k=1 wik, j = i,

0, otherwise.
(7)

In SDN partitioning, the spectral decomposi-
tion of L can be used to approximately minimize
SDNcut, which tries to achieve balanced SDN do-
mains in terms of the size.

4.2 K self-adaptive method

Although spectral clustering has many advan-
tages and impressive performances, one of the com-
mon shortcomings is that the cluster number must
be decided in advance. Some scholars have pro-
posed different adaptive spectral clustering algo-
rithms (Zelnik-Manor and Perona, 2004; Wang et al.,
2007). From the overview of their analyses, every
data point can be regarded as an attribute sequence
made up of all its attribute values. In this way,
the similarity between any two points can be mea-
sured by the balanced closeness degree of the at-
tribute sequences. Since the calculation of the bal-
anced closeness degree does not need extra param-
eters, the impact of the parameters is eliminated.
However, the methods in Zelnik-Manor and Perona
(2004) and Wang et al. (2007) have higher cost and
time complexities. In this section, we propose an
approach that relies on the structure of the eigenvec-
tors to automatically determine the optimal number
of SDN domains. Based on the matrix perturbation
theory (Bach and Jordan, 2003; Tian et al., 2007;
von Luxburg, 2007; Rebagliati and Verri, 2011) and
k-way partition (Ng et al., 2001), the difference be-
tween the kth and (k + 1)th eigenvalues is called
‘eigengap’, which can be used directly to perform
clustering.

Suppose the similarity matrix W ∈ R
n×n. Let

λ1 ≥ λ2 ≥ . . . ≥ λk ≥ . . . ≥ λn be its eigenvalues,
and x1,x2, . . . ,xk, . . . ,xn the associated eigenvec-
tors. For simplicity, we would like to call λ1 ≥
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λ2 ≥ . . . ≥ λk the first k largest eigenvalues of W

and x1,x2, . . . ,xk the first k largest eigenvectors of
W . Matrix W can be decomposed into the following
form:

W = X ∧XT, (8)

where ∧ = diag(λ1, λ2, . . . , λn) is a diagonal matrix
with nonnegative singular eigenvalues in descending
order along the diagonal, that is, λ1 ≥ λ2 ≥ . . . ≥
λn ≥ 0; X = (x1,x2, . . . ,xn) is a matrix formed by
stacking the eigenvectors of W in columns.

Let M be a matrix in subspace r which
is spanned by the columns of X, i.e., M =

(x1,x2, . . . ,xr). The vectors Mi (i = 1, 2, . . . , n)

can be defined as the rows of the truncated matrix
M , as follows:

M =

⎛

⎜⎜⎜⎜⎝

M1

M2

...
Mn

⎞

⎟⎟⎟⎟⎠
=

⎛

⎜⎜⎜⎜⎝

x11 x12 . . . x1r

x21 x22 . . . x2r

...
...

...
xn1 xn2 . . . xnr

⎞

⎟⎟⎟⎟⎠
, (9)

σ =

√∑

j

M2
ij , Pij =

Mij

σ
. (10)

We construct a matrix from M by reform-
ing each of M ’s rows to have unit length, such as
Pij = Mij/σ mentioned in Eq. (10). Under the above
conditions, we can obtain the following result (Tian
et al., 2007):
Theorem 1 Let λ1≥λ2≥ . . .≥λn be the eigenval-
ues of matrix W , x1,x2, . . . ,xk be the first k eigen-
vectors of W satisfying Eq. (8), respectively. Let
M = (x1,x2, . . . ,xk). Form the matrix P from M

by reforming each of M ’s rows to have unit length
and let P = [pT

1 ,p
T
2 , . . . ,p

T
n ], where pi is the ith row

vector of P . Then

cos θij =
|pT

i pj |
‖pi‖ · ‖pj‖

=

{
1, vi and vj belong to a domain,
0, otherwise.

(11)

So, we can see that the decomposition of W can
help obtain the clusterings. After obtaining ∧, we
can calculate the eigengap vectors as follows:

{g1, g2, ..., gn−1| gi = λi − λi+1}, i = 1, 2, . . . , n− 1.

(12)

We can compute the suitable number of SDN
domains K by analyzing the eigengap vectors as fol-
lows, derived from the matrix perturbation theory
mentioned above:

K = argmax
i

{gi}. (13)

Based on Eq. (13), the number of SDN domains
can be determined by the associated eigengap values.
Given a network topology, we can infer automatically
the suitable number of SDN domains by exploiting
the structure of the eigenvectors.

4.3 Spectral clustering placement algorithm

Now we would like to state our self-adaptive
spectral clustering algorithm for the SDN controller
placement problem in WAN. The whole algorithm is
outlined in Algorithm 1.

Algorithm 1 Self-adaptive spectral clustering
1: Input: Network topology, G.
2: Output: Clusters N1, N2, . . . , NK with Ni = {j|

yj ∈ Ci}, and the locations of the controllers.
3: Construct similarity matrix W ∈ R

n×n according to
Eq. (6).

4: Compute ∧ according to Eq. (8).
5: Compute eigengap vectors according to Eq. (12).
6: Obtain the optimal number of SDN domains K ac-

cording to Eq. (13).
7: Compute the graph Laplacian matrix L.
8: Compute the first k eigenvectors of L, i.e., v1, v2,

. . ., vk.
9: Let V ∈ R

n×k be the matrix containing the vectors
v1,v2, . . . ,vk as columns.

10: for i = 1 to n do
11: Let yi ∈ R

k be the vector corresponding to the
ith row of V .

12: end for
13: Cluster the points (yi)i=1,2,...,n in R

k with the k-
means algorithm into clusters C1, C2, . . . , CK .

14: Return SDN domains N1, N2, . . . , NK and the center
of each domain.

As shown in Algorithm 1, the similarity ma-
trix W is constructed by Eq. (6) (line 3). Then we
use the eigengap to discover the clustering stabil-
ity and decide the ‘best’ partition number K auto-
matically (lines 4–6). After obtaining the optimal
number of SDN domains (K), we can calculate the
Laplacian matrix L and the first k eigenvectors of L
(lines 7–8). Next, we construct a new sub-vector V
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corresponding to the first k eigenvectors (lines 9–12).
Finally, we use the k-means algorithm to cluster the
points into each partition and obtain the center of
each partition (lines 13–14). The k-means algorithm
can achieve a good placement metric (Eq. (4)). Our
self-adaptive spectral clustering algorithm does not
need to pre-specify the number of SDN domains, and
it can obtain automatically the optimal number of
SDN domains by calculating the eigengap, which are
proved by the following experiments.

In Algorithm 1, solving a standard eigenvalue
problem for all eigenvectors takes O(n3) operations,
where n is the number of nodes in the topology.
Computing the first k eigenvectors of the Laplacian
matrix takes O(n3) operations and the k-means al-
gorithm takes O(n) operations. Thus, the total cost
of our algorithm is O(n3). This becomes impractical
for SDN domain partition where n is the number of
network nodes and K is obtained by repeated exper-
iments. Fortunately, our K self-adaptive algorithm
can be computed only once. By contrast, the com-
mon spectral clustering algorithm needs to repeat
experiments to obtain the optimized K, and each
experiment takes O(n3) operations. Obviously, our
algorithm is more efficient than the other algorithm.

Aiming to understand the benefits of spectral
clustering for the SDN controller placement prob-
lem, we have evaluated our algorithms using the
Internet2 OS3E topology (https://www.internet2.
edu/network/ose/). The OS3E has 34 nodes and
41 edges (Fig. 3).

We implemented a Matlab-based framework to
compute the spectral clustering placement results.
Fig. 3 shows an SDN domain partition plan based
on the spectral clustering algorithm. We can see

Domain 1

Domain 2

Domain 4

Domain 3

Controller 1

Controller 2

Controller 3

Controller 4

The spectral clustering
placement (K=4)Seattle

Kansas City
Nashville

Washington DC

Fig. 3 Partition of four SDN domains based on the
spectral clustering algorithm

that the OS3E topology is partitioned into four SDN
domains equally when K = 4. Among these SDN
domains, the controllers will be placed in the nodes
that are labeled as stars. As expected, our spectral
clustering algorithm meets the requirements of the
metrics mentioned in Section 3. From Fig. 3, we can
see that the four SDN domains have almost the same
size, and that the controller location is close to each
clustering center, which meet the balanced partition
and average propagation latency metrics.

In the following section, we compare the per-
formance of our placement with other placements
mentioned in Heller et al. (2012), and design a set of
advanced testing scenarios to verify it.

5 Experiments

In this section, we introduce our testing
methodology and describe the experimental re-
sults of our placement compared with others.
All the algorithms mentioned in Section 4 were
evaluated with the Beacon controller (https://
openflow.stanford.edu/display/Beacon/Home/)
and cbench (http://www.openflowhub.org/display/
floodlightcontroller/Cbench+(New)). All experi-
ments have been performed on a cluster that consists
of 36 machines running 64-bit Ubuntu Server. Each
node has two AMD Opteron 2212 2.00 GHz CPUs,
80 GB SCSI HDD, 8 GB RAM, Intel 100 Mb/s
Ethernet Controller. In the meantime, we deployed
a host as the Beacon controller and others as cbench
hosts. The test framework is shown in Fig. 4.

WAN

Beacon
controller

OpenFlow
switch

Secure
channel

Beacon
controller

. . .
Each cbench instance emulates
a single OpenFlow switch

Delay
tim
e
(m
s)

Fig. 4 The cbench emulation for the WAN topology

To evaluate the controllers, we ran Beacon con-
troller software as the WAN SDN controller with
the recommended settings, which is a multi-thread
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Java-based controller. We relied on the latest avail-
able sources of Beacon version 1.04 (April 2014). We
chose Beacon because it has better performance than
the other controllers (Shah et al., 2013; Shalimov
et al., 2013).

We ran cbench instances on multiple modes of
the cluster to emulate the switches. As shown in
Fig. 4, each cbench instance in our experiments em-
ulated a single OpenFlow switch, and all of these in-
stances sent OpenFlow packet-in messages to a single
controller. The cbench instances were connected to
the controller with 100 Mb/s interconnects.

To emulate a real network for WAN propagation
latencies, we used most nodes of the cluster for run-
ning cbench instances. The number of cbench nodes
was varied for different experiments, which depended
on the metric being calculated. Each cbench emu-
lated a single OpenFlow switch sending packet-in
messages to the controller at uniform rates with dif-
ferent delay times. The delay times were calculated
by the propagation latencies between two nodes in
the WAN topology mentioned above.

To compare the performance of our placement
with that of other placements, we also evaluated
the average-latency-optimized placement and the
worst-case-latency-optimized placement mentioned
in Heller et al. (2012). The results are shown in
Fig. 5.

K=4K=1

Location in average-latency-optimized placement
Location in worst-case-latency-optimized placement
Location in spectral clustering placement

Chicago

Kansas City

Vancouver

Chicago

Kansas City

Seattle

El Paso

Washington DC
Nashville

Jacksonville

Fig. 5 Three placements for one or four controllers
in the OS3E deployment

Fig. 5 shows three placements for K = 1 and
K = 4. The higher density of nodes in the northeast
of the US relative to the west leads to a different
optimal set of locations for different metrics. The
spectral clustering placement is most similar to the
average-latency placement and completely different
from the worst-case-latency placement. For example,
all the controllers of spectral clustering and average-
latency placement should go in Chicago when K = 1,

which balances the high density of the east coast
cities with the low density of cities in the west. The
different ways produce the same result. However,
to minimize the worst-case latency for K = 1, the
controller should go in Kansas City instead, which
is near the center of the topology. As expected, the
spectral clustering placement is most similar to the
average-latency placement when K = 4. By using
the mini-max clustering principle, spectral clustering
placement can combine latency with performance.
The worst-case-latency placement is defined as the
maximum node-to-controller propagation delay and
is proved to be the least effective method among
the three. Thus, we will consider only spectral clus-
tering and average-latency placement in subsequent
sections.

Although the placement algorithm (Xiao et al.,
2014) may obtain the SDN domain results, it needs
to set the number of SDN domains K manually. We
suggested the approach mentioned in Section 4 to
discover the number of SDN domains by analyz-
ing the eigenvectors. The approach leads to a self-
adaptive spectral clustering placement. To evaluate
the performance of the approach, we applied it to the
OS3E topology. Fig. 6 shows the optimal number of
SDN domains K, which is indicated by the point
corresponding to the highest eigengap. From Fig. 6,
we can see that the corresponding eigengap is max-
imized when K = 4. The results are in agreement
with the experimental results obtained by setting
K manually, and some results of setting K manu-
ally are shown in Table 1. From Table 1, it can be
seen that each controller has the best balanced nodes
when K = 4. Thus, this approach can determine the
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Fig. 6 Eigengap with different K’s
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optimal number of clusters automatically for spectral
clustering placement.

Table 1 The numbers of nodes of SDN domains with
different K’s

K C1 C2 C3 C4 C5 C6 C7

3 14 12 8

4 7 9 10 8

5 7 8 3 8 8

6 7 7 4 7 1 8

7 7 5 2 2 3 7 8

C1–C7: controllers 1–7

To test the effectiveness of our solution, we pre-
sented a comparative performance analysis of spec-
tral clustering and average-latency placements. We
designed a set of advanced testing scenarios and con-
ducted experiments under many different settings
and metrics, which allow us to get a deeper insight
into the WAN controller performance issues. All ex-
periments were performed with Beacon and cbench.
We ran each experiment five times and took the av-
erage number as the result.

5.1 Latency

An important ability of the OpenFlow controller
is that it can process the incoming packet-in mes-
sages as fast as possible, which we call latency. To
measure the controller latencies of the three place-
ments, cbench instances were run in latency mode,
in which they generated a packet-in message and
waited for a response from the controller before the
next packet-in message was sent, and then it counted
the total number of responses per second. We kept a
cbench instance emulating a single switch, and made
many cbench instances send packet-in messages to
their controllers with different numbers of connected
hosts. Depending on the metric being calculated, the
number of cbench instances was varied for different
experiments.

For the latency experiments, each test consisted
of 500 loops with each lasting 100 ms. The first
loop and the last loop were considered as controller
warm-up and cool-down, respectively, whose results
were discarded. Each test used 100 to 100 000 unique
media access control (MAC) addresses (representing
emulated end hosts). We kept one worker thread and
progressively increased the host density.

Fig. 7 shows the controller latencies of differ-

ent placements with different numbers of hosts and
one thread. In each placement, the controllers were
labeled from left to right. For example, spectral
clustering placement has four controllers, as Fig. 3
shows. The controller deployed in Seattle was regis-
tered under the number ‘1’, the controller deployed
in Kansas City under the number ‘2’, and so on.
From Fig. 7, it can be seen that most controllers for
spectral clustering placement have more balanced re-
sponses than average-latency placement. In average-
latency placement, the third controller (C′

3) shows
the best performance because it serves 13 nodes.
However, the second controller (C′

2) serves only three
nodes and has exactly the opposite effect. Controller
latency is also affected by the propagation latency
between the controller and the switch. The first con-
troller deployed in Seattle has lower performance, as
Fig. 7 shows, because of the vast distances between
the northwest cities.
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Fig. 7 Latency comparison

To study the impact of propagation latency, we
measured spectral clustering placement without de-
lay time. In Fig. 8, we observe that removing the
delay time from cbench instances improves the num-
ber of responses per second. Moreover, this appar-
ent trend is clear when the propagation latency is
larger. The SDN domain 2 for spectral cluster-
ing placement has the largest propagation latency.
Thus, controller 2 has greatly reduced its response
time without delay time. According to the impact of
propagation latency, spectral clustering placement
is better than average-latency placement. We also
find that the other latencies are far less than the
propagation latency in the WAN, such as process-
ing latency. Usually, the processing latency has only
millisecond-level response time, but the propagation
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latency has the second-level response time in WAN.
Thus, the propagation latency has the most signifi-
cant impact on WAN delay.

To test the performance of the two placements
under realistic traffic, we conducted the average-
latency experiments with the traffic obtained from
the wide traces (http://mawi.wide.ad.jp/mawi).
The average latency reflects the average response
time from each switch to the controller under re-
alistic traffic. The wide trace was obtained from the
daily trace at a trans-Pacific line, and demonstrated
the features of the links in WAN. From Fig. 9, we
can see that spectral clustering placement performs
significantly well in terms of average latency under
realistic traffic. In average-latency placement, the
second controller was deployed in El Paso but not in
Kansas City, which leads to the imbalance between
the second and third controllers. As expected, the
imbalance between the second and third controllers
leads to a sharp decline under the realistic traffic. It
can be seen that spectral clustering placement shows
better performance than average-latency placement
under the realistic traffic because of its balanced
partitioning.
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Fig. 9 Average latency comparison with traffic

5.2 Throughput

One of the main objectives for a good controller
placement is to minimize the latencies between nodes
and controllers in SDN. However, considering only
latencies is not sufficient. A placement should also
satisfy performance and reliability constraints. In
this experiment, we evaluated the effect of controllers
in the two placements on the throughput perfor-
mance, which is the ability to handle a large amount
of control traffic. All cbench instances were kept in
throughput mode, under which cbench continuously
sends packet-in messages to Beacon over a period of
time. Our focus in this subsection is to study the
average throughput of each controller with different
numbers of connected hosts.

For the throughput experiments, each test con-
sisted of five loops with each lasting 1 000 000 ms.
The results from the first and the last loops were dis-
carded. The numbers of hosts ranged from 1000 to
1 000 000 in each test. We kept a constant number of
eight worker threads and progressively increased the
host density. Fig. 10 shows the correlation with the
number of connected hosts.

3.0
3.2
3.4
3.6
3.8
4.0
4.2
4.4
4.6
4.8
5.0

C1 C2 C3 C4 C'1 C'2 C'3 C'4
Spectral
clustering

Average-
latency

1000

10000

100000

1000000

MACs

Th
ro
ug
hp
ut
(×
10

6
flo
w
/s
)

Fig. 10 Throughput achieved with different numbers
of hosts with eight threads

The number of hosts in the SDN domain has
immaterial influence on the performance of most of
the controllers under test. Controller 1 for spec-
tral clustering placement decreased its throughput
from 4.3 million to 4.0 million flows per second with
106 hosts. However, in average-latency placement,
the performance of controller 3 went down signifi-
cantly when more hosts were connected. In addition,
its controller 2 had the lowest throughput among all
controllers. This is caused by the specific details of
average-latency placement, namely, the imbalance of
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its SDN domain partitioning.
From Fig. 10, it can be seen that spectral clus-

tering placement shows better performance than
average-latency placement because of its SDN do-
main partitioning. We also see an unstable trend in
throughput with an increasing number of hosts for
average-latency placement.

The performance of an SDN controller is de-
fined by two characteristics: latency and throughput
(Shalimov et al., 2013). The goal of SDN controller
placement is to obtain the minimum latency and the
maximum throughput for each controller. Based on
this, we find that spectral clustering placement is
more effective than the others.

For the placement, the average throughput re-
flects the performance and reliability of each con-
troller, which demonstrates significant correlation
with the whole network’s performance. To find
the impact of K on the network’s performance, we
tested the average throughput under the wide traces
(http://mawi.wide.ad.jp/mawi) with different values
of K. As shown in Fig. 11, the placement per-
formed significantly well and the average through-
put changed more gently with a growing number of
hosts when K = 4, which agrees with the conclu-
sions drawn from Table 1. From Fig. 11, we can also
see that the average throughputs of other placements
dropped rapidly because of their imbalanced nodes.
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Fig. 11 Average throughput comparison with differ-
ent K’s

5.3 Reliability

Reliability is the ability of the controller to work
normally over a long period under an average work-
load. To evaluate the reliability, we measured the

number of failures during a long time period under
a given heavy workload. In this experiment, we kept
a constant number of eight worker threads for each
controller, but increased the total number of packet-
in messages from the cbench instances running on
each node. In our test case, we used 1 000 000 unique
MAC addresses per switch for the stress tests, and
each switch sent OpenFlow packet-in messages at
rates varying from 1000 to 10 000 requests per sec-
ond. All tests were run for 24 h and the number
of errors was recorded during the test. By error,
we mean either a failure to receive a reply from the
controller or an input/output (I/O) error from the
Beacon buffer.

The experiments have shown that most of the
controllers successfully coped with the test load, ex-
cept the third controller for average-latency place-
ment. The third controller for average-latency
placement dropped 53 241 567 messages and closed
179 connections. For average-latency placement, the
third controller’s failures were caused by serving too
many nodes, which leads to the instability of average-
latency placement. We also found that the controller
was unstable when it served more than 11 nodes in
our tests. Compared with the deployment in LAN,
the reliability of the controller deployed in WAN de-
clined greatly.

To verify the applicability and effectiveness of
spectral clustering placement, we expanded our anal-
ysis to more topologies in the Internet Topology Zoo
(Knight et al., 2011). The Internet Topology Zoo
covers a diverse range of geographic areas, network
sizes, and topologies. The graphs in the Zoo do not
conform to any single model, and can be used to
verify the applicability of our approach. In most
cases, we can easily obtain the balanced cut by using
spectral clustering placement. We also find that the
correct number of clusters is important for spectral
clustering placement. When the network has more
than 100 nodes, prior knowledge of the number of
clusters is required.

6 Conclusions

In this paper, we have proposed a K self-
adaptive SDN controller placement for WAN. Our
approach is based on partitioning a large net-
work into several small SDN domains by using the
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spectral clustering placement algorithm. To maxi-
mize the reliability of the controller and to minimize
the latency of WAN, we have presented the metrics
for spectral clustering placement. We have suggested
exploiting the structure of the eigenvectors to deter-
mine automatically the number of SDN domains. As
a result, a self-adaptive spectral clustering algorithm
based on the matrix perturbation theory has been
proposed. After presenting a test framework with
Beacon and cbench, the ideas and mechanisms were
illustrated by using the Internet2 OS3E topology.
We conducted experiments under many different set-
tings and metrics. Experimental results showed that
self-adaptive placement is good at solving the SDN
controller placement problem and determining the
number of SDN domains automatically.

However, we noted that understanding the over-
all SDN controller placement remains an open re-
search problem. The placement is likely a complex
function of the topology, metric, and the value of
K. Our approach presented in this paper is just a
first step towards the SDN domain partition. In fu-
ture work, we expect to expand our analysis to other
network latencies.
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