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Abstract: The mismatch between compute performance and I/O performance has long been a stumbling block
as supercomputers evolve from petaflops to exaflops. Currently, many parallel applications are I/O intensive,
and their overall running times are typically limited by I/O performance. To quantify the I/O performance
bottleneck and highlight the significance of achieving scalable performance in peta/exascale supercomputing, in
this paper, we introduce for the first time a formal definition of the ‘storage wall’ from the perspective of parallel
application scalability. We quantify the effects of the storage bottleneck by providing a storage-bounded speedup,
defining the storage wall quantitatively, presenting existence theorems for the storage wall, and classifying the
system architectures depending on I/O performance variation. We analyze and extrapolate the existence of the
storage wall by experiments on Tianhe-1A and case studies on Jaguar. These results provide insights on how to
alleviate the storage wall bottleneck in system design and achieve hardware/software optimizations in peta/exascale
supercomputing.
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1 Introduction

With the developments in system architecture,
the supercomputer has witnessed great advances
in system performance. In the TOP500 list of
the world’s most powerful supercomputers in 2015,
Tianhe-2 was ranked as the world’s No. 1 system with
a performance of 33.86 petaflop/s (TOP500, 2015).
It will not be long before supercomputers reach exas-
cale performance (103 petaflop/s) (HPCwire, 2010).

Supercomputers provide important support for
scientific applications; meanwhile, the demands of
these applications stimulate the development of
supercomputers. In particular, the rise in I/O-
intensive applications, which are common in the
fields of genetic science, geophysics, nuclear physics,
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atmospherics, etc., brings new challenges to the per-
formance, scalability, and usability of a supercom-
puter’s storage system.

In supercomputing, there exists a performance
gap between compute and I/O. Actually, there are
two causes of the mismatch between application re-
quirements and I/O performance. First, since the
1980s, the read and write bandwidth of a disk has
increased by only 10% to 20% per year, while the av-
erage growth in processor performance has reached
60%. Second, the compute system scales much faster
than the I/O system. Thus, as I/O-intensive appli-
cations expand at a very fast pace, supercomputers
have to confront a scalability bottleneck due to the
competition for storage resources.

The storage bottleneck is well known in the
supercomputer community. Many studies have ex-
plored the challenges of exascale computing includ-
ing the storage bottleneck (Cappello et al., 2009;
Agerwala, 2010; Shalf et al., 2011; Lucas et al., 2014).
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Some important and basic issues related to the stor-
age bottleneck, e.g., quantitative description, inher-
ent laws, and system scalability, have not been solved
yet. This work seeks to solve these problems and to
provide more insights in this area. To achieve this
goal, we present the ‘storage wall’ theory to analyze
and quantify the storage bottleneck challenge, and
focus on the effects of the storage wall on the scala-
bility of parallel supercomputing. Then, we present
some experiments and case studies to provide in-
sights on how to mitigate storage wall effects when
building scalable parallel applications and systems
at peta/exascale levels. Our main contributions can
be summarized as follows:

1. Based on the analysis of I/O characteristics in
parallel applications, we present a storage-bounded
speedup model to describe the system scalability un-
der the storage constraint.

2. We define the notion of a ‘storage wall’ for-
mally for the first time to quantitatively interpret
the storage bottleneck issue for supercomputers. We
also propose an existence theorem and a variation
law of the storage wall to reflect the degree of system
scalability affected by storage performance.

3. We identify the key factor for the storage
wall, called the ‘storage workload factor’. Based
on this factor we present an architecture classifica-
tion method, which can reveal the system scalability
under storage constraint for each architecture cate-
gory. Then, we extend the storage workload factor
and find the system parameters that affect scalabil-
ity. We categorize mainstream storage architectures
in supercomputers according to the above scalabil-
ity classification method and reveal the scalability
features by taking the storage wall into account.
These works can help system designers and applica-
tion developers understand and find solutions to cur-
rent performance issues in hardware, software, and
architecture.

4. Through a series of experiments on Tianhe-1A
by using IOR benchmarks and case studies on Jaguar
by using parallel applications with checkpointing, we
verify the existence of the storage wall. These re-
sults and analyses can provide effective insights on
how to alleviate or avoid storage wall bottlenecks
in system design and optimization in peta/exascale
supercomputing.

2 Related work

Speedup has been the exclusive measurement
for performance scalability in parallel computing for
a long time (Culler et al., 1998). Various speedup
models have been proposed.

In Amdahl (1967), a speedup model (Amdahl’s
law) for a fixed-size problem was advocated:

SAmdahl =
1

f + (1− f)/P
,

where P is the number of processors and f the ra-
tio of the sequential portion in one program. Am-
dahl’s law can serve as a guide to how much an en-
hancement will improve performance and how to dis-
tribute resources to improve cost-performance (Hen-
nessy and Patterson, 2011). Nevertheless, the equa-
tion reveals a pessimistic view on the usefulness of
large-scale parallel computers because the maximum
speedup cannot exceed 1/f .

Gustafson (1988) introduced a scaled speedup
for a fixed-time problem (Gustafson’s law), which
scales up the workload with the increasing number
of processors to preserve the execution time:

SGustafson = f + (1− f)P.

This speedup proves the scalability of parallel com-
puters. Compared to Amdahl’s law, Gustafson’s law
fixes the response time and is concerned with how
large a problem could be solved within that time. It
overcomes the shortcomings of Amdahl’s law.

Sun and Ni (1993) presented a memory-bounded
speedup model, which scales up the workload accord-
ing to the memory capacity of the system, to demon-
strate the relationship among memory capacity, par-
allel workload, and speedup. This speedup is suitable
especially for the supercomputer with distributed-
memory multiprocessors, because the memory avail-
able determines the size of the scalable problem.

Culler et al. (1998) proposed a speedup model
taking the communication and synchronization over-
head into account for the first time. Based on this
model, researchers can improve the system perfor-
mance by reducing the communication and synchro-
nization overheads, such as overlapping communica-
tion and computing and load balancing.

In addition to the above speedup models, there
are some other related studies. Wang (2009)
provided a reliability speedup metric for parallel
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applications with checkpointing and studied the re-
liability problem of supercomputers from the view
of scalability. Furthermore, Yang et al. (2011; 2012)
introduced for the first time the concept of a reliabil-
ity wall based on reliability speedup. Their work is
more relevant to ours. They provided insights on how
to mitigate reliability wall effects when building reli-
able and scalable parallel applications and systems at
peta/exascale levels. Here, we establish the storage
wall related theory to investigate storage challenges
for current and future large-scale supercomputers.

Chen et al. (2016) provided a topology parti-
tioning methodology to reduce the static energy of
supercomputer interconnection networks. This is a
new exploration to solve the energy problem for fu-
ture exascale supercomputers.

In a supercomputer system, the performance of
the storage system significantly affects the system
scalability of a supercomputer. In this work, we de-
velop a storage wall framework based on our previous
work (Hu et al., 2016) to analyze and quantify the
effects of storage performance on the scalability of
the supercomputer.

3 I/O characteristics of parallel
applications

Large-scale scientific parallel applications run-
ning on supercomputers are mostly numerical simu-
lation programs, and they have some distinctive I/O
features as follows:

1. Periodicity: Scientific applications are usually
composed of two stages, i.e., the compute phases and
the I/O phases (Miller and Katz, 1991; Pasquale and
Polyzos, 1993; Wang et al., 2004; Liu et al., 2014; Kim
and Gunasekaran, 2015). For many I/O-intensive
applications, write operations are usually the dom-
inant operations in the I/O phase. For example,
checkpointing can be seen as an I/O-intensive appli-
cation and usually periodically uses write operations
to save the state of the compute nodes (Hargrove and
Duell, 2006; Bent et al., 2009).

2. Burstiness: Scientific applications not only
have periodic I/O phases, but also perform I/O in
short bursts (Kim et al., 2010; Carns et al., 2011; Liu
et al., 2014; Kim and Gunasekaran, 2015), particu-
larly with write operations (Wang et al., 2004).

3. Synchronization: The parallel patterns of
applications often determine parallel I/O access

patterns (Lu, 1999). In single program multiple
data (SPMD) or multiple program multiple data
(MPMD) applications, more than 70% I/O opera-
tions are synchronous (Kotz and Nieuwejaar, 1994;
Purakayastha et al., 1995). For instance, applica-
tions in earth science and climatology (Carns et al.,
2011) consist of nearly identical jobs, which usually
lead to a large number of synchronous I/O operations
among processes (Xie et al., 2012).

4. Repeatability: A number of jobs tend to run
many times using different inputs, and thus they ex-
hibit a repetitive I/O signature (Liu et al., 2014).

According to the I/O characteristics, we will in-
troduce a storage-bounded speedup model in Section
4 to pave the way for the storage wall definition.

4 Storage wall theory

Since processors are evolving rapidly, the in-
crease in computing power has enabled the creation
of important scientific applications. As parallel ap-
plications increase gradually in scale, their perfor-
mance is often confined to the storage performance.
This significantly affects supercomputer scalability.
To analyze and quantify this effect, we first de-
fine the storage-bounded speedup, and then provide
the storage wall theory to elaborate on supercom-
puter scalability based on the storage performance
constraint.

4.1 Defining storage-bounded speedup

Storage-bounded speedup is built to quantify
system scalability considering the storage perfor-
mance constraint. Prior to defining storage-bounded
speedup, we assume that one process runs on a
single-core processor in a parallel system, and we
treat a multi-core processor system as a system which
consists of multiple single-core processors. Thus,
given that a parallel system consists of P single-
core processors, the running processes own the same
number. For clarity, let each node denote each pro-
cess. The given parallel system W has P nodes
in total, and here we denote the ith node as Ni

(i = 0, 1, · · · , P −1). All the symbols used in this
paper are listed in Table 1.

For a given program Q, the execution process
consists of two types of phases: the compute phase
and the I/O phase (Miller and Katz, 1991; Pasquale
and Polyzos, 1993; Wang et al., 2004; Liu et al., 2014;
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Table 1 List of main symbols and the related specifications

Symbol Description Definition

Ni The ith node in the parallel system (i = 0, 1, · · · , P−1) Section 4.1
P The number of nodes with a single-core processor Section 4.1
W A parallel system with P nodes Section 4.1
Q A parallel program with P processes Section 4.1
SAmdahl Amdahl’s speedup Section 2
SGustafson Gustafson’s speedup Section 2
SP Compute speedup Section 4.1
Ns The number of I/O phases when Q runs on a single node Eq. (1)
Nc The number of compute phases when Q runs on a single node Section 4.1
Isint Average time of all compute phases when Q runs on a single node Eq. (2)
Isser Average time of all I/O phases when Q runs on a single node Eq. (1)
T snon Execution time of all compute phases when Q runs on a single node Eq. (1)
T sio Execution time of all I/O phases when Q runs on a single node Section 4.1
TS
Sto Execution time of program Q running on a node serially Eq. (1)

Np
i The number of I/O phases on the ith node Section 4.1

Ipinti Average time of all the compute phases on the ith node Section 4.1
Ipseri Average time of all the I/O phases on the ith node Section 4.1
Tpnon
i All the compute time on the ith node Section 4.1

Np Average of Np
i for each process when program Q is running on P nodes Eq. (3)

Ipint Average of Ipinti for each process when program Q is running on P nodes Eq. (4)
Ipser Average of Ipseri for each process when program Q is running on P nodes Eq. (3)
Tpnon The time for the compute parts when program Q is running on P nodes Eq. (3)
Tpio
i The I/O time on the ith node Section 4.1

Tpio The time for the I/O parts when program Q is running on P nodes Section 4.1
TP
Sto Execution time of program Q on P nodes Eq. (3)

SP
Sto Storage-bounded speedup Eq. (5)

N Ipser/Ipint Eq. (6)
M Isser/Isint Eq. (6)
O(P ) Storage workload factor Eq. (7)
SP
Amdahl-Sto Amdahl storage-bounded speedup Eq. (9)

SP
Gustafson-Sto Gustafson storage-bounded speedup Eq. (10)

supSPSto Storage wall Section 4.2
α Memory hit rate Section 5.1
D Average amount of data for the I/O phases for all processes Section 5.1
Vmem Average bandwidth for the memory access on each node Section 5.1
Vout-mem Average I/O bandwidth per node Section 5.1
CDP architecture Centralized, distributed, and parallel I/O architecture Section 5.2.3
β Absorbing ratio Section 5.2.4
Vburst Average bandwidth per node provided by burst buffers Section 5.2.4
SP
G-Sto-fullckp Storage-bounded speedup for parallel application with full-memory checkpointing Eq. (19)

SP
G-Sto-incrckp Storage-bounded speedup for parallel application with incremental-memory checkpointing Eq. (20)

Popt Optimal parallel size at which parallel applications obtain the largest storage-bounded
speedup

Section 6.2

Kim and Gunasekaran, 2015). In this study, the com-
pute phases also denote I/O-free phases. In Fig. 1,
we use shaded parts to denote compute phases and
white parts to denote I/O phases. Fig. 1a shows a
program Q running on a node serially, where N0 de-
notes the process and T S

Sto stands for the execution
time. Fig. 1b displays the case where program Q is
running on a P -node system in parallel, where TP

Sto

denotes the practical execution time.

In the following paragraphs we will analyze the
execution time of a serial or parallel program Q run-
ning on one or multiple nodes.

In the serial program situation (Fig. 1a), the
total execution time T S

Sto is obviously the time sum-
mation of all the compute phases and I/O phases,
i.e., T S

Sto = T snon + T sio (T snon denotes the total
time of all compute phases and T sio the total time
of all I/O phases). Let N s be the number of I/O
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Fig. 1 Execution state of a program on a P-node
system: (a) single process; (b) P parallel processes

phases and Isser the average time of all I/O phases.
We can obtain T sio = N sIsser, and thus T S

Sto can be
described as

T S
Sto = T snon +N sIsser. (1)

Let N c be the number of compute phases and Isint

be the average time of all compute phases. Thus, the
total execution time of all compute phases is T snon =

N cIsint. The I/O load of a program consists mainly
of reading raw data, storing intermediate data, and
writing final results, to name a few tasks. Both com-
pute and I/O phases happen alternately, and the
number of I/O phases N s is usually one larger than
that of the compute phases N c, i.e., N s = N c + 1

(Fig. 1). Therefore, T snon = N cIsint = (Ns − 1)Isint

and N s = T snon/Isint + 1. Then, we can rewrite
Eq. (1) as

T S
Sto = T snon + (T snon/Isint)Isser + Isser. (2)

Before analyzing the execution time of a parallel
program Q running on multiple nodes, two assump-
tions need to be described in detail. The first is that
the load, especially the I/O load, is balanced among
all nodes. The scalability of a large-scale parallel ap-
plication can be affected by many factors, such as the
application scaling model, architecture type, storage
performance, and load imbalance (Culler et al., 1998;
Gamblin et al., 2008). Due to the complexity of the
problem, many studies generally focus on the impact
of a certain factor, assuming that the other factors
are fixed. Examples include Amdahl’s law (Amdahl,
1967) and Gustafson’s law (Gustafson, 1988), and
they came to their conclusions in ideal conditions, in-
cluding load balance. In this work, we discuss mainly
the influence of storage performance on the scalabil-
ity of a parallel application, assuming that the work
load is balanced when the application scales.

The condition we study here is similar to
Gustafson’s law, in which the load (including the
compute load and I/O load) increases continuously
with application scaling (Gustafson, 1988). In this
procedure, if the total load increases but the increase
of I/O load is disproportionate to the increase of the
compute load, the application scalability may suffer
from additional effects. To be specific, if the I/O load
increment is less than that of the compute load, it
would not be sufficient to detect the impact of stor-
age performance on application scalability; if the I/O
load increment is more than the compute load, the
application scalability will be further deteriorated by
a rapid I/O load increase. The primary objective of
this work is to discuss the influence of storage per-
formance on the scalability of parallel applications.
To exclude the influence of other factors, such as an
irregular expansion of the application load, here we
assume that the I/O load is in proportion to the com-
pute load, and both loads increase with the increase
of the number of compute nodes.

In the parallel program situation, it is non-
trivial to analyze the execution time. In this work,
we focus on the statistical significance of the execu-
tion time. That is, many parameters in the parallel
running situation, such as the number of I/O phases,
are the values on average. As a matter of fact, large-
scale parallel applications may encounter barriers,
and the slowest node determines the execution time
in this condition. The difference between the aver-
age time and the worst case time due to the barrier
is mainly the global synchronization overhead. For
parallel applications, the synchronization overhead
is affected mainly by load imbalance (Culler et al.,
1998). In the situation of load balance, all the pro-
cesses can reach the barrier almost simultaneously.

As described by the first assumption above, this
research is established under the assumption of load
balance, and the global synchronization overhead is
small and can be ignored here. From a statistical
perspective, using the average time rather than a
certain runtime can effectively reflect the trend in ap-
plication execution time and help eliminate the bias
caused by casual/random factors on the application
execution time, thus improving the validity and re-
liability of this study. For these reasons, we use the
average time to represent the time of the compute
phase and I/O phase to simplify the storage-bounded
speedup model, which is reasonable and in line with
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the assumptions above.
Here we analyze the execution time of the par-

allel program Q running on a P -node system W. Let
TP
Sto denote the total execution time of the parallel

program. Similar to the serial program situation,
TP
Sto also consists of two parts, i.e., the time for the

compute and I/O parts, denoted by T pnon and T pio,
respectively. Thus, TP

Sto ≈ T pnon + T pio. Here we
use approximation instead of equality. The approxi-
mation is reasonable and valid for the following the-
ory because all parameters are defined on statistical
values discussed above.

For the given parallel program Q that runs on
P nodes, we use Np

i to denote the number of I/O
phases on the ith node, and Ipseri to denote the av-
erage time of all the I/O phases on the ith node.
So, the I/O time on the ith node is T pio

i = Np
i I

pser
i .

Further, we define Np =
∑P−1

i=0 Np
i /P as the average

of Np
i for each process, and Ipser =

∑P−1
i=0 Ipseri /P

as the average of Ipseri for each process. So, we ob-
tain T pio =

∑P−1
i=0 (Np

i I
pser
i )/P . Since most par-

allel scientific applications have I/O features such
as periodicity and synchronization, for the applica-
tions running on a large number of nodes, whose
I/O load is balanced and scales in proportion to the
compute load, the numbers of I/O phases are approx-
imately equal among all processes and they are all
approximately equal to Np. This means Np

i ≈ Np.
So, we can obtain T pio =

∑P−1
i=0 (Np

i I
pser
i )/P ≈

Np
∑P−1

i=0 (Ipseri /P ) = NpIpser.
Analogous with Eq. (1), the execution time of

program Q running on P nodes is

TP
Sto ≈ T pnon +NpIpser. (3)

Similarly, we use Ipinti to signify the average time
of all the compute phases on the ith node. Then
we define Ipint =

∑P−1
i=0 Ipinti /P as the average of

Ipinti for each process. We use T pnon
i to stand for

all the compute time on the ith node, and define
Ipint =

∑P−1
i=0 Ipinti /P as the average of Ipinti for each

process. As stated above, the number of I/O phases
is one more than that of the compute phases on each
node. Thus, we have Np = T pnon/Ipint + 1 and
Eq. (3) becomes

TP
Sto ≈ T pnon + (T pnon/Ipint)Ipser + Ipser. (4)

In terms of the above analysis, we define the
storage-bounded speedup to analyze the scalability
variation under the storage performance constraint.

Definition 1 (Storage-bounded speedup) When a
parallel program Q runs on a parallel system W with
P nodes, the storage-bounded speedup can be de-
fined as follows:

SP
Sto =

T S
Sto

TP
Sto

. (5)

According to Eqs. (2) and (4), suppose that SP
is the speedup of the compute part. Meanwhile, we
define N = Ipser/Ipint and M = Isser/Isint. Thus, the
storage-bounded speedup can be described as

SP
Sto=

T S
Sto

TP
Sto

≈ T snon+(T snon/Isint)Isser+Isser

T pnon+(T pnon/Ipint)Ipser+Ipser

≤ T snon(1 + Isser/Isint)

T pnon(1 + Ipser/Ipint)

=SP
1 +M

1 +N
= SP

1

1 +
N −M

1 +M

. (6)

Here, we leave the derivations of Eq. (6) in Ap-
pendix. In Eq. (6), we set the upper bound of the
right-hand side of the approximation as the value
of the storage-bounded speedup. Since the storage-
bounded speedup is used to quantify the scalability
under the storage performance constraint, for long-
running applications, this error caused by the upper
bound is negligible and will not affect the correctness
of the results analyzed below.

Let us define

O (P ) =
N −M

1 +M
. (7)

O(P ) reflects the I/O execution time variation with
the rise in the application load, and in this sense, we
may call it the ‘storage workload factor’.

Thus, the final form of the storage-bounded
speedup becomes

SP
Sto = SP

1

1 +O(P )
. (8)

Eq. (8) implies how the I/O performance varia-
tion affects the speedup with the increase of the num-
ber of processors. Thus, it can reflect the scalability
of parallel systems under the storage constraint.

In Eq. (8), if SP is instantiated by Amdahl’s
speedup and Gustafson’s speedup, respectively, we
can obtain the Amdahl storage-bounded speedup as

SP
Amdahl-Sto =SAmdahl · 1

1 +O(P )

=
P

1 + f(P − 1)
· 1

1 +O(P )
,

(9)
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and the Gustafson storage-bounded speedup as

SP
Gustafson-Sto = SGustafson · 1

1 +O(P )

= (f + P (1− f))· 1

1 +O(P )
.

(10)

In both Amdahl’s law and Gustafson’s law,
there is only one parameter f ; namely, the ratio
of the sequential portion in one program is used to
characterize the scalability. Similarly, in this study,
Eqs. (8), (9), and (10) use f to characterize the scal-
ability of the compute part of the application. The
difference between earlier works, i.e., Amdahl’s law
and Gustafson’s law, and ours, is that our storage-
bounded speedup takes into account the storage
workload factor O(P ), which reflects the effect of the
storage system over the whole system scalability, and
this has not been studied before. For instance, both
laws yield the highest speedup when f = 0. Actu-
ally, both claims may not be true in practice because
I/O effect may exist. Due to the competition for I/O
resources, I/O service time is prolonged in parallel
computing, resulting in O(P ) �= 0. From this per-
spective, the storage-bounded speedup is more rea-
sonable for practical applications, which is our main
motivation for this study. Ideally, if O(P ) = 0, our
two storage-bounded speedup models, i.e., Eqs. (9)
and (10), are simplified into traditional Amdahl’s
and Gustafson’s speedup models, respectively, and
the system scalability is not affected by the storage
performance.

4.2 Defining the storage wall

Definition 2 (Storage wall) When a program Q
runs on a parallel system which satisfies lim

P→∞
SP =

∞, the storage wall is the supremum of the storage-
bounded speedup SP

Sto, denoted as supSPSto.
Theorem 1 When a program Q runs on a parallel
system which satisfies lim

P→∞
SP =∞, the storage wall

exists if and only if lim
P→∞

SP
Sto �=∞.

Proof According to Definition 2, if the storage
wall exists, the supremum of the storage-bounded
speedup SP

Sto exists, i.e., supSPSto = R (R is a pos-
itive constant). Then, SP

Sto ≤ supSPSto. Therefore,
lim

P→∞
SP
Sto �=∞. If lim

P→∞
SP
Sto �= ∞, lim

P→∞
SP
Sto = R

(R ∈ Q+) holds. Then, ∀ε > 0 , ∃E ∈ Z+,
which makes |SP

Sto −R| < ε when P > E. Thus,
R− ε < SP

Sto < R+ ε. Therefore, SP
Sto has an upper

bound. Based on the supremum principle (Rudin,
1976), the supremum of SP

Sto exists, and the storage
wall exists for program Q owing to Definition 2.

An important implication of Theorem 1 is as
follows. If lim

P→∞
SP �=∞, lim

P→∞
SP
Sto �=∞ when SP

Sto<

SP . Thus, there always exists the storage wall. For
example, Amdahl’s speedup meets this condition and
will always have the storage wall. So, in the rest of
this paper, we consider the condition lim

P→∞
SP =∞

and replace SP with SGustafson.

4.3 System classification

According to Eq. (8), it is easy to observe that
O(P ) is the key factor in determining the existence
of the storage wall. Due to different O(P ), the sys-
tem storage-bounded speedup has different trends.
To better analyze the laws of the storage wall, we
categorize parallel systems into two types according
to the characteristic of O(P ).

Before the classification, we introduce the fol-
lowing symbol conventions:

1. f(x) 	 g(x) if lim
x→∞f(x)/g(x) = ∞, and

f(x) 
 g(x) if lim
x→∞f(x)/g(x) is a positive constant

or ∞.
2. f(x)≺ g(x) if lim

x→∞f(x)/g(x)=0, and f(x)�
g(x) if lim

x→∞f(x)/g(x) is a non-negative constant.
3. Suppose Θ(x) is a set of all functions over x,

f(x) ∈ Θ(x) and g(x) ∈ Θ(x). If lim
x→∞f (x)/g (x) is

a positive constant, then f(x) = Θ(g(x)) or g(x) =

Θ(f(x)).
Definition 3 (Constant and incremental systems)
Suppose that a program Q satisfying lim

P→∞
SP =∞

runs on a system W. If O(P ) � Θ(1), system W is
considered to be a constant system. If O(P ) 	 Θ(1),
system W is considered to be an incremental system.

Fig. 2 shows three examples for the classification
based on O(P ). If O(P ) =K �Θ(1), where K is a
positive constant, system W is a constant system.
According to Eq. (10), we find that

lim
P→∞

SP
Gustafson-Sto= lim

P→∞
(f+P (1−f))

1

1 +K
=∞.

By Theorem 1, there is no storage wall in this sys-
tem. If O(P ) = KP lnP 	 Θ(1), system W is an
incremental system. Similarly, we find that

lim
P→∞

SP
Gustafson-Sto

= lim
P→∞

(f + P (1− f))
1

1 +KP lnP
= 0.
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Fig. 2 Three examples for storage-bounded speedup
and the storage wall of different types of systems
based on O(P ) (K is a constant in each function).
When O(P ) = K � Θ(1), W is a constant system
and has no storage wall; when O(P ) = K lnP � Θ(1),
W is an incremental system and has no storage wall;
when O(P ) = KP lnP � Θ(1), W is an incremental
system and has a storage wall

In this situation, the storage wall exists.
Now we introduce another existence theorem of

the storage wall as follows:
Theorem 2 When a program Q that satisfies
lim

P→∞
SP = ∞ runs on a system W, the storage wall

exists if and only if O (P ) 
 SP .
Proof According to Theorem 1, if the storage
wall exists, lim

P→∞
SP
Sto = lim

P→∞
SP /(1 +O (P )) �= ∞.

Obviously, O (P )
SP holds.
If O(P ) 
 SP , then lim

P→∞
SP
Sto =

lim
P→∞

SP /(1 +O(P )) < ∞. Thus, lim
P→∞

SP
Sto �= ∞.

So, the storage wall exists for program Q on system
W by Theorem 1.

Thus, for a constant system which satisfies
lim

P→∞
SP = ∞, the storage wall does not exist be-

cause O(P ) � Θ(1) ≺ SP .
On the other hand, for an incremental system,

there are two cases. If O(P )
SP , the storage wall
exists by Theorem 2. However, if Θ(1)≺O(P )≺SP ,
the storage wall does not exist, which is similar to a
constant system.

5 System analyses according to I/O
architecture

The architecture determines the fundamentals
of the supercomputer’s hardware and software, and
also the scalability of the supercomputer. In this

section, we analyze the storage wall in terms of stor-
age architecture, while we discuss the storage wall
challenge based on large-scale parallel applications
in Section 6. To be specific, the factors that impact
the storage wall are analyzed in Section 5.1 and the
storage wall related to different storage architectures
are investigated in Section 5.2.

5.1 Factor analysis of the storage wall

In Section 3, we presented four I/O characteris-
tics of scientific applications, i.e., periodicity, bursti-
ness, synchronization, and repeatability. Based on
these characteristics, we make the following assump-
tions to identify the key factors that influence the
existence of the storage wall:

1. Suppose that the P processes of program Q
running on system W are synchronized and analo-
gous, and this is in line with the application charac-
teristics detailed in Section 3. Meanwhile, the com-
pute nodes of most supercomputers have the same
configurations. So, the P processes running on each
node have approximately the same I/O behavior.

2. Suppose that the parallel workload including
compute and I/O loads will increase proportionally
with the number of processes. Ideally, the load of
compute phases approximates to be constant for each
process even if the number of processes increases. So,
we assume both Ipinti and Isint to be equivalent in the
following analysis.

3. Suppose that the memory hit rate on every
processor is approximately equal, noted as α. The
average data amount of I/O phases for each process is
considered to be approximately equal, denoted by D.
The average bandwidth for memory access on each
node is approximately equal, noted as Vmem. On
the other hand, the I/O bandwidth on each compute
node is approximately the same when the memory
access misses, denoted by Vout-mem.

Many representative applications, e.g., those in
earth science, nuclear physics, and climatology, are in
line with the above assumptions. These applications
consist of nearly identical jobs running on the com-
pute nodes of identical architectures (Carns et al.,
2011). Besides, the checkpoint/restart mechanism
as a synchronous I/O workload also fully satisfies
the above assumptions. This mechanism is used to
protect parallel applications against failure by stor-
ing the application state to persistent storage. Even
if a failure occurs, the application still restarts from
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the most recent checkpoint (Bent et al., 2009).
By the above assumptions, from the view of a

compute node, we transform the storage workload
factor into

O(P ) =
N −M

1 +M
=

Ipser/Ipint − Isser/Isint

1 + Isser/Isint

=
Isint(Ipser/Ipint)− Isser

Isint + Isser

=
Ipser − Isser

Isint + Isser
=

1

C
(Ipser − Isser)

=
1

C

(
D

Vmem
+

(1− α)D

Vout-mem
− Isser

)
, (11)

where C = Isint + Isser is a positive constant.
Hence, we obtain

SP
Sto = SP

1

1 +O(P )

= SP
1

1

C

(
D

Vmem
+

(1− α)D

Vout-mem
+ Isint

) . (12)

Based on Eq. (12) and Theorems 1 and 2, we
derive the following corollary:
Corollary 1 When a program Q that satis-
fies lim

P→∞
SP = ∞ runs on a system W, if

(1−α)D/Vout-mem 
 Θ (P ), the storage wall exists.
Proof In Eq. (12), C, Isint, and Vmem are constants.
Let SP be SGustafson=Θ(P ). If (1−α)D/Vout-mem 

Θ (P ), then P/((1−α)D/Vout-mem) has a supremum.
Since Eq. (12) can be converted to

SP
Sto = Θ

⎛
⎜⎝ P

1

C

(
D

Vmem
+

(1− α)D

Vout-mem
+Isint

)
⎞
⎟⎠ ,

SP
Sto also has a supremum. According to Definition 2,

when (1−α)D/Vout-mem 
 Θ (P ) holds, the storage
wall exists.

According to Corollary 1, when a program Q
satisfying lim

P→∞
SP = ∞ runs on a system W, the

factors affecting the storage wall can be summarized
as follows:

1. D and Isint: D represents the average amount
of data for the I/O phases for all processes. We use
Di to denote the average amount of data for the I/O
phases on the ith node, and thus D =

∑P−1
i=0 Di/P .

According to assumptions, Isint represents the aver-
age time of the compute phases no matter how the
program runs (serially or in parallel). D and Isint

reflect the I/O characteristics of parallel programs,
which distinguish compute-intensive programs with
I/O-intensive ones. Table 2 shows the basic char-
acteristics of compute-intensive and I/O-intensive
programs related to D and Isint. The larger the
D and the smaller the Isint, the more intensive the
I/O workload.

Table 2 I/O characteristics of parallel programs

D Isint Compute-intensive I/O-intensive

Large Large
√ √

Small Small
√ √

Large Small
√

Small Large
√

2. α and Vmem: α represents the average mem-
ory hit rate on every processor when the process
performs I/O operations. It essentially implies the
hierarchical storage architecture. Vmem represents
the average bandwidth of the memory access on each
node. According to the performance of dynamic ran-
dom access memory (DRAM), memory provides bet-
ter access bandwidth but confronts data volatility
and small capacity due to the high price. Improv-
ing the memory hit rate is a hot topic for enhancing
I/O performance. Many techniques such as data
prefetching and cooperative caching are proposed to
achieve this purpose. Meanwhile, a number of new
media, such as FLASH and PCM, have been de-
veloped to replace DRAM or to join together with
DRAM to compose hybrid memory. Both advanced
media and advanced memory architecture can im-
prove Vmem.

3. Vout-mem: It represents the average I/O band-
width of each processor when the I/O requests miss
in the memory. The average I/O access bandwidth
is the ratio between the I/O data size and the I/O
request time, which starts from initiation and ends
with completion. Vout-mem plays a fundamental role
in the storage wall because it is closely associated
with storage devices, storage architecture, and I/O
access patterns. For different storage architectures,
the impact factors of Vout-mem contain metadata
management, data layout, and data management
strategies, to name a few. For different I/O access
patterns, Vout-mem is influenced by I/O request size,
access density, burstiness, synchronization, and so
on. As the processors scale up, the overhead for
metadata access, communication collision, and data
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access competition will increase remarkably, and this
leads to a significant decrease of Vout-mem.

5.2 Storage wall analysis related to main su-
percomputer I/O architectures

According to the interconnecting relationship
between compute and storage in supercomputer sys-
tems, the architecture of supercomputer storage sys-
tems can be divided into four categories: centralized
architecture, distributed and parallel architecture,
centralized, distributed, and parallel (CDP) archi-
tecture, and CDP architecture with burst buffers.
Next, we will analyze the storage wall characteristics
with each I/O architecture.

5.2.1 Centralized I/O architecture

Fig. 3 shows a centralized I/O architecture, such
as network attached storage (NAS). This architec-
ture is often used in small-scale supercomputers, and
it is easily configured and managed, but has a poor
scalability. It can merely scale up instead of scaling
out because the storage system cannot horizontally
expand to multiple servers but can vertically enhance
the performance of a single server. Therefore, the
I/O architecture severely limits the performance of
the storage system. Suppose that the bandwidth
provided by the storage system is MS. Although MS

concerns different I/O access patterns, there always
exists a positive constant M so that MS<M . In syn-
chronous I/O access mode, as P increases, we obtain
Vout-mem � Θ(M/P ). Since M is a constant fac-
tor, we can omit it and simplify the above formula
to Vout-mem � Θ(1/P ). According to Eq. (11), we
obtain O(P ) 
 Θ(P ). Then, we can find that the
supercomputer with the centralized I/O architecture
is an incremental system by Definition 3. Meanwhile,
when SP =Θ(P ) (SP is replaced by SGustafson), ac-
cording to Theorem 2, we can obtain O(P ) 
 SP

and this demonstrates that the storage wall exists
in the supercomputer with centralized I/O architec-

Interconnection network 

...

 Storage
server

CN0 CN1 CN2 CN3 CNP

Fig. 3 Centralized I/O architecture (CN: compute
node)

ture. Fig. 4 shows a case of storage wall for a super-
computer with a centralized I/O architecture.
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Storage wall
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to
 (×

10
3 )

S
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Fig. 4 A case of a supercomputer with a centralized
I/O architecture in which the storage wall exists

5.2.2 Distributed and parallel I/O architecture

Fig. 5 shows a system with a distributed and
parallel I/O architecture. This supercomputer stor-
age system usually refers to the architecture in which
each compute node has built-in storage or a direct-
attached storage server. Each compute node has a
file system, which can provide I/O service to itself
and other compute nodes. Due to the problems of
I/O scheduling and global data consistency, the im-
plementations of the parallel file system are compli-
cated. In addition, the storage servers have different
positions for the compute nodes which are direct-
attached or non-direct-attached; therefore, system
load balance also becomes a problem. Hence, this
architecture is usually adopted by supercomputers
in small or medium scale.

For distributed and parallel I/O architecture,
the storage nodes and compute nodes scale out
equally. Thus, the storage server provides approxi-
mately fixed bandwidth for each compute node, that
is, Vout-mem = Θ(1). According to Eq. (11), we ob-
tain O(P ) = Θ(1). As shown in Fig. 6, the super-
computer with a distributed and parallel I/O archi-
tecture belongs to the constant system and has a
non-existent storage wall according to Definition 3.

...

Storage 
server

Storage 
server

Storage 
server

Storage 
server

Storage 
server

Interconnection network

CN3 CNPCN2CN1CN0

Fig. 5 Distributed and parallel I/O architecture (CN:
compute node)
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Fig. 6 A case of a supercomputer with a distributed
and parallel I/O architecture in which the storage
wall does not exist

5.2.3 Centralized, distributed, and parallel architec-
ture

Fig. 7 shows the CDP architectures which dom-
inate in TOP500 supercomputers (TOP500, 2015).
Table 3 details the fastest 10 supercomputers in
TOP500 whose storage architectures are all CDP ar-
chitecture. For medium-sized supercomputers (the
number of compute nodes reaches 103 to 104), com-
pute nodes and storage servers are connected directly
through an interconnection network (Fig. 7a). A par-
allel storage system consists of storage servers usu-
ally equipped with a parallel file system, such as
Lustre and PVFS, while compute nodes access the
storage system by the client of a parallel file system.
The typical systems include Titan, Tianhe-1A, and
so on.

With the development in supercomputers, I/O
nodes (IONs) are inserted between compute nodes
and parallel storage systems to provide the I/O for-
warding and management functions (Fig. 7b). On
the one hand, the number of compute nodes can in-
crease continually without the limitation of the client
number of parallel file systems. On the other hand,
I/O performance can be improved by I/O scheduling
and caching. All of these are attributed to the intro-

CN0

Interconnection network

CN1 CN2 CN3 CNP

Storage 
server

Storage 
server

Storage
server

(a)

...

...

CN0

Interconnection network

CN1 CN2 CN3 CNP

...

Storage 
server

Storage
server

Storage 
server

(b)

ION1 ION2 ION3 IONi

Interconnection network

...

...

Fig. 7 Centralized, distributed, and parallel (CDP)
architectures: (a) without I/O nodes; (b) with I/O
nodes (CN: compute node; ION: I/O node)

duction of IONs in the systems. The typical systems
are the IBM Bluegene series and Tianhe-2. Although
the system has been improved by the I/O nodes, the
essence of the I/O architecture remains unchanged.
Thus, to simplify the model, the I/O node layer is
omitted in subsequent analysis.

In the CDP architecture, the storage system can
not only scale up but also scale out. However, these
systems still have some limitations: (1) For a spe-
cific supercomputer the scale of the storage system
is fixed within a certain time period; (2) The paral-
lel file system usually has ceilings on the number of
storage nodes, aggregate performance, and storage
capacity. Here we assume that the aggregate band-
width of the parallel file system is MS, and there
always exists a positive constant M so that MS<M .
As P increases, the resource contention and access

Table 3 Storage architecture of the fastest 10 computers in the TOP500 (TOP500, 2015)

TOP500 System Number of cores Storage architecture File system I/O nodes used?

1 Tianhe-2 3 120 000 CDP Hybrid hierarchy file system (H2FS) Yes
2 Titan 560 640 CDP Lustre No
3 Sequoia 1 572 864 CDP Lustre + zettabyte file system (ZFS) Yes
4 K computer 705 024 CDP Fujitsu exabyte file system (FEFS) No
5 Mira 786 432 CDP General parallel file system (GPFS) Yes
6 Piz Daint 115 984 CDP Lustre No
7 Shaheen II 196 608 CDP Lustre No
8 Stampede 462 462 CDP Lustre No
9 JUQUEEN 458 752 CDP GPFS Yes
10 Vulcan 393 216 CDP Lustre + ZFS Yes
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conflict of the storage system are seriously aggra-
vated. Thus, in synchronous I/O mode for one com-
pute node, we obtain Vout-mem � Θ(M/P ). Since M
is a constant factor, we can omit it and simplify the
above formula to Vout-mem � Θ(1/P ). According to
Eq. (11), we obtain O(P ) 
 Θ(P ). Then we can find
that the supercomputer with the CDP architecture
is an incremental system by Definition 3. Meanwhile,
when SP =Θ(P ), according to Theorem 2, we obtain
O (P ) 
 SP and it demonstrates that the storage
wall exists in the supercomputer with the CDP ar-
chitecture. Fig. 8 shows a case for a supercomputer
with the CDP architecture.
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Fig. 8 A case for a supercomputer with a centralized,
distributed, and parallel (CDP) architecture in which
the storage wall exists

5.2.4 Centralized, distributed, and parallel architec-
ture with burst buffers

The I/O workloads in scientific applications are
often characterized by periodicity and burstiness, es-
pecially for write operations, and this provides an op-
portunity to use the write buffer. Burst buffers (Liu
et al., 2012; Sisilli, 2015; Wang et al., 2014; 2015)
are large high-performance write buffering spaces in-
serted as a tier of the supercomputer storage using
solid state drives (SSDs), non-volatile random ac-
cess memory (NVRAM), and so on. By using burst
buffers, scientific applications can flush data to a
high-performance temporary buffer, and then over-
lap computations that follow the I/O bursts with
writing data from the burst buffer back to external
storage. This buffering strategy can remove expen-
sive parallel file system (PFS) write operations from
the critical path of execution.

Under the CDP storage architecture, for the sys-
tem without the I/O forwarding layer (like Titan),
burst buffer nodes typically are located between the
compute nodes and the PFS (Fig. 9a) (Wang et al.,
2014; 2015). For the system with an I/O forwarding

layer (IBM Bluegene series) (Moreira et al., 2006;
Ali et al., 2009), the burst buffers can be inserted
into the I/O nodes, so this burst buffer layer is lo-
cated in the same level as the I/O forwarding layer
(Fig. 9b) (Liu et al., 2012). Despite these different
designs and implementations, the burst buffers have
the same functionality and usage in absorbing the
write activity. Below we use the work of Liu et al.
(2012) as a case to study the burst buffer related
architecture, and other works undergo the analogue
analysis procedure.

According to the hierarchical CDP with a burst
buffer architecture, Eqs. (11) and (12) can be rewrit-
ten as

O(P )=
1

C
(Ipser−Isser)

=
1

C

(
D

Vmem
+

βD

Vburst
+
(1−α−β)D

Vout-mem
−Isser

) (13)

and

SP
Sto = SP

1

1+O(P )

=SP
1

1

C

(
D

Vmem
+

βD

Vburst
+
(1− α− β)D

Vout-mem
+ Isint

) .

(14)
Here, C = Isint + Isser is a positive constant, β is
defined as a data absorbing ratio, and thus βD rep-
resents the amount of data that can be absorbed by
the burst buffers for each node. Vburst denotes the
average bandwidth for each node provided by the
burst buffers. Since the burst buffers form an inter-
mediate layer with the I/O nodes, they scale out with
compute nodes in a fixed proportion horizontally (for
example, the ratio between the number of compute
nodes and the number of I/O nodes is 64:1). So,
we can assume that β and Vburst are approximately
equal on every processor as the processor number
increases.

Likewise, we can achieve a similar conclusion to
Corollary 1:
Corollary 2 When a program Q that satisfies
lim

P→∞
SP =∞ runs on a system W (CDP with burst

buffers), if D (1−α− β)/Vout-mem 
 Θ (P ) , the stor-
age wall exists.

The proof is omitted here because it is similar
to the proof of Corollary 1. Based on Corollary 2,
it can be easily found that the storage wall can be
pushed forward or diminished for a storage system
with CDP architecture with burst buffers .
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Fig. 9 Centralized, distributed, and parallel architec-
ture with burst buffers without (a) and with (b) an
I/O forwarding layer (CN: compute node; ION: I/O
node)

The key factors to the effectiveness of burst
buffers are Vburst and β. Burst buffers usually use
nonvolatile media, which has better performance
than disk-based storage. So, Vburst is a foundation
such that burst buffers can play a role in dealing with
the storage wall. This is closely related to the media
itself. β is another key point, revealing how many
write operations can be absorbed by burst buffers.
It is closely related to the performance and capacity
of burst buffers, and the I/O patterns of the ap-
plications. Burst buffers can accelerate only write
operations rather than read operations.

Furthermore, they are also sensitive to the in-
tensity of I/O write activity, the cost of flushing the
burst buffers, and protocol interactions with the ex-
ternal storage system.

In the ideal case, if β = 1− α, an application Q
has only write activity which can all be absorbed by
the burst buffers. The storage-bounded speedup is
not restrained by the external storage performance.
The storage wall does not exist as the dashed line
in Fig. 10 shows. However, in real circumstances,
the storage wall can be pushed forward because a lot
of write operations are absorbed and hidden by the
burst buffer layer as the solid line in Fig. 10 shows.
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Fig. 10 Two cases for a supercomputer with a central-
ized, distributed, and parallel architecture with burst
buffers. In the ideal case (β = 1− α), an application
Q has only write activity which can all be absorbed
by the burst buffers and the storage wall does not
exist (dashed line); in real circumstances (β < 1−α),
the storage wall can be pushed forward because a lot
of write operations are absorbed and hidden by the
burst buffer layer (solid line)

6 Experiments

In our experiments, we used typical benchmarks
and applications to verify, analyze, and extrapolate
the existence of the storage wall for the current rep-
resentative systems and forthcoming exascale sys-
tems. The experiments have two goals: the first
one is to obtain the performance laws of storage sys-
tems by using benchmarks and verify the existence
of the storage wall in a specific I/O architecture (Sec-
tion 6.1), and the second one is to analyze the parallel
application with checkpointing to verify the storage
wall existence and seek the best application scale
(Section 6.2). Our analyses also provide insights on
how to mitigate storage wall effects in system design
and optimize large-scale parallel applications.

6.1 Storage wall existence verification using
an I/O benchmark

In this section, we concentrate on the typical
parallel I/O operations including the write and read
operations, and obtain a further grip on the per-
formance trends for storage systems along with the
increase in program parallelism. Moreover, we pre-
liminarily find the existence of the storage wall in the
experiments.

The test platform of our experiment is the
Tianhe-1A supercomputer (National Supercomput-
ing Center in Tianjin, NSCC-TJ, Table 4), which has
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Table 4 Specifications of the Tianhe-1A (YH MPP)

Item Configuration

CPU Xeon X5670 6C 2.93GHz
Number of compute
nodes

7168

Memory 229 376GB

Interconnect
Proprietary (optic-electronic hy-
brid fat-tree structure, point-to-
point bandwidth 160Gbps)

Storage file system
Lustre (Lustre × 4, total capacity
4PB)

Operating system Kylin Linux

a typical CDP architecture with the Lustre parallel
file system (Fig. 7a).

We used the interleaved-or-random (IOR) high
performance computing (HPC) benchmark (Univer-
sity of California, 2007) to generate the I/O opera-
tions. IOR can be used for testing the performance
of parallel file systems using various access patterns
and interfaces such as the portable operating system
interface (POSIX), message passing interface (MPI)-
IO, and hierarchical data format 5 (HDF5). Due to
the production system, our experiments were unable
to extend to the whole system. Thus, we made a Lus-
tre pool including four object storage targets (OSTs)
on the Lustre4 (a Lustre system of the Tianhe-1A),
and this Lustre pool had no jobs during the main-
tenance time. The Lustre pool had the same con-
figuration as the whole storage system and was a
microcosm, which can reveal the performance trends
of the large-scale systems with larger program par-
allelism as well.

In our experiments, first we obtained the scal-
ability of the I/O performance for the typical I/O
operations with the number of processes increasing.
Then, we revealed the existence of the storage wall
and related factors.

Since I/O requests of parallel applications have
different sizes in the data blocks, we chose three typ-
ical block sizes, 4 KB, 2 MB, and 512MB, which rep-
resented small, medium, and large I/O requests.

In the experiments, we ran IOR using the
POSIX application programming interface (API)
and scaled the number of processes from 1 to 160
where there was one client per process. We set a
few configurations to avoid the impact of the cache
by setting an O_DIRECT flag for POSIX to bypass
the I/O buffers, and setting a reorderTasks flag to
avoid the reading after writing cache.

6.1.1 Scalability of I/O performance

Figs. 11–13 show the write and read perfor-
mance variation trends along with the scaling of the
number of processes in synchronous mode. Although
the I/O block size is different in the three figures,
they show the same trends in I/O performance with
the number of processes increasing.

Figs. 11a, 12a, and 13a consistently show that
the aggregate bandwidth of the storage system ini-
tially keeps up with the increase in the number of
processes, and then starts growing slowly or declin-
ing due to the performance limits and resource com-
petition. Figs. 11b, 12b, and 13b show that the I/O
bandwidth for each process has a sharply declining
trend with relatively low value. Figs. 11c, 12c, and
13c consistently demonstrate that the overhead time
for read or write operations on each process always
grows at a faster pace and achieves a large difference
over the storage-bounded speedup.

From the results above, it is easy to see that
a storage system with CDP architecture, like the
Tianhe-1A, has poor storage performance scalability,
and falls behind the development of the computing
power of a supercomputer.

6.1.2 Storage wall and the related factors

In this subsection, we reveal the existence of
the storage wall in the system with a CDP architec-
ture, and verify the impact factors. Fig. 14 shows
the presence of the storage wall of the Tianhe-1A
storage system based on Lustre. Fig. 14 reveals the
storage-bounded speedup variation along with the
application parallelism P from three aspects: I/O
block size (4KB, 2MB, or 512MB), Isint, and D.
For a CDP architecture like Lustre, the storage wall
is subject to the intensity and amount of data from
the I/O requests, which are represented by Isint and
D, respectively.

For the same D, the smaller Isint leads to the
slower storage-bounded speedup increment, so the
storage wall will appear faster, so does the case in
which D is larger with the same Isint. Thus, we find
that the storage wall for the CDP architecture will
appear quickly when the applications have intense
I/O requests and a large amount of I/O data, and
this type of application is generally called an ‘I/O-
intensive application’.

Fig. 15 shows the impact of α on the storage
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wall. We can easily find that the storage wall can be
alleviated by the improvement in memory hit rate,
and this is in line with Eq. (12).

6.2 Application case study of storage wall

In this subsection, we use case studies to further
detail how the application scalability is restrained
by the storage performance and find the best appli-
cation scale based on the storage wall. We use the
representative cases that parallel applications with
the checkpoint/restart mechanism run on the Cray
XT4 Jaguar supercomputer. Jaguar is a typical su-
percomputer with a CDP architecture, equipped in

the Oak Ridge National Laboratory. Although this
supercomputer has been replaced by the Cray XK7
(renamed Titan), the storage architectures of these
two systems are the same. The results based on
Jaguar are still applicable to existing supercomput-
ers with the CDP storage architecture.

Table 5 details the test-related configurations
and Fig. 16 depicts the storage architecture of Jaguar
(Alam et al., 2007; Fahey et al., 2008), in which OSS
denotes the object storage server and MDS denotes
the metadata server.

Checkpoint/restart is a widely used mechanism
for fault-tolerance, and meanwhile it has become
a driving I/O workload for supercomputer storage
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systems (Bent et al., 2009).
For different checkpoint methods, parallel appli-

cations, and supercomputer configurations, the de-

Table 5 Specifications of the Cray XT4 Jaguar system

Item Configuration

CPU 2.6GHz dual-core opteron
Number of processor sockets/
cores

6296/12 592

Memory 2GB/core
Interconnect Cray SeaStar2
Disk controllers 18 DDN-9550 couplets
Number of OSSes/OSTs 72/144

Compute Node
（Client）

Compute Node
（Client）Compute Node

（Client）

Compute Node
（Client）

Compute node
(Client)

OSS1OSS0 OSS2

OST2

OST5

OST1

OST4

OST0

OST3

MDS

MDT

Interconnection network

Fig. 16 Cray XT4 Jaguar storage architecture (OSS:
objcet storage server; OST: object storage target;
MDS: metadata server; MDT: metadata target)

tails of the checkpoint/restart mechanism are dif-
ferent, especially in the checkpoint data (Kalaiselvi
and Rajaraman, 2000; Elnozahy et al., 2002; Agarwal
et al., 2004; Elnozahy and Plank, 2004; Oldfield et al.,
2007; Bent et al., 2009; Egwutuoha et al., 2013).
We consider parallel applications with system-level
checkpointing techniques to evaluate system scalabil-
ity under the storage performance constraint (Plank
et al., 1995; Agarwal et al., 2004).

According to the checkpoint/restart mecha-
nisms with different amounts of checkpoint data, we
completed the analysis and comparison to obtain the
storage wall laws.

In this subsection, we consider only the I/O
caused by the checkpoint/restart mechanism and
omit the I/O caused by the application itself, which
may exacerbate the storage wall. As a production
system, the test on the Tianhe-1A could not be ex-
tended to a larger scale. The Jaguar storage scaling
tests were made specifically to a large scale by the
researchers, and the follow-up work is based on the
results from the Jaguar storage scaling tests (Alam
et al., 2007; Fahey et al., 2008). The tests used the
IOR benchmark in the MPI I/O mode with a con-
stant buffer size (2MB, 8 MB, 32MB) per core, and
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they used two modes: one writing or reading with
one file per client, and the other for a shared file.
These results show the I/O aggregate bandwidth as
the number of processes increases. Here we con-
sider the N − 1 checkpointing pattern (Bent et al.,
2009). Since the major operations of checkpointing
are write operations, we use the results of the write
experiments to a share file by multiple clients.

We use Vout-mem-aggr to represent the aggregate
bandwidth of the shared storage system. Since the
data are transferred mainly between the memory and
the shared storage system, both D/Vmem and α are
zero. So, Eq. (12) can be simplified to

SP
Sto =

CSP

DP

Vout-mem-aggr
+Isint

, (15)

where P stands for the number of parallel processes.
Substituting SGustafson for SP , we obtain

SP
Gustafson-Sto =

C(f + (1− f)P )
DP

Vout-mem-aggr
+Isint

. (16)

For a large-scale parallel application, f is usually
small and can be omitted. Then we can obtain

SP
Gustafson-Sto =

CP
DP

Vout-mem-aggr
+Isint

. (17)

To obtain the relationship between Vout-mem-aggr

and P when P increases, we use the Matlab curve
fitting toolbox to analyze the storage scaling test
results (Alam et al., 2007; Fahey et al., 2008). We
find that two terms of the Gaussian function, i.e.,

Vout-mem-aggr

=a1 exp

{
−
(
P−b1
c1

)2
}

+ a2 exp

{
−
(
P−b2
c2

)2
}
,

(18)

can fit the Vout-mem-aggr curve for different numbers
of processes and give a small root mean square er-
ror (RMSE). Fig. 17 and Table 6 show the fitting
curves of the scaling test data including three dif-
ferent buffer sizes (2 MB, 8 MB, 32 MB) per core.
We find that the aggregate bandwidth of the storage
system first rises to a maximum and eventually de-
creases to an asymptotic level. The curves in Fig. 17
accurately reflect the trend in the storage perfor-
mance with a small error.
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Fig. 17 Curve fitting of the storage system aggregate
bandwidth by using two terms of the Gaussian func-
tion with the buffer size per core fixed at 2 MB (a), 8
MB (b), and 32 MB (c)

For different amounts of checkpoint data, paral-
lel applications with a checkpoint/restart mechanism
show a similar trend for the storage wall, but are to
a different degree affected by the storage wall. Here-
after, we detail the storage wall of the cases for full-
and incremental-memory checkpointing, while we
use partial-memory (10% and 30% memory) check-
pointing briefly for comparison.

1. Full-memory checkpointing. In this case, the
entire memory context is saved at one checkpoint for
a process. D is the size of the total memory. Since
each dual-core node has 4 GB memory (Table 5),
D = 4GB. Let P be the number of processes, Isint

the checkpointing interval, and Isser the average I/O
phase time of the process in serial mode. Here, we
suppose that the I/O bandwidth is 500 MB/s for one
node in serial mode, Isser = 4 GB / 500 MB/s = 8 s.
Then SP

Sto is

SP
G-Sto-fullckp

=
(Isint + 8)P
4P

a1e−((P−b1)/c1)
2
+ a2e−((P−b2)/c2)

2 +Isint
. (19)

Fig. 18 shows the variation trends of SP
Sto in

parallel applications with full-memory checkpointing
on Jaguar. The results are based on three types of
write aggregate bandwidth data (buffer sizes per core
at 2 MB, 8 MB, and 32 MB, respectively). Fig. 19
displays the SP

Sto variation trends in three different
checkpointing intervals (1, 3, and 6 h) under the
write aggregate bandwidth data of buffer size per
core at 32 MB.
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Table 6 Parameters related to the curve fitting of storage system aggregate bandwidth using two terms of the
Gaussian function

Buffer size a1 b1 c1 a2 b2 c2 RMSE

2 MB 4.73 887.3 1094 4.342 −5.489× 103 1.033× 104 0.06902
8 MB 10.46 823 1471 6.991× 1015 −4.984× 105 8.478× 104 0.1212
32 MB 10.05 1191 1703 1.570× 1016 −7.925× 105 1.346× 105 0.4897
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with full-memory checkpointing on Jaguar, for check-
pointing intervals of 1 h, 3 h, and 6 h, respectively
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32 MB)

2. Incremental-memory checkpointing. Incre-
mental checkpointing attempts to reduce the amount
of checkpoint data by saving only the differences
from the last checkpoint (Agarwal et al., 2004; Fer-
reira et al., 2014). In this case, since the size of the
first checkpoint data is the entire memory, the total
size of all saved checkpoints is at least equal to that
of the entire memory. Suppose that program Q runs
on Jaguar for 20 days, and that the mean time to
failure (MTTF) of the whole system is 10 days. We

can obtain

D ≥
Fullmemory +

⌊
Runtime
MTTF

⌋
Fullmemory

Runtime
Isint

+

⌊
Runtime
MTTF

⌋

=

4 +

⌊
20

10

⌋
4

20

Isint
+

⌊
20

10

⌋ =
6

10

Isint
+ 1

.

According to Eqs. (17) and (18), and D de-
scribed above, SP

Sto for incremental-memory check-
pointing can be changed to

SP
G-Sto-incrckp

≤ (Isint + 8)P
6

10/Isint + 1
P

a1e−((P−b1)/c1)
2
+ a2e−((P−b2)/c2)

2 +Isint

. (20)

Fig. 20 shows the comparison of SP
Sto among

applications with full-, partial-, and incremental-
memory checkpointing under the write aggregate
bandwidth data of buffer size per core at 32 MB.
Applications with partial-memory checkpointing are
the cases used to reveal the effect of checkpoint data
size on the system scalability, and we use 10% and
30% of the entire memory as the checkpoint data
size.

In Figs. 18–20, the storage-bounded speedup in-
creases initially and starts to drop as soon as it hits
the storage wall, i.e., the point Popt. This point is
called the ‘optimal parallel scale’ and implies that
parallel applications can achieve the largest storage-
bounded speedup in terms of the storage wall def-
inition. For large-scale parallel applications on su-
percomputers with a CDP architecture, the storage
wall may widely exist at the petascale level now and
the exascale level in the future. By comparing dif-
ferent lengths of time intervals between I/O phases
in Fig. 19, we find that the larger the compute pro-
portion of the parallel application compared to I/O,
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the more the appearance of the storage wall will be
postponed.

By comparing applications with full-, partial-,
and incremental-memory checkpointing, we find that
reducing the data size of I/O operations can push the
storage wall forward (Fig. 20). Based on the anal-
ysis results given in Eqs. (19) and (20), the system
designer can increase Vout-mem-aggr or Isint, and de-
crease D, i.e., improve the bandwidth or optimize
the computing and I/O ratio to push the storage
wall forward.

All the analyses are in accordance with the im-
pact factors of Section 5.1.

6.3 Mitigating storage wall effects

As demonstrated above, the storage wall may
exist in large-scale supercomputers especially in
forthcoming exascale supercomputing. Tackling this
challenge will require a combined effort from storage
system designers, file system developers, and appli-
cation developers. Our storage wall theory can give
researchers more insights into alleviating or even re-
moving the challenge:

1. The storage-bounded speedup model clearly
reveals the relationship between storage scalability
and compute scalability. The storage wall quantifies
the storage bottleneck as it describes the application
scalability characteristics under the storage perfor-
mance constraint.

2. Through the analysis of the storage wall, the
key parameters that affect the system scalability,
such as Vout-mem, D, Isint, and α, should be taken

into serious consideration. The system designer can
push the storage wall forward by increasing the I/O
bandwidth and the memory hit rate. For example,
global shared cache across multiple compute nodes
in memory can significantly increase the memory hit
rate (Liao et al., 2007; Frasca et al., 2011; Sisilli,
2015).

3. Based on the analysis of I/O architecture us-
ing the storage wall theory, the new I/O architecture
design and the usage method for new storage me-
dia can be guided by our theory to focus on solving
the key factors that affect scalability. Hence, a scal-
able I/O system design, maybe a new kind of dis-
tributed I/O architecture, may overcome the storage
wall limitation.

4. Now, the goal of parallel programming meth-
ods is to maximize the use of computing resources;
however, this may engender the storage wall problem
due to ignoring the storage constraint. It is imper-
ative that new parallel programming models should
focus on both the computing and I/O performances,
and our storage wall theory is able to provide more
recommendations.

7 Conclusions and future work

In this paper, we presented a storage-bounded
speedup model to describe system scalability under
the storage constraint and introduced for the first
time the formal definition of a ‘storage wall’, which
allows for the effects of the storage bottleneck on
the scalability of parallel applications for large-scale
parallel computing systems, particularly for those at
peta/exascale levels.

We studied the storage wall theory through the-
oretical analyses, real experiments, and case studies
using representative real-world supercomputing sys-
tems. The results verified the existence of the stor-
age wall, revealed the storage wall characteristics of
different architectures, and revealed the key factors
that affect the storage wall. Based on our study, a
balanced design can be achieved between the com-
pute and storage system, and newly proposed storage
architectures can be analyzed to determine whether
the parallel scalability is constrained by the stor-
age system or not. Our work enables researchers
to push the storage wall forward by designing or im-
proving storage architectures, applying I/O resource-
oriented programming models, and so on.
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In the future, our efforts will focus mainly on
the following aspects. For the storage wall, we will
refine the theory and explore alleviation parameters
in detail. At the same time, we will present methods
to optimize the I/O architecture and improve system
flexibility.
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Appendix: Derivation of Eq. (6)

In Section 4.1, the storage-bounded speedup is
relaxed to an upper bound. Here we describe the
derivation of the upper bound.

Suppose that

A =
T snon +N sIsser

T pnon +NpIpser

=
T snon + (T snon/Isint)Isser + Isser

T pnon + (T pnon/Ipint)Ipser + Ipser

and

B =
T snon + (N s − 1)Isser

T pnon + (Np − 1)Ipser

=
T snon + (T snon/Isint)Isser

T pnon + (T pnon/Ipint)Ipser
.

The difference between B and A is

Diff = B −A

=
T snon + (N s − 1)Isser

T pnon + (Np − 1)Ipser
− T snon +N sIsser

T pnon +NpIpser

=
IpserT snon − IsserT pnon + (N s −Np)IpserIsser

(T pnon + (Np − 1)Ipser)(T pnon +NpIpser)
.

According to the assumptions in Section 4.1, the
load is balanced on all nodes and the I/O load is in
proportion to the compute load when the compute
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load increases with the increase of the number of
processors.

Thus, Np is approximately equal to N s and
T pnon is less than or equal to T snon. Due to stor-
age performance degradation, Ipser is usually greater
than Isser, and this is verified by the experiments in
Section 6. Thus, we have (N s−Np)IpserIsser ≈ 0 and
IpserT snon − IsserT pnon ≥ 0. Based on the analysis
above, we find that the numerator of Diff is greater
than or equal to zero, and the denominator is greater
than zero. Therefore, B is greater than or equal to
A, and B is an upper bound of A.

Suppose that TP
Sto = (T pnon + NpIpser) ≈

(T pnon + (Np − 1)Ipser) and T pnon ≈ T snon. We
have

Diff = B −A =
(Ipser − Isser)T pnon

(TP
Sto)

2 .

For long-term running applications,

(Ipser − Isser)T pnon � (TP
Sto)

2.

Hence, in Eq. (6), we set the upper bound as the
value of storage-bounded speedup. Since Diff is neg-
ligible, this error will not affect the correctness of the
results in this study.


