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Abstract: In this paper, the transmission of confidential messages through single-input multiple-output (SIMO)
independent and identically generalized-K (KG) fading channels is considered, where the eavesdropper overhears
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distributions, respectively. Numerical results are presented and verified via the Monte-Carlo simulation.

Key words: Physical-layer security, Generalized-K fading, Average secrecy capacity, Secrecy outage probability,
Mixture Gamma distribution

http://dx.doi.org/10.1631/FITEE.1601070 CLC number: TN918.8

‡ Corresponding author
* Project supported in part by the National Natural Science
Foundation of China (Nos. 61471076 and 61401372), the Pro-
gram for Changjiang Scholars and Innovative Research Team in
University, China (No. IRT1299), the Natural Science Founda-
tion Project of CQ CSTC (No. cstc2013jcyjA40040), the Project
of Fundamental and Frontier Research Plan of Chongqing, China
(No. cstc2015jcyjBX0085), the Special Fund of Chongqing Key
Laboratory (CSTC), the Scientific and Technological Research
Program of Chongqing Municipal Education Commission, China
(No. KJ1600413), the Research Fund for the Doctoral Program
of Higher Education of China (No. 20130182120017), and the
Fundamental Research Funds for the Central Universities, China
(No. XDJK2015B023). Parts of this publication, specifically
Sections 1, 3, and 4, were made possible by PDRA (Post-
Doctoral Research Award) from the Qatar National Research
Fund (QNRF) (a member of Qatar Foundation (QF)), Qatar
(No. PDRA1-1227-13029)

# A preliminary version was presented at the 78th IEEE Vehicular
Technology Conference, Montréal, Canada, Sept. 18–21, 2016

ORCID: Chao GAO, http://orcid.org/0000-0002-7256-7167
c©Zhejiang University and Springer-Verlag Berlin Heidelberg 2016

1 Introduction

1.1 Background

Composite fading channels, such as Rayleigh-
lognormal (RL) and Nakagami-lognormal (NL) dis-
tributions, have been frequently used to model shad-
owing and multipath fading that occur simultane-
ously in realistic wireless scenarios (Stuber, 2011).
However, the probability density function (PDF) of
such lognormal-based fading models is not given in
a closed form, which makes the performance anal-
ysis difficult or even intractable (Jung et al., 2014).
Hence, several channel models with closed-form PDF
have been proposed to represent wireless propaga-
tion properties, such as the K distribution (Abdi
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and Kaveh, 1998; Bithas and Rontogiannis, 2015),
generalized-K (KG) distribution (Shankar, 2004),
and G-distribution (Laourine et al., 2009). Among
these, KG distribution has been used quite exten-
sively as can be seen from the open literature, and
the reason behind this is the fact that various fading
scenarios are covered in the closed form within the
KG distribution simply by adjusting two parameters
(Shankar, 2004). For example, the performance of
two-way amplify-and-forward (AF) relaying systems
over cascaded KG fading channels was analyzed by
Yadav and Upadhyay (2013), and the expressions for
both upper and lower bounds for outage probability
were derived.

Traditional communications use cryptographic
encryption and decryption methods in the upper lay-
ers of wireless network protocol stacks to provide
information security. Differing from the traditional
approach, physical-layer security was identified as
a promising strategy that offers secure communica-
tion by smartly exploiting the fading of the channels
(Yang et al., 2015). Recently, extensive efforts have
been devoted to exploring the physical-layer secrecy
performance over fading channels. Ata and Altunbaş
(2015) analyzed the relay antenna selection problem
in a vehicle-to-vehicle communication system em-
ploying physical-layer network coding with the AF
scheme and obtained the lower and upper bounds of
the end-to-end signal-to-noise ratio (SNR) and the
cumulative density functions (CDFs). The secrecy
performance of the classic Wyner’s wiretap model
over the generalized Gamma fading channels was an-
alyzed, and the closed-form expressions for the prob-
ability of strictly positive secrecy capacity (SPSC)
and the lower bound of secrecy outage probability
(SOP) were derived by Lei et al. (2015b). The per-
formance of secure communications over non-small-
scale fading channels was investigated, and approxi-
mate closed-form expressions for the average secrecy
capacity (ASC), SOP, and SPSC over independent
log-normal fading, correlated log-normal fading, and
independent composite fading channels were derived
by Pan et al. (2016). Zou et al. (2013; 2015a) pro-
posed several optimal relay selection schemes to im-
prove the physical-layer security in wireless cooper-
ative networks and cognitive radio networks, respec-
tively. Zou et al. (2015b) presented several diversity
techniques for improving wireless security against
eavesdropping attacks. The secrecy outage prob-

ability and diversity performances of a multi-user
multi-eavesdropper cellular network were studied by
Jiang et al. (2015). Liu et al. (2016) investigated the
secrecy performance of cognitive radio systems over
Rayleigh and log-normal fading channels in the pres-
ence of one eavesdropper, and derived exact and ap-
proximate closed-form expressions for the SOP. How-
ever, no study focuses on the physical-layer security
over KG fading channels. Based on results of Al-
Ahmadi and Yanikomeroglu (2010b) and Chatzidia-
mantis and Karagiannidis (2011), Lei et al. (2015a)
studied the secrecy performance over single-input
multiple-output (SIMO) KG fading channels and de-
rived the closed-form expressions for the ASC, the
bound of the SOP, and the SPSC. Through modeling
the SNR over KG channels with a mixture Gamma
(MG) distribution, Lei et al. (2016a) analyzed the
secrecy performance for the classic Wyner’s model
over KG fading channels.

1.2 Motivation and contributions

In this study, the secrecy performance of SIMO
KG systems is investigated. The main contributions
of our work are listed as follows:

1. In the first method, the sum of independent
KG random variables (RVs) is approximated by a
Gamma RV, and new expressions for the ASC, the
bound of the SOP, and the SPSC over SIMO KG

fading channels are derived.
2. In the second method, the KG distribution

is approximated by the MG distribution, and new
closed-form expressions for ASC and SOP over SIMO
KG fading channels are derived.

3. The asymptotic SOP, the secrecy diversity
order, and the secrecy array gain are derived.

These novel expressions provide a unified form
that can handle several of the well-known compos-
ite fading environments as special or limiting cases.
The two methods demonstrated in our work will be
a helpful reference for researchers dealing with KG

fading channels, especially with the physical-layer
security issues in KG fading scenarios.

2 System model

We consider a wiretap radio network, in which
the transmitter (S) communicates with the legiti-
mate receiver (D) under the malicious attempt of
the eavesdropper (E), as shown in Fig. 1. It is
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assumed that S is equipped with a single antenna,
and D and E are equipped with ND (ND ≥ 1) and
NE (NE ≥ 1) antennas, respectively. Furthermore,
we assume that both the main and eavesdropper
channels undergo independent and identically dis-
tributed (i.i.d.) quasi-static KG fading. The PDF
and CDF of the SNR over a KG channel are respec-
tively given by (Bithas et al., 2006)

fi (γ) =
2Ξ

βi+1

2

i

Γ (mi) Γ (ki)
γ

βi−1

2 Kαi

(
2
√
Ξiγ

)
, (1)

Fi (γ) = π csc (παi)

·
(
(Ξiγ)

mi
1F2 (mi; 1− αi, 1 +mi;Ξiγ)

Γ (ki) Γ (1− αi) Γ (1 +mi)

− (Ξiγ)
ki

1F2 (ki; 1 + αi, 1 + ki;Ξiγ)

Γ (mi) Γ (1 + αi) Γ (1 + ki)

)
,

(2)
where Γ(·) is the Gamma function, i ∈ {D,E},
mi and ki are the fading parameters of the main
and eavesdropper channels respectively, and γ is the
SNR. Both mi and ki are limited to integer values,
αi = ki −mi, βi = ki +mi − 1, Ξi = miki/γ̄i with
γ̄i being the average SNR of the main and eaves-
dropper channels, Ka (·) is the modified Bessel func-
tion of order a, and pFq (a; b; c) is the generalized
hyper-geometric function as defined in Eq. (9.14.2)
in Gradshteyn and Ryzhik (2007).

Fig. 1 System model demonstrating a source (S), a
legitimate destination (D), and an eavesdropper (E).
The receivers are equipped with multiple antennas

It is assumed that the maximal radio combining
(MRC) scheme is adopted at the destination. Then
the instantaneous SNR at D (or E) can be expressed
as

γi =

Ni∑
j=1

γi,j , (3)

where i ∈ {D,E} and γi,j signifies the instantaneous
SNR at the jth antenna of D (or E).

3 Statistical properties

Although the KG distribution has a closed-
form PDF compared with RL and NL distributions,
the modified Bessel function (contained in Eq. (1))
makes the performance analysis of KG channels
complicated and difficult. As pointed out in Al-
Ahmadi and Yanikomeroglu (2010a) and Atapattu
et al. (2011), it is not straightforward to deal with the
CDF expression (Eq. (2)), which contains the hyper-
geometric functions, to derive the distributions of γi.

Several methods have been proposed to avoid
such difficulties and to significantly simplify the per-
formance analysis of composite fading channels. It
was testified that both a single KG RV and the
sum of independent KG RVs can be closely approx-
imated by a single Gamma RV (Al-Ahmadi and
Yanikomeroglu, 2010a). Atapattu et al. (2011) pro-
posed an MG distribution to model the SNR of the
wireless composite fading channels and analyzed the
ergodic capacity of diversity reception schemes over
KG fading channels. The MG distribution is com-
posed of a weighted sum of Gamma distributions
that can approximate the KG distribution as well
as a variety of other fading distributions with high
accuracy by adjusting its parameters. The high ac-
curacy of this method was testified by Cheng (2013)
and Jung et al. (2013; 2014). The PDF and CDF via
two different methods are given in this section. For
simplicity, we refer to these two methods as ‘Gamma-
based’ and ‘mixture Gamma-based’, respectively.

3.1 Gamma-based method

Al-Ahmadi and Yanikomeroglu (2010a) showed
that the sum of independent KG random variables
can be approximated by a Gamma RV. The PDF of
γi with the Gamma-based method is given as (Al-
Ahmadi and Yanikomeroglu, 2010a)

fi (γ) =
θi

−ρi

Γ (ρi)
γρi−1 exp

(
− γ

θi

)
, (4)

where i ∈ {D,E}, θi = (AFi − εi) γ̄i, ρi =
Ni

AFi − εi
,

AFi =
1

mi
+

1

ki
+

1

miki
, and εi is the adjustment

parameter (Al-Ahmadi and Yanikomeroglu, 2010a).
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Using Eq. (4) above and Eq. (3.351.1) in Grad-
shteyn and Ryzhik (2007), the CDF of γi is obtained
as

Fi (γ) =
1

Γ (ρi)
Υ

(
ρi,

γ

θi

)
, (5)

where Υ (α, x) =
∫ x

0
exp(−t)tα−1dt is the well-

known lower incomplete Gamma function, which is
defined by Eq. (8.350.1) in Gradshteyn and Ryzhik
(2007).

3.2 Mixture Gamma-based method

Atapattu et al. (2011) proposed the MG distri-
bution to model the SNR of the KG channels. The
high accuracy of this method was testified by Cheng
(2013) and Jung et al. (2013; 2014). The PDF of γi
is derived with the MG-based method in Lemma 1.
Lemma 1 (Lei et al., 2016b) The PDF and CDF
of γi, i ∈ {D,E} are given by

fi (γ) =(Γ (mi))
Ni

∑
Si

Bi

L∑
j=1

ni,jmi∑
l=1

(
Rjl

(l − 1)!

· γl−1exp(−ςi,jγ)

)
, (6)

Fi (γ) =(Γ (mi))
Ni

∑
Si

Bi

L∑
j=1

ni,jmi∑
l=1

(
Rjl

(l − 1)!

· (ςi,j)−l
Υ (l, ςi,jγ)

)
, (7)

where i ∈ {D,E}, Rjl denotes the coefficient which
can be obtained by Eq. (18) in Lei et al. (2016b),

Bi =

(
Ni

ni,1, ni,2, . . . , ni,L

)⎛
⎝

L∏
1≤j≤L

(αi,j)
ni,j

⎞
⎠ ,

(
Ni

ni,1, ni,2, . . . , ni,L

)
=

Ni!
L∏

j=1

(ni,j)!

,

Si =

⎧
⎨
⎩(ni,1, ni,2, . . . , ni,L)

∣∣∣∣∣∣
L∑

j=1

ni,j = Ni

⎫
⎬
⎭ ,

αi,j =
θi,j

L∑
v=1

N
(
θi,vΓ (mi) (ςi,v)

−mi

) ,

ςi,j =
Ξi

tj
, θi,j =

Ξi
miωjtj

ki−mi−1

Γ (mi) Γ (ki)
,

ωj and tj are the weight factor and the abscissas
for the Gaussian−Laguerre integration (Abramowitz

and Stegun, 1972) respectively, and L is the number
of terms.

Lemma 2 In the high SNR regime with γ̄D → ∞,
the asymptotic PDF and CDF of γD are given by

f∞
D (γ) = η γmDND−1, (8)

F∞
D (γ) =

η

mDND
γmDND , (9)

where η =
λND (Γ (mD))

ND

(mDND − 1)!
and λ =

L∑
s=1

αD,s.

The proof is given in Appendix.

4 Average secrecy capacity analysis

In this section, we consider active eavesdropping
scenarios, where the full channel state information
(CSI) of both the main and eavesdropper channels
are available at S (Wang et al., 2014). In such a
scenario, S can adapt the achievable secrecy rate
Rs such that Rs ≤ Cs, where Cs is the maximum
achievable secrecy rate, i.e., secrecy capacity, and
can be characterized as (Bloch et al., 2008)

Cs(γD, γE) = max {ln (1 + γD)− ln (1 + γE) , 0} ,
(10)

where ln (1 + γD) and ln (1 + γE) are the ca-
pacities of the main and eavesdropper channels,
respectively.

Then the ASC can be given by

Cs =

∫ ∞

0

∫ ∞

0

Cs (γD, γE)f (γD, γE)dγDdγE

=

∫ ∞

0

ln (1 + γD) fD (γD)FE (γD) dγD
︸ ︷︷ ︸

I1

+

∫ ∞

0

ln (1 + γE) fE (γE)FD (γE)dγE
︸ ︷︷ ︸

I2

−
∫ ∞

0

ln (1 + γE) fE (γE)dγE
︸ ︷︷ ︸

I3

, (11)

where f (γD, γE) = fD (γD) fE (γE) is the joint PDF
of γD and γE .

In the following, we give the derivation of I1, I2,
and I3 by using the Gamma-based and MG-based
methods.
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4.1 Gamma-based method

Substituting Eqs. (4) and (5) into Eq. (11), we
obtain

I1 =

∫ ∞

0

ln (1 + γD)FE (γD) fD (γD)dγD

=
θD

−ρD

Γ (ρD) Γ (ρE)

·
∫ ∞

0

γD
ρD−1 ln (1 + γD)

exp(γD/θD)
Υ

(
ρE ,

γD
θE

)
dγD.

(12)
By using Eqs. (8) and (9) in Lei et al. (2015b) and
Eq. (11) in Adamchik and Marichev (1990), the
logarithmic, exponential, and incomplete Gamma
functions can be expressed in terms of Meijer’s
G-function as

ln (1 + γD) = G1,2
2,2

[
γD

∣∣∣1,11,0

]
, (13)

exp

(
−γD
θD

)
= G1,0

0,1

[
γD
θD

∣∣−
0

]
, (14)

Υ

(
ρE ,

γD
θE

)
= G1,1

1,2

[
γD
θE

∣∣1
ρE ,0

]
. (15)

Using Eq. (9.31.5) in Gradshteyn and Ryzhik (2007),
we deduce

γD
ρD−1G1,0

0,1

[
γD
θD

∣∣−
0

]
= θD

ρD−1G1,0
0,1

[
γD
θD

∣∣−
ρD−1

]
.

(16)
Hence, using Eq. (20) in Lei et al. (2015a),

we obtain the closed-form expression of I1 in
terms of the extended generalized bivariate Meijer’s
G-function (EGBMGF) as (Ansari et al., 2011)

I1 =
θD

−ρD

Γ (ρD) Γ (ρE)
θD

ρD−1

∫ ∞

0

G1,2
2,2

[
γD

∣∣∣1,11,0

]

·G1,0
0,1

[
γD
θD

∣∣−
ρD−1

]
G1,1

1,2

[
γD
θE

∣∣1
ρE ,0

]
dγD

=
1

Γ (ρD) Γ (ρE)

·G1,0:1,2:1,1
1,0:2,2:1,2

(
ρD

∣∣∣∣1,11,0

∣∣∣∣1ρE ,0

∣∣∣∣θD,
θD
θE

)
. (17)

Similarly, we obtain the closed-form expression
of I2 as

I2 =

∫ ∞

0

ln (1 + γE) fE (γE)FD (γE)dγE

=
1

Γ (ρD) Γ (ρE)

·G1,0:1,2:1,1
1,0:2,2:1,2

(
ρE

∣∣∣∣1,11,0

∣∣∣∣1ρD ,0

∣∣∣∣θE ,
θE
θD

)
. (18)

Now, substituting Eq. (4) into Eq. (9) and using
Eqs. (11) and (21) in Adamchik and Marichev (1990),
we obtain the closed-form expression of I3 as

I3 =

∫ ∞

0

ln (1 + γE) fE (γE)dγE

=
θE

−ρE

Γ (ρE)

∫ ∞

0

ln (1 + γE) γE
ρE−1 exp

(
−γE
θE

)
dγE

=
θE

−ρE

Γ (ρE)

∫ ∞

0

γE
ρE−1G1,2

2,2

[
γE

∣∣∣1,11,0

]
G1,0

0,1

[
γE
θE

∣∣−
0

]
dγE

=
θE

−ρE

Γ (ρE)
G3,1

2,3

[
1

θE

∣∣∣−ρE ,1−ρE

0,−ρE ,−ρE

]
. (19)

Therefore, the ASC is obtained by substituting
Eqs. (17)–(19) into Eq. (11).

4.2 Mixture Gamma-based method

Substituting Eqs. (6) and (7) into Eq. (11) and
using Eq. (21) in Adamchik and Marichev (1990), we
obtain

I1 =

∫ ∞

0

ln (1 + γD) fD (γD)FE (γD)dγD

= A
∑
SD

∑
SE

B

L∑
j=1

nD,jmD∑
l=1

L∑
s=1

nE,smE∑
t=1

RjlRstξ1

(l−1)!(ςE,s)
t ,

(20)

where A = (Γ (mD))ND (Γ (mE))
NE , B = BDBE ,

Rjl and Rst are coefficients which can be obtained
by Eq. (18) in Lei et al. (2016b), and

ξ1 =G3,1
2,3

[
ςD,j

∣∣∣−l,1−l
0,−l,−l

]

−
t−1∑
p=0

(ςE,s)
p

p!
G3,1

2,3

[
ςD,j + ςE,s

∣∣∣−l−p,1−l−p
0,−l−p,−l−p

]
.

Similarly, we obtain the closed-form expression
of I2 as

I2 =

∫ ∞

0

ln (1 + γE) fE (γE)FD (γE)dγE

= A
∑
SD

∑
SE

B

L∑
j=1

nD,jmD∑
l=1

L∑
s=1

nE,smE∑
t=1

RjlRstξ2

(t−1)!(ςD,j)
l
,

(21)

where

ξ2 =G3,1
2,3

[
ςE,s

∣∣∣−t,1−t
0,−t,−t

]

−
l−1∑
p=0

(ςD,j)
p

p!
G3,1

2,3

[
ςD,j + ςE,s

∣∣∣−p−t,1−p−t
0,−p−t,−p−t

]
.
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Now, substituting Eq. (6) into Eq. (11), we
obtain

I3 =

∫ ∞

0

ln (1 + γE) fE (γE)dγE

= (Γ (mE))
NE

∑
SE

BE

L∑
s=1

nE,smE∑
t=1

Rst

(t− 1)!

·G3,1
2,3

[
ςE,s

∣∣∣−t,1−t
0,−t,−t

]
. (22)

Substituting Eqs. (20)–(22) into Eq. (11), the
closed-form expression for the ASC for this scenario
is obtained.

5 Secrecy outage probability analysis

In this section, we consider passive eavesdrop-
ping scenarios, where S has no CSI about the eaves-
dropper’s channel (Wang et al., 2014). In such a sce-
nario, S has no choice but to encode the confidential
data into codewords with a constant rate Rs (Wang
et al., 2014). If Rs ≤ Cs, perfect secrecy can be
achieved; otherwise, information theoretic security
is compromised. The SOP is a useful performance
metric to evaluate the secrecy performance of such
scenarios, which can be expressed as (Bloch et al.,
2008)

Pout = Pr {Cs (γD, γE) ≤ Rs}
= Pr {γD ≤ ΘγE +Θ − 1}

=

∫ ∞

0

FD (ΘγE +Θ − 1) fE (γE)dγE , (23)

where Rs (Rs ≥ 0) is the target secrecy capacity
threshold and Θ = exp (Rs) ≥ 1.

5.1 Gamma-based method

By substituting Eqs. (4) and (5) into Eq. (23),
we obtain

Pout =

∫ ∞

0

FD (ΘγE +Θ − 1) fE (γE)dγE

=
θE

−ρE

Γ (ρD) Γ (ρE)

·
∫ ∞

0

γE
ρE−1

exp(γE/θE)
Υ

(
ρD,

ΘγE +Θ − 1

θD

)
dγE .

(24)

The integral in Eq. (24) is not available in the
exact closed form because of the shift in the incom-
plete Gamma function (ρi, i ∈ {D,E} in Eq. (5) is

not an integer). Hence, we derive the lower bound of
the SOP by adopting a similar method proposed in
Liu (2013) and Lei et al. (2015b), i.e.,

Pout = P {γD ≤ ΘγE +Θ − 1}
≥ Pout

L = P {γD ≤ ΘγE}

=

∫ ∞

0

FD (ΘγE) fE (γE)dγE . (25)

Now, using Eqs. (4), (5), and Eq. (2.10.3.2) in
Prudnikov et al. (1992), we obtain the lower bound
of the SOP as

P L
out =

∫ ∞

0

FD (ΘγE) fE (γE)dγE

=
θE

−ρE

Γ (ρD) Γ (ρE)

·
∫ ∞

0

γE
ρE−1

exp(γE/θE)
Υ

(
ρD,

ΘγE
θD

)
dγE

=
Γ (ρE + ρD)

ρDΓ (ρE) Γ (ρD)

(
ΘθE
θD

)ρD

· 2F1

(
ρD, ρE + ρD; ρD + 1;−θEΘ

θD

)
, (26)

where 2F1 (a, b; c; z) is the Gauss hyper-geometric
function, as defined in Eq. (9.100) in Gradshteyn
and Ryzhik (2007).

5.2 Mixture Gamma-based method

By substituting Eqs. (6) and (7) into Eq. (23)
and using Eq. (8.352.4) in Gradshteyn and Ryzhik
(2007), we obtain

Pout

=

∫ ∞

0

FD (ΘγE +Θ − 1) fE (γE)dγE

= A
∑
SD

∑
SE

B

L∑
j=1

nD,jmD∑
l=1

L∑
s=1

nE,smE∑
t=1

RjlRstξ3

(t− 1)!(ςD,j)
l
,

(27)

where

ξ3 =

∫ ∞

0

γE
t−1 exp (−ςE,sγE)

·
(
1−

l−1∑
p=0

(ςD,j)
p
(ΘγE +Θ − 1)

p

p! exp (ςD,j (ΘγE +Θ − 1))

)
dγE .

(28)

Using Eqs. (1.111) and (3.326.2) in Gradshteyn
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and Ryzhik (2007), we obtain

ξ3 =
Γ (t)

(ςE,s)
t − exp(−ςD,j (Θ − 1))

·
l−1∑
p=0

p∑
v=0

(
p

v

)
Θv(Θ − 1)

p−v
Γ (t+ v)

p!(ςD,j)
−p

(ςE,s +ΘςD,j)
t+v ,

where
(

p

υ

)
=

p!

υ! (p− υ)!
.

5.3 Asymptotic secrecy outage probability

The asymptotic SOP can be expressed as (Wang
et al., 2014)

P∞
out = (Gaγ̄D)

−Gd + o
(
γ̄−Gd
D

)
, (29)

where Gd refers to the secrecy diversity order, which
determines the slope of the asymptotic outage prob-
ability curve, and Ga refers to the secrecy array
gain, which characterizes the SNR advantage of the
asymptotic SOP relative to the reference curve γ̄−Gd

D .
Substituting Eq. (9) into Eq. (23) and using

the multinomial theorem and Eq. (3.326.2) in Grad-
shteyn and Ryzhik (2007), we obtain

P∞
out =

∫ ∞

0

FD (ΘγE +Θ − 1) fE (γE) dγE

=
η(Γ (mE))

NE

mDND

∑
SE

BE

L∑
s=1

nE,smE∑
t=1

Rst

(t− 1)!

·
∫ ∞

0

(ΘγE +Θ − 1)mDND

· γEt−1 exp (−ςE,sγE)dγE

=
η(Γ (mE))

NE

mDND

∑
SE

BE

L∑
s=1

nE,smE∑
t=1

Rst

(t− 1)!
ξ∞3 ,

(30)

where ξ∞3 =
mDND∑
j=0

(
mDND

j

)
Θj Γ (j + t)

(ςE,s)
j+t

.

Henceforth, based on Eqs. (29) and (30) and the
definitions of λ, η, the secrecy diversity order and the
secrecy array gain are obtained as

Gd = NDmD, (31)

Ga =

(
μ(Γ (mE))

NE

mDND

∑
SE

BE

·
L∑

s=1

nE,smE∑
t=1

Rstξ
∞
3

(t− 1)!

)− 1
NDmD

, (32)

where

μ =
(mDkD)

NDmD

(mDND − 1)!

⎛
⎜⎜⎝

L∑
s=1

(
ωs(ts)

kD−mD−1
)

L∑
s=1

(
ωs(ts)

kD−1
)

⎞
⎟⎟⎠

ND

.

6 Strictly positive secrecy capacity
analysis

The SPSC (Liu, 2013; Pan et al., 2016), which
means the existence of secrecy capacity, is a funda-
mental benchmark in secure communications, and
can be obtained by

P0 = Pr {Cs (γD, γE) > 0} = 1− Pout |Rs=0. (33)

6.1 Gamma-based method

By substituting Rs = 0 into Eq. (26), we obtain
SPSC for this scenario as

P0 = 1− Γ (ρD+ρE)

ρDΓ (ρD) Γ (ρE)

(
θE
θD

)ρD

· 2F1

(
ρD, ρD+ρE ; ρD + 1;− θE

θD

)
. (34)

6.2 Mixture Gamma-based method

By substituting Rs = 0 into Eq. (27), we obtain

P0 = 1−A
∑
SD

∑
SE

(
B

·
L∑

j=1

nD,jmD∑
l=1

L∑
s=1

nE,smE∑
t=1

RjlRstξ4
(l− 1)! (t− 1)!

)
,

(35)

where ξ4 =
Γ (t)

(ςE,s)
t −

l−1∑
p=0

(ςD,j)
pΓ (t+ p)

p!(ςD,j+ςE,s)
t+p .

7 Numerical results

In this section, we present numerical results
and Monte-Carlo simulations to validate our anal-
ysis models. The main parameters used in simula-
tions and analysis are L = 5 , mD = mE = m,
kD = kE = k, and the unit of Rs is nat/(s·Hz). The
curves under various conditions for comparison with
varying γ̄D are plotted.

Figs. 2–8 depict the ASC, SOP, and SPSC versus
γ̄D with varying (ND, NE), γ̄E , and Rs over SIMO
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KG channels, respectively. With the Gamma-based
method, we obtain only the lower bound of the SOP
and hence the results do not fully agree with the sim-
ulations, while the exact SOP can be achieved with
the MG-based method. It is clear that the analysis
results match very well with simulation curves in all
figures except Fig. 8. Furthermore, it can be ob-
served that the ASC, SOP, and SPSC for a higher
γ̄D outperform the ones for a lower γ̄D scenario as a
higher γ̄D signifies better channel conditions.

As demonstrated in Figs. 2–4, one can find that
all the secrecy performance metrics are enhanced by
increasing ND or decreasing NE , which signifies the
number of antennas at D or E. It can be explained
by the fact that ND and NE directly influence the re-
ceive diversity atD andE, respectively. From Figs. 3

0 5 10 15
10-3

10-2

10-1

100

C̄ s

γ̄D (dB)
 

 

Simulation
Gamma-based analysis
MG-based analysis

(ND, NE)=(1, 3), (1, 2), (1, 1), 
(2, 1), (3, 1)

Fig. 2 Average secrecy capacity versus γ̄D with m =

2, Rs = 0.1, k = 3, and γ̄E = 5 dB

0 5 10 15 20 25 30
10−15

10−10
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100

Simulation
Gamma-based analysis
MG-based analysis
Asymptotic analysis

(ND, NE)=(3, 1), (2, 1),
(1, 1), (1, 2), (1, 3)

P
ou
t

γD (dB)¯

Fig. 3 Secrecy outage probability versus γ̄D with
m = 2, Rs = 0.1, k = 3, and γ̄E = 1 dB

and 6, we also observe that the asymptotic results ac-
curately approach the secrecy diversity order and the
secrecy array gain. According to Eq. (31), we can ob-
serve that the secrecy diversity order is independent
of NE and increases with the increase of ND, which
are testified by Fig. 3. As depicted in Figs. 5–7, one
can observe that all the secrecy performance metrics
are improved while decreasing γ̄E , which is the aver-
age SNR of the eavesdropper channel. It is because a
lower γ̄E signifies weaker eavesdropper channel con-
ditions. In Fig. 8, one can observe that the simulated
values for Pout gradually approach the numerical re-
sults via the Gamma-based method as Rs decreases,
which can be easily explained by lim

Rs→0
(Θ − 1) → 0,

and very well match the analytical results via the
MG-based method.
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Fig. 4 Strictly positive secrecy capacity versus γ̄D

with m = 2, Rs = 0.1, k = 3, and γ̄E = 5 dB
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Fig. 5 Average secrecy capacity versus γ̄D with Rs =

0.1, m = 2, k = 3, and ND = NE = 2
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Fig. 6 Secrecy outage probability versus γ̄D with
Rs = 0.1, m = 2, k = 3, and ND = NE = 2
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Fig. 7 Strictly positive secrecy capacity versus γ̄D

with Rs = 0.1, m = 2, k = 3, and ND = NE = 2
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Fig. 8 Secrecy outage probability versus γ̄D with
m = 2, k = 2, γ̄E = 2 dB, and ND = NE = 2

8 Conclusions

In this paper, the physical-layer security over
independent SIMO KG channels was investigated
via two different methods. In the first method, the
sum of independent KG RVs was approximated by
a Gamma RV, and new closed-form expressions for
the ASC, the bound of the SOP, and the SPSC over
SIMO KG fading channels were derived. In the sec-
ond method, the KG distribution was approximated
by the MG distribution, and new closed-form ex-
pressions for the ASC, SOP, and SPSC were derived.
Furthermore, the asymptotic SOP, the secrecy diver-
sity order, and the secrecy array gain were obtained.
The model considered in this paper is more general,
and it can be applied in various practical application
scenarios. For example, a radio cellular wireless com-
munication system is composed of a single antenna
mobile station (MS) and a base station (BS) with
multiple antennas; another BS equipped with multi-
ple antennas wants to overhear the information from
the MS of the legitimate BS. Our results provide
a unified model to analyze the secrecy performance
over SIMO KG fading channels and can be readily
applied to practical wireless system design, in which
the physical-layer security issue is considered.
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Appendix: Proof of Lemma 2

We derive the asymptotic CDF from the SNR
of a single branch of the main channel. The PDF of
γD,j in the form of the MG distribution is expressed
by (Atapattu et al., 2011; Lei et al., 2016a)

fD,j (γ) =

L∑
s=1

αD,sy
mD−1exp(−ςD,sy). (A1)

Using Eq. (3.351.1) in Gradshteyn and Ryzhik
(2007), we obtain the CDF of γD,j as

FD,j (γ) =
L∑

s=1

αD,s(ςD,s)
−mDΥ (mD, ςD,sγ). (A2)

Using Eq. (8.352.6) in Gradshteyn and Ryzhik
(2007), we have

Υ (mD, ςD,sγ) = (mD − 1)!

(
1− exp (−ςD,sγ)

·
mD−1∑
n=0

(ςD,sγ)
n

n!

)
. (A3)

When γ̄D → ∞, we have ΞD =
mDkD
γ̄D

→ 0

and ςD,j =
ΞD

tj
→ 0. Using the Taylor series expan-

sion truncated to the lth order given by exp (x) =
l∑

n=0

xn

n!
+O

(
xl
)
, we obtain

mD−1∑
n=0

(ςD,sγ)
n

n!
=exp (ςD,sγ)− (ςD,sγ)

mD

mD!
+O (γmD ) .

(A4)

Substituting Eq. (A4) into Eq. (A3), we have

Υ (mD, ςD,sγ) =
(ςD,sγ)

mD

mD
+O (γmD) . (A5)

Substituting Eq. (A5) into Eq. (A2), the asymptotic
CDF of γD,j is obtained by

F∞
D,j (γ) =

λ

mD
γmD , (A6)

where λ =
L∑

s=1
αD,s. Then the asymptotic PDF of

γD,j is expressed as

f∞
D,j (γ) = λγmD−1. (A7)

The moment generating function (MGF) of γD,j is
expressed as

M∞
D,j (γ) = λΓ (mD) s−mD . (A8)

Based on Eq. (3), we obtain the MGF of γD as

M∞
D (γ) = AND (Γ (mD))

NDs−mDND . (A9)

Based on the relationship between PDF and MGF,
we obtain the asymptotic PDF and CDF of γD as
Eqs. (8) and (9), respectively.
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