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Abstract: Non-negative matrix factorization (NMF) has been widely used in mixture analysis for hyperspectral
remote sensing. When used for spectral unmixing analysis, however, it has two main shortcomings: (1) since the
dimensionality of hyperspectral data is usually very large, NMF tends to suffer from large computational complexity
for the popular multiplicative iteration rule; (2) NMF is sensitive to noise (outliers), and thus the corrupted data will
make the results of NMF meaningless. Although principal component analysis (PCA) can be used to mitigate these
two problems, the transformed data will contain negative numbers, hindering the direct use of the multiplicative
iteration rule of NMF. In this paper, we analyze the impact of PCA on NMF, and find that multiplicative NMF can
also be applicable to data after principal component transformation. Based on this conclusion, we present a method
to perform NMF in the principal component space, named ‘principal component NMF’ (PCNMF). Experimental
results show that PCNMF is both accurate and time-saving.

Key words: Non-negative matrix factorization (NMF), Principal component analysis (PCA), Endmember,
Hyperspectral
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1 Introduction

Spectral unmixing analysis has received increas-
ing interest in hyperspectral remote sensing, since
the mixture pixels widely exist in hyperspectral im-
agery. The linear mixing model (LMM) plays an
important role in hyperspectral unmixing analysis
(Keshava and Mustard, 2002; Plaza et al., 2004;
Bioucas-Dias et al., 2012). It assumes that any pixel
in the image can be regarded as a linear combina-
tion of several pure spectral signatures (called ‘end-
members’) weighted by corresponding abundance
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fractions. Owing to the physical constraints, the
abundances satisfy the abundance non-negative con-
straint (ANC) and abundance sum-to-one constraint
(ASC). In the assumption of LMM, when all the end-
members are available, the abundances of the end-
members can be obtained conveniently using linear
unmixing methods (Heinz and Chang, 2001; Parente
and Plaza, 2010; Heylen et al., 2011). Therefore,
some methods concentrate on endmember selection,
for instance, pixel purity index (PPI) (Boardman,
1992), N-FINDR (Winter, 1999; Ji et al., 2015), or-
thogonal bases algorithm (OBA) (Tao et al., 2007a),
iterative error analysis (IEA) (Neville et al., 1999),
simplex growing algorithm (SGA) (Chang et al.,
2006), successive projection algorithm (SPA) (Zhang
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et al., 2008), maximum volume by householder trans-
formation (MVHT) (Liu and Zhang, 2012), Gaus-
sian elimination method (GEM) (Geng et al., 2013b),
and fast Gram determinant based algorithm (FGDA)
(Sun et al., 2014). All these algorithms assume that
at least one pure pixel exists for each endmember in
the image.

However, the pure-pixel assumption is hard to
satisfy for real hyperspectral images. In this case,
another alternative approach for unmixing analy-
sis, endmember generation, is required. Meth-
ods of this type include minimum volume trans-
form (MVT) (Craig, 1994), minimum volume sim-
plex analysis (MVSA) (Li and Bioucas-Dias, 2008),
MINVEST (Hendrix et al., 2012), minimum vol-
ume enclosing simplex (MVES) (Chan et al., 2009;
Ambikapathi et al., 2011), simplex identification
via split augmented Lagrangian (SISAL) (Bioucas-
Dias, 2009), iterated constrained endmember (ICE)
(Berman et al., 2004), and geometric optimization
model (GOM) (Geng et al., 2013a). Take ICE as
an example. It formulates an optimization prob-
lem with an effort to minimize the reconstruction
error regularized by a constrained term, i.e., the sum
of variances of the simplex vertices. In each itera-
tion of ICE, the abundance fractions of each pixel
can be found by solving a quadratic programming
problem, which is very time-consuming. In recent
years, non-negative matrix factorization (NMF) has
been applied to hyperspectral data unmixing (Miao
and Qi, 2007; Zymnis et al., 2007; Jia and Qian,
2009; Huck et al., 2010; Liu et al., 2011; Ji et al.,
2013; Zhu et al., 2014). The multiplicative update
algorithm for NMF was provided by Lee and Seung
(1999), which is demonstrated to be computationally
simple and does not need any manually set parame-
ters. Note that NMF suffers from two main problems
when used for hyperspectral unmixing analysis. One
is that the multiplicative iteration version of NMF
is very time-consuming if performed directly to the
original hyperspectral data since the dimensionality
of hyperspectral data is very high (generally more
than 100). The other disadvantage of NMF is that
it is very sensitive to noise (outliers). To address the
two problems, the operation of dimensionality reduc-
tion can be conducted, which can not only reduce the
data size but also improve the signal-to-noise ratio
(SNR) of the data set. However, after dimension-
ality reduction, the multiplicative learning rule for

NMF cannot be used since dimensionality reduced
data generally contain negatives. In this paper, we
explore the impact of principal component analy-
sis (PCA) on NMF and find that the multiplicative
updating rule is still applicable to the data after the
dimensionality reducing process, which contains only
the step of rotation and does not involve translation.
Then, we present a new approach for NMF in the
principal component (PC) space, namely PCNMF.

2 Background

In this section, we briefly review the theory of
LMM and NMF.

2.1 Linear mixing model

If the assumption of the LMM holds, each spec-
tral vector ri can be expressed by a linear combina-
tion of several endmember vectors ej (j = 1, 2, . . . , p)
with the physical constrained conditions:

ri =

p∑

j=1

cijej + n = Eci + n, (1)

p∑

j=1

cij = 1, cij > 0, (2)

where p is the number of endmembers in the image,
ci = [ci1, ci2, . . . , cip]

T and cij is a scalar representing
the fractional abundance of endmember vector ej in
the pixel ri. E = [e1, e2, . . . , ep] is an L× p mixing
matrix (L is the number of bands for the original
data).

2.2 Non-negative matrix factorization

Given an L×M non-negative matrixR (M � L

in general) and a positive integer p < L, the task of
non-negative matrix factorization is to find two non-
negative matrices EL×p and Cp×M such that

R ≈ EC. (3)

A natural way to solve the NMF problem for
E and C is to construct the following optimization
problem:

min f (E,C) =
1

2
‖R−EC‖2F

subject to E ≥ 0,C ≥ 0, (4)

where ‖ · ‖F represents the Frobenius norm. There
are many methods that can be used to solve Eq. (4),
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among which the most popular one is the multiplica-
tive iteration rule. The learning process for the mul-
tiplicative NMF is

C = C. ∗ (ETR
)
./
(
ETEC

)
, (5)

E = E. ∗ (RCT
)
./
(
ECCT

)
. (6)

If the initial matrices E and C are strictly non-
negative, these matrices can remain non-negative
throughout the iterations. If the ASC needs to be
considered, we can just replace the matrices R and

E by R̄ =

[
R

δ1T
M

]
, Ē =

[
E

δ1T
p

]
, where 1M

is an M -dimensional column vector, and 1p a p-
dimensional column vector, with all elements equal
to one, and δ is a positive parameter to control the
effect of ASC, which is usually assigned manually.
In recent years, NMF has been widely used in un-
mixing analysis for hyperspectral data (Miao and
Qi, 2007; Zymnis et al., 2007; Jia and Qian, 2009;
Huck et al., 2010; Liu et al., 2011; Ji et al., 2013; Zhu
et al., 2014). Most of these methods perform NMF
directly to the original data, so they are generally
time-consuming and sensitive to noise (outliers). Al-
though dimensionality reduction can mitigate these
problems well, it leads to another intractable situa-
tion; i.e., the non-negative property cannot be satis-
fied for the dimensionality reduced data. As a result,
the multiplicative updating rule cannot be applied
in the dimensionality reduced space. Interestingly,
we find that the multiplicative updating rule is still
applicative for dimensionality reduction where only
rotation operation is contained. It will be elaborated
in the following section.

3 Impact of PCA on NMF

In this section, taking PCA (Jolliffe, 2002) as an
example, we investigate the applicability of NMF in
the PC space. As is well known, the standard PCA
process contains two main steps, translation and ro-
tation. More specifically, translation means moving
the center of the data to the mean vector, while ro-
tation means projecting the mean-removed data to
the directions of the eigenvectors derived from its co-
variance matrix, which is equivalent to rotating the
data by the orthogonal matrix (eigenvector matrix).
Hence, in the following, we discuss the impact of
general translation and rotation on NMF.

3.1 Impact of rotation

In general, the original hyperspectral data are
non-negative, i.e., R ≥ 0. However, the data may
contain negatives after the rotation by orthogonal
matrix V . Denote R̂ = V TR and Ê = V TE as the
rotated data and endmember matrix, respectively.
First, we consider the multiplicative learning rule for
C, which can be rewritten as

Ĉ = Ĉ. ∗
(
ÊTR̂

)
./
(
ÊTÊĈ

)
. (7)

Substituting R̂ = V TR and Ê = V TE into Eq. (7),
we have

Ĉ = Ĉ. ∗ ((V TE)T(V TR)
)
./
(
(V TE)TV TEĈ

)

= Ĉ. ∗ (ETV V TR
)
./(ETV V TEĈ)

= Ĉ. ∗ (ETR)./(ETEĈ).
(8)

Clearly, Eq. (8) is absolutely equivalent to Eq. (5).
That is to say, the rotation does not change the mul-
tiplicative updating rule for the abundance matrix.
This is a very interesting conclusion, which implies
that the abundance matrix can be obtained directly
in the PC space though the rotated data may con-
tain negatives. Considering that the information of
hyperspectral data is contained mainly in the top
several components, we can multiplicatively update
the abundance matrix of hyperspectral data in the
space spanned by the top several principal compo-
nents (PCs). This will greatly reduce the compu-
tational complexity. Moreover, the accuracy of end-
member and abundance can be improved by perform-
ing NMF in the PC space, since PCA has a capacity
of suppressing noise and enhancing SNR. Next, let
us discuss the computation of endmember matrix E

in the PC space. The multiplicative updating rule
for E is

Ê = Ê. ∗ (R̂ĈT)./(ÊĈĈT). (9)

Similarly, plugging Ĉ = C and R̂ = V TR into
Eq. (9), we have

Ê = Ê. ∗ (R̂CT)./(ÊCCT)

= Ê. ∗ (V TRCT)./(ÊCCT). (10)

Unfortunately, the effect of V cannot be eliminated
in the multiplicative updating rule for the endmem-
ber matrix. Both R̂ and Ê in Eq. (10) may contain
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negatives in the PC space. Therefore, this is the
main obstacle to prevent us from applying NMF in
the PC space.

3.2 Impact of translation

From the above analysis, it can be found that
the rotation will not change the update rule of C,
but the update rule of E may not hold, since R̂

in Eq. (10) may contain negatives. To make the
multiplicative update rule applicable to the rotated
data, a simple trick to make all data non-negative
is by translation. Here, supposing the data and
endmembers contain negatives, we can select a vec-
tor r0 (L-dimensional column vector), such that
(R − r01

T
M ) ≥ 0 and (E − r01

T
p ) ≥ 0. Then the

corresponding multiplicative updating rules become

C = C. ∗ ((E − r01
T
p )

T(R− r01
T
M )

)

./
(
(E − r01

T
p )

T(E − r01
T
p )C

)
, (11)

E = (E − r01
T
p ). ∗

(
(R− r01

T
M )CT

)

./
(
(E − r01

T
p )CCT

)
+ r01

T
p . (12)

Then the objective function of NMF in Eq. (4)
becomes

f(E − r01
T
p ,C) = ‖(R− r01

T
M )− (E − r01

T
p )C‖2F

= f(E,C) + 2tr
(
(R−EC)(r01

T
p C − r01

T
M )T

)

+ ‖r01T
M − r01

T
pC‖2F,

(13)

where tr(·) is the trace operator. We can see from
Eq. (13) that, when the abundance matrix C satis-
fies ASC, i.e., 1T

M = 1T
pC, the translation does not

change the value of the objective function. However,
the ASC of C cannot be guaranteed in the multi-
plicative learning process (see Eqs. (5), (6), (11),
and (12)). Therefore, the translation of the data
will change the final solution of NMF. Moreover,
the number of such r0 which can achieve the non-
negativity of R and E is infinite, and different r0
will lead to different E and C even with the same
initialization. Therefore, although the way of trans-
lation can make R ≥ 0,E ≥ 0, it is unnatural and
its use in real applications is not suggested.

4 Principal component non-negative
matrix factorization

In Section 3, we learn that both steps of the
PCA process could cause the failure of applying mul-

tiplicative update rules to NMF in the PC space. For
the rotation step, since the effect of rotation matrix
V can be completely eliminated, as Eq. (8), the up-
date rule for the abundance matrix remains the same.
Yet, the rotation matrix V cannot be eliminated in
the update rule of E, as Eq. (10), so the update rule
of E is no longer universally applicable. Although
data translation can solve the problem caused by V ,
the analysis in Section 3.2 indicates that the trans-
lation will change the final solution, and different r0
will lead to different results.

Interestingly, based on our observation, the
maximum spectral angle between pixels in real hy-
perspectral data is mostly small (generally less than
45◦). In addition, the rotation operation will not
change the spectral angles between data points.
Both facts motivate us to apply the orthogonal pro-
crustes (OP) technique to solve the non-negative
problem of R and E in the PC space. That is,
forcibly rotating all the data points into the first
quadrant of the PC space will make the update rule
still work for E.

The OP problem was first proposed by Green
(1952), and the general solution to this problem was
given by Schönemann (1966). The problem is de-
fined as the least-squares problem of transforming a
given matrix B to a given matrix A by an orthog-
onal transformation matrix Q, which maps B to A

as closely as possible. Mathematically, this problem
can be stated as follows:

min
Q

f(Q) = ‖A−BQ‖F
subject to QTQ = QQT = I. (14)

According to Schönemann (1966), the optimal solu-
tion of Eq. (14) is

Q = UWT, (15)

where matrices U and W satisfy the singular value
decomposition (SVD) equation BTA = UDWT.

Here, a 2D example is shown in Fig. 1 to il-
lustrate the OP process. The original data are dis-
tributed in the second quadrant. Let A = [1, 1],
and B be the mean vector of the data set. Then
we can calculate Q by Eq. (15). It can be seen that
all data are transformed to the first quadrant, being
non-negative. As mentioned before, to achieve the
non-negativity requirement for both R and E, the
data should satisfy one premise; that is, the max-
imum spectral angle of the data set should be no
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Fig. 1 Illustration of the orthogonal procrustes (OP)
process in the 2D space

larger than 90◦. Since digital number, radiance, or
reflectance values are all non-negative, real hyper-
spectral data all exist in the first quadrant. As a
result, the maximum spectral angle of the real data
set is no larger than 90◦. Moreover, we compute a
series of real hyperspectral data sets, and find that
the maximum spectral angle is usually less than 45◦

in practice. Therefore, by OP transformation, we
can perform the multiplicative update rules in the
PC space without involving the translation process.
Clearly, the PC transformation without translation
and the OP transformation can be combined into one
process, named ‘PC-OP transformation’ here. Over-
all, PC-OP transformation has the following advan-
tages: (1) reduce the dimensionality of the data set
and thus the computational complexity, (2) make
all data non-negative, so that multiplicative update
rules of NMF can still work in the PC space, and (3)
improve the SNR of the data set by choosing only the
first p− 1 PC bands, to improve the final accuracy.

After obtaining the non-negative data and end-
member matrices, we can directly perform NMF on
them for the final endmember extraction, which is
summarized in Algorithm 1. Some practical consid-
erations need to be stated here:

1. Initialization: Due to the non-convexity of
the objective function (4), the random initializa-
tion on E and C will definitely lead to the local
minima problem, which makes the solution mean-
ingless. Taking a 2D situation as an example, the
scatter points in Fig. 2 are the highly mixed data
cloud. Points A, B, and C are three real endmem-
bers, and obviously ΔABC is the most compacted
triangle that encloses all these points. Because of
the non-convexity of NMF, any triangle in the plane

Algorithm 1 Principal component non-negative
matrix factorization
Input: data matrix, RL×M ; number of endmembers, p;

maximum iteration number, maxiter; ASC weight,
δ.

Output: endmember matrix, EL×p; abundance matrix,
Cp×M .
// PC-OP transformation

1: Calculate the autocorrelation matrix, ΣL×L =

RRT/M

2: Calculate the eigenvector matrix for Σ which satis-
fies Σ = V DV T, with the PC rotation matrix being
V = [V ]:,1:(p−1)

3: Calculate the mean vector of the PC rotated data,
r̄ = V Tmean(R)

4: Let A(p−1)×1 = [1, 1, · · · , 1]T, B = r̄, and calculate
the OP matrix Q based on Eq. (15)

5: Calculate the PC-OP transformed data, ˜R =

(V Q)TR

// NMF initialization
6: index0 = FGDA( ˜R, p), ˜E0 = ˜R:,index0

7: R̄ =

[

˜R

δ1T
M

]

, Ē0 =

[

˜E0

δ1T
p

]

8: C0 = lsqnonneg(R̄, Ē0)

// NMF based endmember extraction
9: [E,C] = NMF(R̄, Ē0,C0,maxiter)

that can enclose the data set will be a local solution
of NMF, such as ΔA1B1C1 and ΔA2B2C2. How-
ever, the vertices A1, B1, C1 or A2, B2, C2 are far
different from the true endmembers A, B, and C, so
they have no physical meanings.

To avoid unreasonable local minima, Tao et al.
(2007b) used the N-FINDR outputs as the endmem-
ber initialization. We can employ the same strategy.
We use the results of FGDA (Sun et al., 2014), which
are independent of the dimensionality of data, as the
initialization for E. For C, it is estimated by solv-
ing the non-negative least-squares constraint prob-
lem (lsqnonneg) on the augmented data and end-
member matrices, R̄ and Ē0.

2. Stopping conditions: There are two widely
used criteria, maximum iteration number and mini-
mum error tolerance. Here, we employ the maximum
iteration number.

5 Experiments

We have conducted tests based on both sim-
ulated and real data to evaluate the perfor-
mance of PCNMF. Both endmember accuracy and
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Fig. 2 Illustration of the orthogonal procrustes (OP)
process in the 2D space

computation time have been evaluated. For fair
comparison, we set the same initializations of E

and C, maximum iteration number maxiter, and
ASC weight δ for both NMF and PCNMF in all
experiments.

5.1 Simulated data

Here, we design two experiments to evaluate
the performance of FGDA, NMF, and PCNMF.
The spectra of three minerals (Alunite, Calcite, and
Kaolinite) from the U.S. Geological Survey (USGS)
Digital Spectral Library are selected as endmember
signatures. Then 2000 mixture vectors are generated
according to Eqs. (1) and (2) with abundance frac-
tions following a Dirichlet distribution. To ensure
that no pure pixel exists, fractions are not allowed to
be larger than 0.9. The selection of the maximum it-
eration number, maxiter, may be different for differ-
ent data sets. For the simulated data sets used in this
study, the NMF algorithms can generally produce ac-
ceptable results when the iteration number is around
4000, so we set maxiter to 4000. The ASC weight
is set to δ = 13 for all experiments. In addition,
since the data are randomly generated, the average
result of 10 runs is presented in the following. To
evaluate the performance of these methods, the met-
rics of rmsSAD, rmsSID (Nascimento and Bioucas-
Dias, 2005), and the relative abundance error (RAE)
(Geng et al., 2015) are used, where SAD stands for
the spectral angle distance, and SID stands for the
spectral information divergence. The abundance ma-
trix of FGDA is estimated by a least-squares method
with the ASC weight also set to 13.

5.1.1 Experiment 1: accuracy test for noiseless data

Fig. 3 shows that NMF-based methods NMF
and PCNMF obtain exactly the same performance
in terms of accuracy. Compared to FGDA (rmsSAD
about 0.81◦), the two NMF-based methods can ob-
tain more accurate endmembers (rmsSAD about
0.49◦), which can be attributed to the fact that there
are no ‘pure’ pixels in the data cloud.
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Fig. 3 The rmsSAD (a), rmsSID (b), and relative
abundance error (RAE) (c) for different methods with
noise-free data

5.1.2 Experiment 2: accuracy test for noisy data

Real data always contain noise. Here we inves-
tigate the performances of these methods for noisy
data. The Gaussian noise at different SNR levels
(SNR = 10, 15, 20, 25, and 30 dB) is added to the
simulated data. The accuracy results are shown in
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Fig. 4.

As can be seen from Fig. 4, our proposed method
PCNMF is always better than FGDA and NMF with
the original dimensional data. When SNR≥15 dB,
FGDA has the worst performance. When SNR=
10 dB, NMF has the lowest accuracy in all metrics,
which indicates that NMF is sensitive to noise. The
superiority of PCNMF can be attributed to the fact
that PCA contributes to the improvement of SNR
and suppression of noise. NMF in the PC space is
more accurate, particularly when SNR is low.
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Fig. 4 The rmsSAD (a), rmsSID (b), and relative
abundance error (RAE) (c) as functions of SNR for
different methods with noisy data

5.1.3 Experiment 3: computation time

We have also recorded the computation time for
these methods (Table 1). As shown, NMF is very
time-consuming. Benefiting from the computation of
E and C in the low-dimensional PC space, PCNMF
costs much less time than NMF.

Table 1 Computation time for different methods

Method Time (s) Method Time (s)

FGDA 0.0093 PCNMF 0.7324
NMF 12.5288

5.2 Real data

In this subsection, we evaluate the performance
of PCNMF using the well-known AVIRIS Cuprite
data set (Green et al., 1998). AVIRIS is a high-
quality, low-noise hyperspectral instrument that ac-
quires data in 224 contiguous spectral bands ranging
from 365 to 2500 nm. The selected subscence is
shown in Fig. 5 with a size of 191× 250 pixels. Due
to water absorption or low SNR, bands 1–3, 104–113,
148–167, and 221–224 are removed. The maximum
SADs of the original, PC transformed, and OP trans-
formed data are listed in Table 2. The maximum
SAD of the original data is around 23◦, greatly less
than 90◦, and the PC and PC-OP transformations
have little effect on SADs between pixels.

According to the related references (Chan et al.,
2009) and the ground-truth (Swayze et al., 1992),
we set the number of endmembers as p = 14. For
fair comparison, FGDA is also conducted on the
data after dimensionality reduction by Algorithm
1. Also, the 14 endmembers extracted by FGDA
are used as the initial endmembers for PCNMF. For
the maximum iteration number and ASC weight, the
same values used in the simulations are applied, i.e.,
maxiter=4000, δ=13. The resampled spectra from
the USGS Digital Spectral Library are selected as
the ground-truth for comparison. For each mineral,
the library spectrum, which has both small SAD
and small SID with the endmember extracted from
FGDA, is selected as the reference spectrum. The
comparison of FGDA and PCNMF in terms of SAD
is shown in Table 3. It can be seen that 10 out of 14
endmembers extracted by PCNMF outperform those
by FGDA and it has smaller average SAD compared
to FGDA.
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Fig. 5 Band 8 (λ=0.463 µm) of the real hyperspectral
scene

Table 2 The maximum SAD of the original, PC trans-
formed, and OP transformed data

Data Maximum SAD (degree)

Original 23.7468
PC transformed 28.9216
OP transformed 28.9216

Table 3 The SAD between USGS reference spectra
and extracted endmembers by FGDA and PCNMF

No. Substance
SAD (degree)

FGDA PCNMF

1 Muscovite IL107 5.3472 5.9231
2 Desert Vanish GDS141 9.4029 8.1041
3 Alunite GDS84 Na03 4.6300 3.9203
4 Kaolin/Smect KLF508 5.2682 5.8254
5 Montmorillonite SWy-1 6.9298 6.6978
6 Kaolinite CM7 4.8221 4.8635
7 Buddingtonite NHB2301 5.4664 5.2410
8 Alunite GDS82 Na82 12.4593 11.3928
9 Montmorillonite+Illi CM42 6.2363 5.6179
10 Chalcedony CU91-6A 5.5653 5.1812
11 Alunite AL706 7.7288 7.6880
12 Montmorillonite+Illi CM37 4.8154 4.7617
13 Kaolin/Smect KLF511 3.8877 4.3025
14 Kaolin/Smect H89-FR-5 4.2887 5.2605

Average 6.2034 6.0557
Bold text indicates the better SAD

Fig. 6 shows the abundance images of six main
endmembers from PCNMF, which present high level
of similarity to the published geologic maps.

(a) (b)

(d)

(f)

(c)

(e)

Fig. 6 Abundance maps of different endmembers from
PCNMF: (a) E1, Muscovite; (b) E3, Alunite1; (c) E5,
Montmorillonite; (d) E6, Kaolinite; (e) E7, Budding-
tonite; (f) E10, Chalcedony

6 Conclusions

In this paper, we have explored the possibility
of applying the PCA dimensionality reduction tech-
nique to the multiplicative update rules of NMF. The
main obstacle is that data after PC transformation
may contain negatives, which could be caused by
both steps of PCA (i.e., translation and rotation).
We have proved that the rotation matrix of PCA
can be eliminated using the multiplicative learning
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rule for C, but not for E. To solve the non-negative
problem of PCA data, one possible way is to add a
large positive vector, r0, to all data. However, differ-
ent r0 will lead to different E and C, so translation
is not an advisable way for practical applications.
According to our observation, the maximum SAD of
real hyperspectral data is not large (generally less
than 45◦). Since rotation operation will not change
the SADs between data vectors, we thereby intro-
duce the OP transformation to forcibly rotate the
data cloud into the first quadrant in the PC space.
This NMF-based unmixing analysis method for data
after PC rotation and OP transformations is named
PCNMF. Compared to the original NMF, PCNMF
is more robust to noise. Moreover, since the data
dimensionality is reduced to p − 1, our method can
greatly save computational time.
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