
1266 Zhang et al. / Front Inform Technol Electron Eng 2016 17(12):1266-1274

Frontiers of Information Technology & Electronic Engineering

www.zju.edu.cn/jzus; engineering.cae.cn; www.springerlink.com

ISSN 2095-9184 (print); ISSN 2095-9230 (online)

E-mail: jzus@zju.edu.cn

Asplitting-after-merging approach tomulti-FIB
compression and fast refactoring in virtual routers∗

Da-fang ZHANG†‡1, Dan CHEN†1, Yan-biao LI1, Kun XIE1,2, Tong SHEN1

(1College of Computer Science and Electronic Engineering, Hunan University, Changsha 410082, China)

(2Department of Electrical and Computer Engineering, State University of New York, New York 11790, USA)
†E-mail: dfzhang@hnu.edu.cn; danchen@hnu.edu.cn

Received Dec. 31, 2015; Revision accepted Feb. 29, 2016; Crosschecked Nov. 8, 2016

Abstract: Virtual routers are gaining increasing attention in the research field of future networks. As the core
network device to achieve network virtualization, virtual routers have multiple virtual instances coexisting on a
physical router platform, and each instance retains its own forwarding information base (FIB). Thus, memory
scalability suffers from the limited on-chip memory. In this paper, we present a splitting-after-merging approach to
compress the FIBs, which not only improves the memory efficiency but also offers an ideal split position to achieve
system refactoring. Moreover, we propose an improved strategy to save the time used for system rebuilding to
achieve fast refactoring. Experiments with 14 real-world routing data sets show that our approach needs only a
unibit trie holding 134 188 nodes, while the original number of nodes is 4 569 133. Moreover, our approach has a
good performance in scalability, guaranteeing 90 000 000 prefixes and 65 600 FIBs.

Key words: Virtual routers, Merging, Splitting, Compression, Fast refactoring
http://dx.doi.org/10.1631/FITEE.1500499 CLC number: TP393

1 Introduction

Virtual routers (VRs) are key components of
some emerging technologies, such as virtual private
networking (Fu et al., 2001; Wang et al., 2010), net-
work function virtualization (Bando and Chao, 2010;
Bao et al., 2010; Han et al., 2015), and software-
defined networking (McKeown et al., 2008; Sezer
et al., 2013). Multiple logical routers coexist in a
physical device on the virtual router platform, which
enhances the resource utilization ratio as well as con-
trolling flexibility. However, VRs suffer from more
‡ Corresponding author
* Project supported by the National Basic Research Program
(973) of China (No. 2012CB315805), the National Natural Sci-
ence Foundation of China (Nos. 61173167 and 61472130), the
Prospective Research Project on Future Networks of Jiangsu Fu-
ture Networks Innovation Institute, China (No. 2013095-1-05),
the Hunan Provincial Innovation Foundation for Postgraduate,
China (No. CX2014B150), and the State Scholarship Fund of
China (No. 201406130048)

ORCID: Dan CHEN, http://orcid.org/0000-0001-7049-9945
c©Zhejiang University and Springer-Verlag Berlin Heidelberg 2016

challenges due to the same reason, particularly in
terms of memory efficiency and scalability.

1.1 Problem statement

In the environment of virtual routers, each
router instance on the virtual router platform (Liu
et al., 2011; Xie et al., 2011) has its own forward-
ing information base (FIB) and works separately to
process packets. If all the FIBs are maintained sepa-
rately, memory resource will not be shared and it is
useless for improving memory efficiency.

Moreover, to leave space for potential updates,
some ‘head room’ is reserved for each FIB. Because
different FIBs have different characteristics and po-
tential behaviors, some FIBs will run out of memory
while others remain far from the memory limit after
a long-term update.

Therefore, the first challenge is the desirable
trade-off between memory share and work isolation.

Zhang et al. / Front Inform Technol Electron Eng 2016 17(12):1266-1274 1267

Moreover, when the memory is running out or in the
case of instance insertion/deletion, the whole system
will have to be refactored. Because all functionalities
will be suspended during the refactoring, it is very
important yet challenging to perform refactoring as
quickly as possible.

1.2 Prior research

Many approaches have been proposed for the
storing of multi-FIB; they all aim to achieve effi-
cient memory share. TrieOverlap (Fu and Rexford,
2008) was the first attempt to share a large num-
ber of trie nodes by overlapping; this method owns
multiple tries and each of them represents a separate
FIB. Furthermore, TrieBraiding (Song et al., 2010;
2012) focuses on reversing some nodes in the tries to
produce more ‘similarity’; thus, more nodes will be
shared. To avoid keeping track of each FIB in all the
nodes, both approaches apply the LeafPushing algo-
rithm (Srinivasan and Varghese, 1999) to compress
the node structure and simplify the lookup process.
However, the LeafPushing algorithm produces re-
dundancies of numbers, which results in undesirable
update performance. Instead of the LeafPushing al-
gorithm, TrieMerging (Eatherton and Dittia, 2003;
Luo et al., 2013) was proposed to compress the node
structure by using a bitmap (Chan and Ioannidis,
1998; Wu et al., 2006) in each node of the overlapped
trie, and each bit represents whether the correspond-
ing FIB has a valid match in this node. However,
these overlapping-based schemas have a common dis-
advantage that the updates in any FIB will disrupt
the lookup of other FIBs due to the highly shared
structure.

At the same time, researchers proposed an-
other type of approach that merges FIBs rather than
tries. Specifically, a unique identification number is
prepended in front of all the prefixes for each FIB,
so prefixes from different FIBs can be distinguished
from each other by the front bits. Thus, the updates
of one FIB will affect only the specified subtrie. Due
to considerations of memory efficiency, a 2-3 tree (Le
et al., 2011) method is used, but the cost of this
method is the high reliance on special hardware de-
sign for desirable update performance.

In the field of FIB compression, many novel
structures have also been proposed for pretty high
memory efficiency (Song et al., 2009; Huang et al.,
2011; Li et al., 2014). However, all of them need an

optimized configuration to achieve desirable effects.
Moreover, they may need to recalculate the best con-
figuration after some updates, which increases the
overhead of refactoring.

1.3 Our approach

In this paper, we aim to develop a schema that
not only keeps each FIB isolated, especially in view
of aggregate updates, but also achieves high mem-
ory efficiency, scalability, and reasonable refactor-
ing overhead. Instead of working from scratches,
we learn from two existing ideas: FIB merging and
prefix splitting. First, we adopt the FIB-merging
approach to construct a merged FIB from multiple
FIBs by assigning a unique identification number to
all prefixes in each FIB. Then, we split all prefixes in
the merged FIB at some specified position by using
the splitting-after-merging method. Finally, we in-
vestigate how the selection process of split positions
affects memory efficiency through a series of exper-
iments with a large range of configurations. With
further analysis of the statistical results, we demon-
strate some reasonable strategies to select a proper
split position, which reduces the overhead of refac-
toring sharply.

2 Splitting-after-merging approach

2.1 FIB merging

The trie-based method (Degermark et al., 1997;
Nilsson and Karlsson, 1999; Srinivasan and Vargh-
ese, 1999; Eatherton et al., 2004; Song et al., 2005)
saves the storage time due to the partial similar-
ity between the prefixes, but the update becomes
more complex and lookup is hindered by the label
updating of the shared node. On the contrary, the
approach of merging FIBs by adding a unique identi-
fication to the front of each prefix can prevent similar
prefixes sharing nodes and isolate the updates, but
this approach suffers from large storage overhead.
The 2-3 tree method optimizes the storage to a cer-
tain extent; it has the problem of unstable lookup
and the high reliance on special hardware design.

In the splitting-after-merging method, our pur-
pose is to optimize storage to provide a stable and
fast lookup, which can still isolate the updates of
multiple different FIBs. So, to keep the updates iso-
lated, we construct a merged FIB containing every

1268 Zhang et al. / Front Inform Technol Electron Eng 2016 17(12):1266-1274

prefix of all the FIBs with each prefix being assigned
a unique identification number. For example, sup-
pose there are three FIBs (Fig. 1). First, we add a
unique identification number ‘00’ to the front of all
the prefixes in FIB1, ‘01’ to prefixes in FIB2, and
‘10’ to prefixes in FIB3 (these unique identification
numbers are the binary representations of the num-
ber of FIBs). Then, we merge these changed FIBs
into a final one. Thus, all the updates of these three
different FIBs can be isolated, because the impor-
tance of the merging process is not to compress the
prefixes but isolate the FIBs. Because of the isolated
FIBs, the update process will be much more simple.

Idx Prefix Next hop

P1 0 N1
P2 10 N2
P3 1010 N3

Idx Prefix Next hop

P4 000 N2
P5 1000 N4
P6 10001 N5

Idx Prefix Next hop

P7 11001 N2
P8 0110 N6

Idx Prefix Next hop

P1 000 N1
P2 0010 N2
P3 001010 N3
P4 01000 N2
P5 011000 N4
P6 0110001 N5
P7 1011001 N2
P8 100110 N6

FIB1

FIB2

FIB3

Fig. 1 Three FIBs merging into one with the added
identification number

2.2 Prefix splitting

Because the FIBs have been merged to ensure
isolation, the key question now is to reduce storage
consumption. Based on the partial similarity be-
tween prefixes, our next step is to split the merged
trie. As illustrated in Fig. 2, if we choose four as the
split position, the FIB is then split into two parts
at the position of four. As we can see, the maxi-
mum length of the prefixes in either FIB1 or FIB2 is
reduced after splitting. In particular, the maximum
length of the prefixes in the first part is reduced from
seven to four. Finally, we integrate the redundancies
produced by the splitting. We find that the total
number of prefixes in the new FIBs is reduced from
eight to six. In other words, the memory consump-
tion for storing the nodes is reduced and the lookup
time is also saved due to the shorter prefixes.

Though the memory of storing has been re-
duced by the merging process, another key factor
can also affect the memory efficiency. It is certain
that the on-chip memory consumption changes while

Idx Prefix Next hop

P1 000 N1
P2 0010 N2
P3 0010 10 N3
P4 0100 0 N2
P5 0110 00 N4
P6 0110 001 N5
P7 1011 001 N2
P8 1001 10

Idx Prefix Next hop

P1 000 N1
P2 0010 N2
P3 0010 N3
P4 0100 N2
P5 0110 N4
P6 0110 N5
P7 1011 N2
P8 1001 N6

Idx Prefix Next hop

P1 Ø N1
P2 Ø N2
P3 10 N3
P4 0 N2
P5 00 N4
P6 001 N5
P7 001 N2
P8 10 N6

Idx Prefix Next hop

P1 000 N1
P2 0010 N2

Idx Prefix Set Next hop

G1 0 {P4} {N2}
G2 00 {P5} {N4}
G3 10 {P3, P8} {N3, N6}
G4 001 {P6, P7} {N2, N5}

N6

Lookup: 1010 001*
on-chip

FIB
FIB1

FIB2

Fig. 2 Splitting the merged FIB into two FIBs

the split position and the number of FIBs change.
Moreover, the storage space of a fixed split position
changes because the numbers of FIBs and prefixes
have changed. Fig. 3 shows the curves of on-chip
memory consumption varying with the split position
and different numbers of FIBs. As we can see, the
trends of all the curves look the same when the split
position changes. The reason is that they all follow
the same rule that the best split position changes as
the number of FIBs increases. According to Fig. 4,
we choose 18 as the split position; the on-chip mem-
ory consumption increases when the numbers of total
prefixes and FIBs grow. These observations indicate
that the split position should be adjusted due to the
changes in the numbers of FIBs and total prefixes.

As the split position may influence the compre-
hensive performance of the split trie significantly, it is
obvious that the core of our approach is to choose an
appropriate split position. In addition, the faster we

0 4 8 12 16 20 24 28 32 36 40 44

213

214

215

216

217

218

219

220

221

222

223

O
n-

ch
ip

 m
em

or
y

(n
um

be
r o

f n
od

es
)

Split position

16 FIBs
64 FIBs
512 FIBs
1024 FIBs

Fig. 3 The trend of on-chip memory varying with
split position and the number of FIBs

Zhang et al. / Front Inform Technol Electron Eng 2016 17(12):1266-1274 1269

Number of prefixes

213

214

215

216

217

218

219

220

221

222

O
n-

ch
ip

 m
em

or
y

co
ns

um
pt

io
n

(n
um

be
r o

f n
od

es
)

16 FIBs

64 FIBs

128 FIBs

215 216 217 218 219 220 221 222 223 224

Fig. 4 The trend of on-chip memory varying with the
number of FIBs (the split position is chosen as 18)

choose the split position, and the more accurate the
split position chosen, the less time that is needed to
build the split trie. It is also of great importance for
the refactoring mechanism when the system is idle
(update or adding new router instances frequently is
likely to trigger the reconstruction). Under the con-
dition of a single FIB, the maximum length of the
prefix is fixed. However, in the case of a merged FIB,
the length of the identity number is determined by
the number of FIBs; so, the maximum prefix length
changes when the number of FIB varies. There-
fore, this increases the difficulty in choosing the ideal
split position. In Section 4, we will conduct a large
number of experiments for different parameters and
then predict the ideal split position through statis-
tical analysis, which can shorten the split position
detection time.

2.3 Lookup algorithm

Because the splitting-after-merging approach
merges the original FIBs and splits each FIB into two
FIBs, the lookup algorithm is far more complicated
than the simple and traditional longest prefix match
(LPM) (Kobayashi et al., 2000; Bass et al., 2005).
On the one hand, the address that we look up should
be splitted. On the other hand, the hash mechanism
(Broder and Mitzenmacher, 2001; Yu et al., 2009; Li
et al., 2012) will be needed because the LPM in FIB2
may find only a group of original prefixes whose back
parts are the same.

We use the example in Fig. 2 to illustrate our
lookup algorithm. First, like the splitting of the
prefixes in the FIB, the prefix should be split into

two parts: as depicted in Fig. 2, the prefix 1010001
has been split into 1010 and 001. Second, we use
1010 to perform LPM in FIB1 and 001 in FIB2. It
seems that the algorithm will be run after the LPM
in each FIB, but as mentioned before, the prefixes in
FIB2 have been compressed. In other words, when
we perform LPM in FIB2, the results may represent
several prefixes. As we can see, because P6 and P7
have the same back parts, it is unknown whether
G4 represents P6 or P7; the front parts of P6 and
P7 should be compared by using 1010 as the key to
perform hashing until we find that 1010 is the first
part of P6. The lookup algorithm is described in
Algorithm 1.

Algorithm 1 Lookup algorithm /* look up the addr
in FIB1 and FIB2 */
Input: FIB1, FIB2, addr, p

/* split address at position p */
Output: P /* the index of the address */
1: if (addr.length < p) then
2: P = FIB1.LPM(addr)
3: if (P == NULL) then
4: FIB1.insert(addr)
5: return NULL
6: else
7: return P

8: end if
9: else

10: [addr1, addr2] = addr.split(p)
11: G = FIB2.LPM(addr2)
12: if (G == NULL) then
13: FIB2.insert(addr2)
14: return NULL
15: else
16: if (P == NULL) then
17: FIB2.insert(addr2)
18: return NULL
19: else
20: return P

21: end if
22: end if
23: end if

2.4 Update approach

As the original FIBs have been merged into one
and then split as two final FIBs, our update approach
toward the prefixes is similar to the lookup process.
Usually, there are three types of updates: inserting
a new prefix, deletion of a prefix, and modifying an

1270 Zhang et al. / Front Inform Technol Electron Eng 2016 17(12):1266-1274

existing prefix. It is clear that these three types
of updates are linked to each other closely. First,
when we receive the prefix, it should be split at the
splitting position. Then, if the new incoming prefix
is to be inserted, its first part should be inserted into
FIB1 and the back part into FIB2. However, this
operation is based on the fact that all the parts of
the new prefix do not exist in FIB1 and FIB2, or it
will affect the modification process by changing the
index of the group. To deal with the modification,
the change of the index is only one aspect; when it
comes to changing the prefix itself, we should delete
the index of the prefix, insert the new prefix, and
create the index. We can observe that the deletion
is included in the modification process. Fig. 5 can
be used to illustrate the update process; we assume
that 1010110 is the new prefix to be inserted and we
will modify 000 to 010. As explained in the lookup
algorithm, the first step is splitting the prefix at the
splitting position 4. We find that 110 does not exist
in FIB2; so, 110 should be inserted into FIB2 with
the new index in the set. As can be seen from Fig. 5,
the modification from 000 to 010 leads to the deletion
of 000 in FIB1 and 010 finally replaces the location
of 000 stored previously.

Idx Prefix Next hop

P1 000 N1
P2 0010 N2

Idx Prefix Next hop

P1 010 N1
P2 0010 N2

Idx Prefix Set Next hop

G1 0 {P4} {N2}
G2 00 {P5} {N4}
G3 001 {P6, P7} {N5, N2}

Idx Prefix Set Next hop

G1 0 {P4} {N2}
G2 00 {P5} {N4}
G3 001 {P6, P7} {N5, N2}
G4 110 {P8} {N6}

Insert: 1010 110*
Modify: 000 to 010

FIB1

FIB2

Fig. 5 Insertion and modification

3 Fast refactoring strategy

3.1 Challenges of fast refactoring

In many prior works, the best configuration
needs to be recalculated after some update opera-
tions, which increases the overhead of refactoring,
while in our approach, the reason causing the refac-
toring is not the novel structures, but the unknown
nature of the FIBs to be inserted. As mentioned be-
fore, even the split position may influence the com-
prehensive performance of the split trie significantly,

much less than that with the length of the prefixes
changing all the time. Thus, once the newly in-
serted FIBs increase the length of the leading bits,
the whole system needs to be rebuilt.

Generally, rebuilding the whole system in our
approach needs first the selection of a split position,
then the construction of a unibit split trie on the
selected position, and finally the transform of it into
a multibit trie (Richardson et al., 2002; Saravanan
and Senthilkumar, 2015). Theoretically, we have to
test all possible split positions, and then we should
construct a multibit trie and calculate its memory
consumption on each position to determine which is
the best choice. As a consequence, the first step is
the most time-consuming operation.

3.2 Our mechanism for fast rebuilding

In today’s network, rebuilding the system in a
real-time manner is required to avoid losing too many
packets. In other words, the lookup process will be
suspended by the rebuilding process. In this context,
accelerating system rebuilding is another key point
to enhance the throughput. To achieve efficient re-
building, we present a novel mechanism to select a
position approximate to the best split position with
as few tests as possible.

To rebuild the system, the first step is to test all
the possible split positions. Moreover, a multibit trie
must be constructed based on the unibit trie to cal-
culate its memory consumption. Therefore, we con-
ducted two contrast experiments. The first is aimed
to compare the system rebuilding time between the
original scheme and the improved scheme. The sec-
ond is aimed to compare the memory efficiency of
these two schemes.

The comparison of the system rebuilding time is
shown in Fig. 6. There are 372 FIBs with 8 595 010
prefixes and the original number of FIBs is 128. In
other words, 244 new FIBs are inserted into the orig-
inal FIB set that contains 3 143 411 prefixes and the
best split position is 18. Because the inserted FIBs
have changed the length of the leading bits, we have
to rebuild the whole system. As indicated in Fig. 6,
if we adopt the original method, all the possible po-
sitions have to be tested and the system rebuilding
time will be added up to 621.929 s. On the other
hand, as the improved method shows, only three po-
sitions need to be tested. First, we can choose the po-
sition only from 18 to 20 according to the conclusion

Zhang et al. / Front Inform Technol Electron Eng 2016 17(12):1266-1274 1271

0 6 12 18 24 30 36 42

0.125

0.25

0.5

1

2

4

8

16

32

S
ys

te
m

 re
bu

ild
in

g
tim

e
(s

)

Split position

Original method
Improved method

Fig. 6 Time efficiency of the two strategies of system
rebuilding

based on Fig. 7. Then, according to Fig. 9, we can
suppose that the best position may be 19. When
the number of FIBs increases, the best split position
will move forward. In addition, according to a large
number of experiments on real-world data sets, we
found that the trend of memory consumption with
respect to split position for a multibit trie is always
similar to that for a unibit trie (Section 4). Thus, we
construct only the unibit trie rather than transform
it into a multibit trie when we test one split position,
which can help us save a lot of time. As we can see,
the total reconstruction time has been reduced to
0.758 s. The experimental results demonstrate that
our improved method actually saves a lot of time and
achieves efficient rebuilding.

Fig. 7 shows the memory efficiency of the two
strategies. For the first strategy, the memory re-
quirements of the unibit trie and the multibit trie

0 3 6 9 12 15 18 21 24 27 30 33 36 39 42
0.125

0.25

0.5

1

2

4

8

16

32

64

128

O
n-

ch
ip

 m
em

or
y

co
ns

um
pt

io
n

(M
B

)

Split position

Unibit trie
and multibit trie
Memory of unibit trie

Fig. 7 Memory efficiency of the two strategies of
system rebuilding

add up to the total memory consumption. As shown,
both methods consume the least memory when the
position is 19. However, the improved method con-
sumes only 0.329 MB memory, while the original
one consumes 0.867 MB. The valley values are ob-
tained at the best split position. This observation
completely conforms to the trend of on-chip memory
varying with split position in Fig. 3.

The steps of the rebuilding procedure are sum-
marized as follows:

1. Make the statistics of the numbers of current
FIBs and total prefixes.

2. Make the statistics of the numbers of newly
added FIBs and their prefixes.

3. Select the testing positions according to the
cumulative distribution of the ideal split position in
Fig. 9.

4. Choose the test position based on the current
split position and the information of the newly added
FIBs.

5. Test the left and right positions of the se-
lected position to make sure which is the best split
position.

4 Evaluation experiments

In this section, we first conducted an experi-
ment to illustrate how the best split position changes
due to the changes in the numbers of FIBs and to-
tal prefixes. Then, we summarized the cumulative
distribution rule of the ideal split position. Finally,
we made three contrast experiments: the first is to
compare the on-chip memory consumptions of uni-
trie and multitrie methods, the second is to compare
on-chip memory and off-chip memory, and the third
is to compare our method with other conventional
methods.

To evaluate the memory efficiency, a large num-
ber of routing tables are needed. We collected 272
real-world, public border gateway protocol (Rekhter
and Li, 1994) routing data sets from the RIPE RIS
Project (Table 1). We randomly combined the pre-
fixes (about 90 000 000 prefixes) into multiple groups
of FIBs and the largest number of FIBs reaches
65 600, which is enough to simulate the real virtual
routers. Besides, we assume that the smallest FIB
contains 1000 prefixes and the largest one contains
560 000 prefixes.

As mentioned in Section 2, the core of our

1272 Zhang et al. / Front Inform Technol Electron Eng 2016 17(12):1266-1274

Table 1 Routing data set

Router Location Collected time
Collected
number

Rrc00 RIPE NCC, Amster-
dam

2001-04 to 2015-05 22

Rrc01 LINX, London 2001-10 to 2015-04 20
Rrc02 SFINX, Paris 2006-12 to 2008-10 3
Rrc03 AMS-IX, Amsterdam 2001-12 to 2015-05 22
Rrc04 CIXP, Geneva 2001-12 to 2015-05 21
Rrc05 VIX, Vienna 2002-12 to 2015-05 19
Rrc06 Otemachi, Japan 2001-12 to 2015-05 19
Rrc07 Stockholm, Sweden 2002-12 to 2015-05 21
Rrc08 San Jose (CA), USA 2002-12 to 2004-01 5
Rrc09 Zurich, Switzerland 2003-05 to 2004-01 5
Rrc10 Milan, Italy 2004-12 to 2015-04 17
Rrc11 New York (NY), USA 2004-12 to 2015-05 19
Rrc12 Frankfurt, Germany 2004-12 to 2015-05 20
Rrc13 Moscow, Russia 2005-12 to 2015-05 17
Rrc14 Palo Alto, USA 2006-10 to 2015-05 15
Rrc15 Sao Paulo, Brazil 2005-12 to 2015-05 15
Rrc16 Miami, USA 2006-12 to 2012-03 8

Total number of data sets collected: 272
Total number of prefixes collected: 89 122 790

approach is to choose an appropriate split position.
Under the condition of a single FIB, the maximum
length of the prefix is fixed. However, in the case of
merged FIB, the identity number is determined by
the number of prefixes and the number of FIBs. It
seems that there is no rule for choosing the ideal split
position. However, after hundreds of experiments
and statistical analysis, we found something inter-
esting. Fig. 8 shows that when the FIB sets have the
same number of FIBs, if the FIB has more prefixes,
the ideal split positions then move forward. Fur-
thermore, the best positions move backward when
the number of FIBs increases. Fig. 9 shows the cu-
mulative distribution of the ideal split position from
our experiments and statistical analysis. When the

1 16 256 4096 65536
14

16

18

20

22

24

26

B
es

t s
pl

it
po

si
tio

n

Number of FIBs

1000 prefixes
10 000 prefixes
20 000 prefixes
30 000 prefixes
300 000 prefixes

Fig. 8 The trends of the best split position

number of FIBs ranges from 2 to 512, the ideal split
position mainly changes from 15 to 20. That is, when
we choose the position, there is no need to try from
1 to the end; instead, we may just choose it in the
range of 15 to 20, regardless of whether the number
of FIBs is 2 or 512. In addition, the ideal position
changes from 20 to 25 when the number of FIBs
varies between 252 and 65 600. Furthermore, as long
as we obtain the number of FIBs, we can select a split
position according to the cumulative distribution as
soon as possible, which is of great importance for the
reconstruction mechanism.

Fig. 10 shows the comparison of the best split
position between the unitrie and multitrie methods.
As depicted, the best split position basically remains
unchanged. Therefore, when we choose the split po-
sition, there is no need to build a multitrie to test,
and a unitrie is enough. As presented in Fig. 11, the
on-chip and off-chip memories form a sharp contrast.
This is because when we choose the best position, the

2 4 8 16 32 64 128 256 512 1024 2048 4096 8192 16 384 32 768 65 536
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

P
ro

ba
bi

lit
y

of
 b

ei
ng

 th
e

be
st

 s
pl

it
po

si
tio

n

Number of FIBs

Split position=15
Split position=16
Split position=17
Split position=18
Split position=19
Split position=20
Split position=21
Split position=22
Split position=23
Split position=24
Split position=25

Fig. 9 The cumulative distribution of the ideal split position

Zhang et al. / Front Inform Technol Electron Eng 2016 17(12):1266-1274 1273

0 4 8 12 16 20 24 28 32 36 40
Split position

100 FIBs, unibit trie
372 FIBs, multibit trie
372 FIBs, unibit trie

100 FIBs, multibit trie

0.125

0.25

0.5

1

2

4

8

16

32

64

O
n-

ch
ip

 m
em

or
y

co
ns

um
pt

io
n

(M
B

)

Fig. 10 The best split position of unibit and multibit
tries

0 5 10 15 20 25 30 35 40
0.125

0.25

0.5

1

2

4

8

16

32

64

128

256

372 FIBs, on-chip
372 FIBs, off-chip
64 FIBs, on-chip
64 FIBs, off-chip

Split position

O
n-

an
d

of
f-c

hi
p

m
em

or
y

co
ns

um
pt

io
ns

 (M
B

)

Fig. 11 On- and off-chip memory consumptions

off-chip hash mechanism that we need to deal with
will be more complex and require more memory.

To compare the memory efficiency, we collected
14 experimental IPV4 (Internet Protocol Version 4)
core routing tables which were used previously (Le
et al., 2011) and the total number of prefixes is
4 569 133. Our approach requires only 14.517 MB
memory with 0.196 MB for on-chip memory (the
remainder for off-chip memory); it is absolutely
much better than the scheme in Le et al. (2011),
which requires 40 MB memory. On the other hand,
our approach supports 2 167 619 prefixes and just
needs 7.9 MB memory, while the memory required
is 18.6 MB by using the method in Le et al. (2011).
When the number of prefixes reaches 89 122 90, the
required memory increases to 766 MB far more than
that of our approach, which is 109 MB.

5 Conclusions

In this paper, we proposed a simple approach
to merge and compress multiple virtual routers. We
introduced an identity number to each prefix based
on the number of FIBs, which prevents similar pre-
fixes sharing nodes, so that the updates are isolated.
We split the merged trie by using the splitting-after-
merging approach, which is memory efficient and
supports fast update. Because the split position is
the key of the splitting-after-merging approach, we
proposed a selection strategy for the best splitting
position through experiments and statistical anal-
ysis. When adding a new virtual router instance,
the cumulative distribution of the ideal split posi-
tion can help predict the best split position, which
will shorten the detection time and accelerate the
system rebuilding process.

References

Bando, M., Chao, H.J., 2010. FlashTrie: hash-based prefix-
compressed trie for IP route lookup beyond 100 Gbps.
Proc. IEEE INFOCOM, p.1-9.
http://dx.doi.org/10.1109/INFCOM.2010.5462142

Bao, J., Chen, Y., Yu, J.S., 2010. A regeneratable dynamic
differential evolution algorithm for neural networks with
integer weights. J. Zhejiang Univ. Sci. C (Comput. &

Electron.), 11(12):939-947.
http://dx.doi.org/10.1631/jzus.C1000137

Bass, B.M., Calvignac, J.L., Heddes, M.C., et al., 2005.
Longest Prefix Match (LPM) Algorithm Implementa-
tion for a Network Processor. US Patent 7 383 244.

Broder, A., Mitzenmacher, M., 2001. Using multiple hash
functions to improve IP lookups. Proc. IEEE INFO-
COM, p.1454-1463.
http://dx.doi.org/10.1109/INFCOM.2001.916641

Chan, C.Y., Ioannidis, Y.E., 1998. Bitmap index design
and evaluation. Proc. ACM SIGMOD Int. Conf. on
Management of Data, p.355-366.
http://dx.doi.org/10.1145/276304.276336

Degermark, M., Brodnik, A., Carlsson, S., et al., 1997. Small
forwarding tables for fast routing lookups. ACM SIG-
COMM Comput. Commun. Rev., 27(4):3-14.
http://dx.doi.org/10.1145/263109.263133

Eatherton, W.N., Dittia, Z., 2003. Data Structure Using a
TREE Bitmap and Method for Rapid Classification of
Data in a Database. US Patent 6 728 732.

Eatherton, W., Varghese, G., Dittia, Z., 2004. Tree bitmap:
hardware/software IP lookups with incremental up-
dates. ACM SIGCOMM Comput. Commun. Rev.,
34(2):97-122.
http://dx.doi.org/10.1145/997150.997160

Fu, J., Rexford, J., 2008. Efficient IP-address lookup with
a shared forwarding table for multiple virtual routers.
ACM CoNEXT Conf., p.21.
http://dx.doi.org/10.1145/1544012.1544033

1274 Zhang et al. / Front Inform Technol Electron Eng 2016 17(12):1266-1274

Fu, Z., Wu, S.F., Huang, H., et al., 2001. IPSec/VPN secu-
rity policy: correctness, conflict detection, and resolu-
tion. Proc. Int. Workshop on Policies for Distributed
Systems & Networks, p.39-56.

Han, B., Gopalakrishnan, V., Ji, L.S., et al., 2015. Network
function virtualization: challenges and opportunities for
innovations. IEEE Commun. Mag., 53(2):90-97.
http://dx.doi.org/10.1109/MCOM.2015.7045396

Huang, K., Xie, G.G., Li, Y.B., et al., 2011. Offset addressing
approach to memory-efficient IP address lookup. Proc.
IEEE INFOCOM, p.306-310.
http://dx.doi.org/10.1109/INFCOM.2011.5935151

Kobayashi, M., Murase, T., Kuriyama, A., 2000. A longest
prefix match search engine for multi-gigabit IP process-
ing. IEEE Int. Conf. on Communications, p.1360-1364.
http://dx.doi.org/10.1109/ICC.2000.853719

Le, H., Ganegedara, T., Prasanna, V.K., 2011. Memory-
efficient and scalable virtual routers using FPGA. Proc.
19th ACM/SIGDA Int. Symp. on Field Programmable
Gate Arrays, p.257-266.

Li, X.L., Wang, H.M., Guo, C.G., et al., 2012. Topology
awareness algorithm for virtual network mapping. J.
Zhejiang Univ.-Sci. C (Comput. & Electron.), 13(3):
178-186. http://dx.doi.org/10.1631/jzus.C1100282

Li, Y.B., Zhang, D.F., Huang, K., et al., 2014. A memory-
efficient parallel routing lookup model with fast updates.
Comput. Commun., 38(1):60-71.
http://dx.doi.org/10.1016/j.comcom.2013.10.005

Liu, J., Huang, T., Chen, J.Y., et al., 2011. A new algo-
rithm based on the proximity principle for the virtual
network embedding problem. J. Zhejiang Univ. Sci. C
(Comput. & Electron.), 12(11):910-918.
http://dx.doi.org/10.1631/jzus.C1100003

Luo, L.Y., Xie, G.G., Salamatian, K., et al., 2013. A trie
merging approach with incremental updates for virtual
routers. Proc. IEEE INFOCOM, p.1222-1230.
http://dx.doi.org/10.1109/INFCOM.2013.6566914

McKeown, N., Anderson, T., Balakrishnan, H., et al., 2008.
OpenFlow: enabling innovation in campus networks.
ACM SIGCOMM Comput. Commun. Rev., 38(2):69-
74. http://dx.doi.org/10.1145/1355734.1355746

Nilsson, S., Karlsson, G., 1999. IP-address lookup using LC-
tries. IEEE J. Sel. Areas Commun., 17(6):1083-1092.
http://dx.doi.org/10.1109/49.772439

Rekhter, Y., Li, T., 1994. A Border Gateway Protocol 4
(BGP-4). RFC 1654, T.J. Watson Research Center &
CISCO.

Richardson, N.J., Rajgopal, S., Huang, L.B., 2002. Method
for Increasing Storage Capacity in a Multi-bit Trie-
Based Hardware Storage Engine by Compressing the

Representation of Single-Length Prefixes. US Patent
7 162 481.

Saravanan, K., Senthilkumar, A., 2015. An efficient paral-
lel prefix matching architecture using Bloom filter for
multi-bit trie IP lookup algorithm in FPGA. Optoelec-
tron. Adv. Mat.-Rap. Commun., 9(5):803-807.

Sezer, S., Scott-Hayward, S., Chouhan, P.K., et al., 2013.
Are we ready for SDN? Implementation challenges for
software-defined networks. IEEE Commun. Mag.,
51(7):36-43.
http://dx.doi.org/10.1109/MCOM.2013.6553676

Song, H.Y., Turner, J., Lockwood, J., 2005. Shape shifting
tries for faster IP route lookup. IEEE Int. Conf. on
Network Protocols, p.358-367.
http://dx.doi.org/10.1109/ICNP.2005.36

Song, H.Y., Kodialam, M., Hao, F., et al., 2009. Scalable IP
lookups using shape graphs. 17th IEEE Int. Conf. on
Network Protocols, p.73-82.
http://dx.doi.org/10.1109/ICNP.2009.5339697

Song, H.Y., Kodialam, M., Hao, F., et al., 2010. Building
scalable virtual routers with trie braiding. Proc. IEEE
INFOCOM, p.1-9.
http://dx.doi.org/10.1109/INFCOM.2010.5461960

Song, H.Y., Kodialam, M., Hao, F., et al., 2012. Efficient
trie braiding in scalable virtual routers. IEEE/ACM
Trans. Netw., 20(5):1489-1500.
http://dx.doi.org/10.1109/TNET.2011.2181412

Srinivasan, V., Varghese, G., 1999. Fast address lookups us-
ing controlled prefix expansion. ACM Trans. Comput.
Syst., 17(1):1-40.
http://dx.doi.org/10.1145/296502.296503

Wang, Z., Chen, H.F., Xie, L., et al., 2010. Retransmission in
the network-coding-based packet network. J. Zhejiang
Univ.-Sci. C (Comput. & Electron.), 11(7):544-554.
http://dx.doi.org/10.1631/jzus.C0910475

Wu, K.S., Otoo, E.J., Shoshani, A., 2006. Optimizing
bitmap indices with efficient compression. ACM Trans.
Database Syst., 31(1):1-38.
http://dx.doi.org/10.1145/1132863.1132864

Xie, G.G., He, P., Guan, H.T., et al., 2011. PEARL: a
programmable virtual router platform. IEEE Commun.
Mag., 49(7):71-77.
http://dx.doi.org/10.1109/MCOM.2011.5936157

Yu, H., Mahapatra, R., Bhuyan, L., 2009. A hash-based
scalable IP lookup using Bloom and fingerprint filters.
Proc. 17th IEEE Int. Conf. on Network Protocols,
p.264-273.
http://dx.doi.org/10.1109/ICNP.2009.5339676

	Introduction
	Problem statement
	Prior research
	Our approach

	Splitting-after-merging approach
	FIB merging
	Prefix splitting
	Lookup algorithm
	Update approach

	Fast refactoring strategy
	Challenges of fast refactoring
	Our mechanism for fast rebuilding

	Evaluation experiments
	Conclusions

