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Abstract: Coalition formation is an important coordination problem in multi-agent systems, and a proper
description of collaborative abilities for agents is the basic and key precondition in handling this problem. In this
paper, a model of task-oriented collaborative abilities is established, where five task-oriented abilities are extracted
to form a collaborative ability vector. A task demand vector is also described. In addition, a method of coalition
formation with stochastic mechanism is proposed to reduce excessive competitions. An artificial intelligent algorithm
is proposed to compensate for the difference between the expected and actual task requirements, which could improve
the cognitive capabilities of agents for human commands. Simulations show the effectiveness of the proposed model
and the distributed artificial intelligent algorithm.
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1 Introduction

Coalition formation is an important coordina-
tion problem in multi-agent systems (MASs). In
some situations, a single agent is unable to imple-
ment a given task or cannot implement it effectively.
Agents need to coordinate with others to finish the
given task, and a coalition is formed to achieve this
goal.

Forming a coalition is an important way to co-
operate with others and many methods have been
proposed (Ketchpel, 1994; Shehory and Kraus, 1996;
Sandhlom and Lesser, 1997; Sellner et al., 2006).
Among these methods, game theory and social rea-
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soning are used primarily, as seen in Shehory and
Kraus (1998) and Sichman et al. (1998), respectively.
Game theory is used mainly to compare the effec-
tiveness of the formed coalition, rather than provid-
ing an algorithm to create it (Shehory and Kraus,
1998). Social reasoning based algorithms, such as
those in Sichman et al. (1998), An et al. (2007), and
Auer et al. (2015), use the ability of an ‘intelligent
agent’ to maintain an external description—goals,
actions, plans—of other agents and form a coalition
accordingly. Some methods of forming coalitions are
inspired by phenomena in the nature, and can be
found in Bonabeau et al. (1997), Haque and Egerst-
edt (2009), Du et al. (2010), and Haque et al. (2013).

Coalition formation has been applied in many
fields, such as smart grids (Gensollen et al., 2015; Ye
et al., 2015), search, and rescue (Zhao et al., 2016).
Ye et al. (2015) investigated the problem of dispatch
of distributed energy resources in smart grids. They
solved this problem via multi-agent coalition forma-
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tion with negotiation. However, many parameters
were hand-tuned, so it does not suit dynamic sys-
tems. Zhao et al. (2016) proposed an algorithm con-
sisting of a task inclusion phase and a task removal
phase. Tasks are assigned to an agent by sorting
the costs and making a consensus. Base on this,
Whitbrook et al. (2015) made a development and ex-
tension to enhance the performance of a distributed
heuristic algorithm using the novel concept of per-
formance impact (PI).

The task requirement in task allocation is usu-
ally estimated by a human or evaluation system, and
there may be a difference between the task require-
ment given by the human and the actual task re-
quirement. Thus, an artificial intelligent algorithm
is needed to improve the agents’ cognition about the
commands from human beings. Therefore, a cogni-
tive compensation mechanism is proposed combined
with a could model (Li and Du, 2014).

In this paper, first, task-oriented collaborative
capabilities are established to reflect their character-
istics towards the tasks. Second, a stochastic mech-
anism is proposed to reduce excessive competitions.
Third, the concept of cognitive inertia is proposed
which indicates the stable preference of the human.
A cognitive compensation mechanism is proposed to
reduce the difference between the estimated and the
actual task requirements.

2 Model description

2.1 Graph theory

The graph theory used in this study is intro-
duced. An undirected graph G is defined by a set
of elements called vertices, V(G), a set of elements
called edges, E(G). Associated with each edge are ei-
ther one or two vertices called its ends. N +1 agents
in a multi-agent system are regarded as the vertices
V = (0, 1, · · · , N) of graph G. vi denotes agent i or
vertex i in graph G. vij denotes the direction from
vertex i to vertex j. The set of neighbours of vertex i

is denoted by Ni. |Ni| is the cardinality of Ni, which
means the degree of agent i or vertex i in graph G.

2.2 Collaborative ability vector

Two tasks, reconnaissance mission and combat
mission, are considered here and the values of abili-
ties are tightly connected to tasks. Five abilities are

given for each task: communication, reconnaissance,
combat, motor, and energy, recorded as Cm, R, Ct,
M, and E for short, respectively. Two task-oriented
ability vectors are modeled as follows.

2.2.1 Reconnaissance mission oriented collaborative
ability vector

Ability could be affected by many factors. The
relationships between abilities and factors in the re-
connaissance mission are shown in Fig. 1.

According to these factors, five ability models
are given in the following.

Communication ability: The communication
ability of an agent is affected by three factors, i.e.,
degree of the agent, quality of the communication,
and mobility of the agent.

Degree factor: A larger degree means a stronger
cooperative communication ability. The degree is set
to be 7 in wireless communication. The degree factor
of agent i is given as follows:

Degvi = |Ni|/7. (1)

Quality factor: Received signal strength indica-
tor (RSSI) can be used here to evaluate the quality
of the communications between two agents. So, the
communication quality of agent i can be modeled as
follows:

Quavi =
1

|Ni|
∑

j∈Ni

s ∗min (RSSI (vij) ,RSSI (vji)).

(2)
Here, s denotes sensitivity, ranging from 0 to 1, and
RSSI(vij) means the received signal strength of agent
i from agent j, ranging from 0 to 1. RSSI(vji) is
defined analogously.

Mobility factor: RSSI can probably reflect the
distance between two agents. Based on RSSI(vij),
the mobility definition of agent i can be given as
follows:

Mobvij = ln
RSSItvij
RSSIt−1

vij

, (3)

where t denotes the current time specified in seconds.
The mobility of an agent can be obtained by calcu-
lating the average of the relevant mobility among the
agent and its neighbors, which is given by

Mobvi =
1

|Ni|
∑

j∈Ni

Mobvij . (4)
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Fig. 1 Relationships between abilities and factors

Table 1 Parameters of the detectors

Device Range Largest Probability of Maximum number of Location Solution
search angle finding targets traced targets precision

SAR Middle Middle Middle Middle Middle Middle, high
CCD Short Small Low Small Middle, high High
ERD Long Large High Large Low Low

Table 2 Digital parameters of the detectors

Device Range Largest Probability of Maximum number of Location Solution
search angle finding targets traced targets (normalized) precision

SAR 0.5 0.5 0.5 0.5 0.5 0.8
CCD 0.3 0.3 0.3 0.3 0.8 1.0
ERD 1.0 1.0 1.0 1.0 0.3 0.3

Table 3 Paired comparisons

Parameter Range Largest Probability of Maximum number Location Solution
search angle finding targets of traced targets precision

Range 1 1/3 1/5 1/3 3 3
Largest search angle 3 1 1/3 3 3 3
Probability of finding targets 5 3 1 5 5 5
Maximum number of traced targets 3 1/3 1/5 1 1 1
Location precision 1/3 1/3 1/5 1 1 1
Solution 1/3 1/3 1/5 1 1 1

Therefore, the value of the communication abil-
ity can be calculated as follows:

Ac = ω1 · Degvi + ω2 · Quavi + ω3 · Mobvi , (5)

where ω1, ω2, and ω3 are positive and ω1+ω2+ω3 =

1. Based on experience, ω1, ω2, and ω3 are roughly
given as 0.3, 0.5, and 0.2, respectively.

Reconnaissance ability: The reconnaissance
ability of the agent is affected by two factors, i.e.,
range of the detector and precision of the detec-
tor. Three detectors are considered: synthetic aper-
ture radar (SAR), charge-coupled device (CCD), and
electronic reconnaissance device (ERD). The param-
eters of these devices are listed in Table 1.

The reconnaissance ability of the agent is de-

fined as follows:

Ar = Dsar · ξsar +Dccd · ξccd +Derd · ξerd. (6)

Here, Dsar, Dccd, and Derd denote the ability of three
devices, and the sum of the three non-negative num-
bers is equal to 1. ξ denotes the electrical interfer-
ence coefficient, indicating the degree of interference
by the electronic equipment, and ξ ∈ [0, 1]. To calcu-
late the value of the reconnaissance ability, the ana-
lytic hierarchy process (AHP) method (Saaty, 1990;
2008) is applied here. First, parameters in Table 1
are transferred into the accurate numbers shown in
Table 2.

Paired comparisons of the qualitative parame-
ters are given in Table 3.
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According to the AHP method, consistency
checking is necessary. The largest eigenvalue λmax

of matrix B formed by Table 3 is 6.5576. The con-
sistency index (CI) and consistency ratio (CR) are
calculated as follows:

CI =
λmax − n

n− 1
= 0.111, (7)

CR =
CI

RI
=

0.111

1.24
= 0.0895 < 0.1. (8)

Here, n denotes the order of the matrix, set to 6 here,
and the random index (RI) is given in Table 4.

Table 4 Values of the random index (RI)

n 1 2 3 4 5 6 7 8

RI 0 0 0.58 0.90 1.12 1.24 1.32 1.41

The eigenvector, denoted by C, associated with
the maximum eigenvalue λmax, is normalized. The
result after normalization is shown as follows:

C = [0.1073, 0.2157, 0.4327, 0.1105, 0.0699, 0.0699].

(9)
Then, the abilities of detectors, denoted by D, can
be obtained by calculating the product of B and C.
After normalization, D is shown as follows:

D = [Dsar, Dccd, Derd] = [0.3, 0.2, 0.5]. (10)

Combat ability: The combat ability is affected
by three factors, i.e., fire power, ammo capacity, and
probability of a first-round hit. Then the combat
ability of an agent is defined as follows:

At =
fmax

Fmax
· fleft · ρ. (11)

Here, fmax denotes the maximum fire power of the
current agent, Fmax denotes the largest one of all
fmax, fleft denotes the allowance for the ammunition,
and ρ denotes the probability of a first-round hit.

Motor ability: The motor ability is affected by
three factors, i.e., maximum speed, slope coefficient,
and traffic coefficient. Motor ability is defined as
follows:

Am =
vmax

Vmax
· α · β. (12)

Here, vmax denotes the maximum speed of the cur-
rent agent, Vmax denotes the largest one of all vmax,
and α denotes the slope coefficient, defined by

α =

{
1−√

3tan θ, θ < π/6,

0.001, else,
(13)

where θ denotes the slope between the agent and the
ground, and it is less than π/6 here.

β in Eq. (12) denotes the traffic coefficient (Ta-
ble 5).

Table 5 Values of the traffic coefficient

Land- Road Dirt Grass Hill Sand Wood
form road land land land land

Level 0 1 2 3 4 5
Coeff. 1 0.8 0.6 0.4 0.3 0.8

Coeff.: coefficient

Energy ability: The energy ability is affected by
two factors, remaining oil and remaining electronic
power. The energy ability is defined as follows:

Ae = 0.5
lleft
Lmax

+ 0.5
eleft

Emax
. (14)

Here, lleft denotes the remaining oil and Lmax the
longest distance that one agent can run. Therefore,
the reconnaissance mission oriented feature vector is

A = [Ac, Ar, At, Am, Ae] . (15)

2.2.2 Combat mission oriented collaborative ability
vector

The distance between the agent and the target
needs to be considered in the combat mission. The
relationship between features and factors in the com-
bat mission is shown in Fig. 2.

The communication ability and motor ability
are the same as those in the reconnaissance mission.
Reconnaissance, combat, and energy abilities will be
shown in the following part.

Reconnaissance ability: Considering the fac-
tor of distance, reconnaissance ability is defined as
follows:

A′
r = psar · ξsar + pccd · ξccd + perd · ξerd, (16)

where p denotes the probability of finding targets.
psar is defined as follows:

psar = exp

(
− d

d0

)
, (17)

where d denotes the distance between the agent and
the target, d0 indicates the maximum distance over
which a device can find the target, and pccd and perd

are defined analogously.
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Fig. 2 Relationships between abilities and factors

Combat ability: Considering distance (Diao
et al., 2014), combat ability is defined as follows:

A′
t =

fmax

Fmax
· fleft · ρ · fdist, (18)

where fdist is given by

fdist =

⎧
⎪⎨

⎪⎩

1, dt < dmk,

2
− dt−dmk

dm−dmk , dmk ≤ dt ≤ dm,

0.5e−
dt−dm

dm , dt > dm,

(19)

where dt denotes the distance between the agent and
the target, dm denotes the weapon range, and dmk

denotes the radius of the non-escaped zone.
Energy ability: Considering distance, energy

ability is defined as follows:

A′
e =

lleft
lleft + de

. (20)

The model is introduced from Bonabeau et al.
(1997). Here, de denotes the distance between the
agent and the target. Therefore, the combat mission
oriented feature vector is

A′ = [A′
c, A

′
d, A

′
t, A

′
m, A

′
e] . (21)

2.3 Task demand vector

Task demands for agent abilities vary. A task
demand vector is established using AHP to repre-
sent a task. Agents form a coalition to reach the
task demand, which means that the coalition is able
to accomplish this task. Normalized task demand
vectors for two missions, the reconnaissance mission
and the combat mission, are established as follows.

Reconnaissance mission demand vector: In the
reconnaissance mission, paired comparisons between
abilities are as given in Table 6.

Table 6 Paired comparisons

Ability Cm R Ct M E

Cm 1 1/5 2 1/2 1
R 5 1 3 3 2
Ct 1/2 1/3 1 1 1/2
M 2 1/3 1 1 1
E 1 1/2 2 1 1

According to the AHP algorithm, the normal-
ized task demand vector is obtained as follows:

Wd = [0.13, 0.43, 0.11, 0.16, 0.17] . (22)

Combat mission demand vector: In the recon-
naissance mission, using the AHP method, paired
comparisons between abilities are as given in Table 7.

Table 7 Paired comparisons

Ability Cm R Ct M E

Cm 1 1 1/5 1/2 1/3
R 1 1 1/3 1 1/3
Ct 5 3 1 3 2
M 2 1 1/3 1 1/2
E 3 3 1/2 2 1

Following the same calculation as above, we can
obtain the normalized demand vector:

Wt = [0.08, 0.11, 0.41, 0.14, 0.26]
T
. (23)

Then the ability or desire to execute the two
tasks will be calculated as follows:

Pd = A ·Wd, Pt = A′ ·Wt. (24)

The reality task demands for two missions are
denoted by RWd = h · Wd and RWt = k · Wt. h

and k are given by the task publisher. The ability of
the coalition needs to reach the corresponding reality
task demand, such as RWd and RWt.
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3 Coalition formation algorithm with
stochastic mechanism

The distributed coalition formation algorithm in
Lu and Fang (2016) is modified here. In Lu and Fang
(2016), agent i chooses a coalition to execute a task,
such as task k, based on the term ‘task readiness’
denoted by TRi

k, which consists of task profit, and
the term ‘task fitness’ denoted by TPi

k and TFi
k,

respectively. When the coalition ability cannot reach
the task demand, agents choose the other coalition.
The learning automata algorithm was used in Lu and
Fang (2016) to adapt the weights of TPi

k and TFi
k.

TRi
k is calculated in Lu and Fang (2016) as follows:

TRi
k = ωi

k1(t) · TPi
k + ωi

k2(t) · TFi
k, (25)

where ωi
k1(t) and ωi

k2(t) are calculated using the
learning automata algorithm as follows:
{
ωk1(t) = ωk1(t− 1) + α(1 − ωk1(t− 1)),

ωk2(t) = ωk2(t− 1)(1− α),
(26)

where α ∈ (0, 1) denotes the learning coefficient.
As can be seen, all agents make decisions at the

same time interval, which leads to excessive competi-
tion. To reduce the competition, Eq. (26) is modified
as follows:
{
ωi
k1(t

i
s) = ωi

k1(t
i
s−1) + α(1 − ωi

k1(t
i
s−1)),

ωi
k2(t

i
s) = ωi

k2(t
i
s−1)(1 − α),

(27)

where tis denotes the start time of step s when an
agent i makes a decision. tis is calculated as follows:

tis =
1

|Ni|+ 1

∑

j∈{Ni,i}
tjs−1 + (1 + ε), (28)

where ε is a stochastic number in (0.01, 0.05), follow-
ing the event known as a small probability event and
acceptable here. The information about the coali-
tions needs to be updated when agent i makes a
decision. Hence, TRi

k is modified as follows:

T̃R
i

k = (ωi
k1(ts)·TPi

k+ωk2(ts)·TFi
k)

RTk − CAk(ts)

RTk
,

(29)
where RTk denotes the requirement of task k, and
CAk(ts) denotes the capability of coalition k at time
ts.

Therefore, agent i makes a decision as follows:

kmax = argmax
k

T̃R
i

k. (30)

Agent i chooses Ckmax . As can be seen from
Eq. (29), agent i makes a decision based on the
real-time information of the coalitions. As the re-
quirement of every task is limited, this procedure
could reduce excessive competition, which enhances
the probability to get into the final coalition for the
agent. Besides, this procedure could benefit the next
round of decision making. In addition, agents make
decisions at almost the same time, as the ε in Eq. (28)
is a vary small number. Thus, the total time cost
will not be much larger in each iteration of decision
making.

4 Cognitive inertia and cognitive com-
pensation

The stochastic mechanism proposed in Section 3
could reduce the exclusive competition during coali-
tion formation. However, there is still a problem of
guaranteeing the accuracy of the task requirement
estimation made by the human commanders, since
there will always be differences between the actual
task requirements and their estimates. This is a
crowd intelligence system organized by agents, hu-
mans, and networks, as summarized in Pan (2016).
Therefore, to reduce such differences, a cognitive
compensation mechanism is proposed based on the
cognitive inertia. The cognitive inertia is defined as
follows:
Definition 1 The fact that a human always calcu-
lates the task requirement using his/her own evalua-
tion standard which will not change to a large extent
for a human being is called the cognitive inertia.

With the help of the cognitive inertia, cogni-
tive compensation is used for the human. The
requirement of task k is given as RTk =

{RT1
k,RT2

k, · · · ,RTm
k }, where m denotes the total

number of the capabilities in task k. The ca-
pabilities of a single agent i is given as ACi =

{ac1i , ac2i , · · · , acmi }. Usually, the coalition Ck that
executes task k is formed when the following condi-
tion holds:

∑

i∈Ck

ACl
i ≥ RTl

k, ∀ l ∈ [1,m]. (31)

To deal with the difference between the task
requirement and the actual task requirement, a cog-
nitive compensation mechanism is proposed to verify
RTk.
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Every agent, such as agent i, has a cogni-
tive compensation rate vector γi = [γ1

i , γ
2
i , · · · , γm

i ],
where γm

i denotes the cognitive compensation rate
for the capability indexed by m in RT. The proce-
dure of the compensation is carried out as follows.
Initially, coalition Ck is formed when Eq. (28) holds,
and then task k is executed. When the mission is
over, agents calculate the compensation rate γl

i for
the next commissions. The calculation of γl

i is as
follows:

γl
i =

RTl
k − (Cl

k − C̃l
k)

RTl
k

, ∀ l ∈ [1,m], (32)

where C̃l
k denotes the capability indexed by l of coali-

tion Ck when the mission is over, and Cl
k denotes the

capability when the coalition is formed. Thus, RTk

is verified as

R̃T
l

k = RTl
k(1 + γl

i), ∀ l ∈ [1,m]. (33)

γl
i is task independent, and the agents could

make it more reasonable by communicating with the
agents of other tasks. Here the concept of the could
model is used to improve the rationality. The digi-
tal characteristics of a cloud are [Ex,En,He], which
denote expectation, entropy, and super entropy, re-
spectively. Here γl

i is regarded as a drop, a concept
in the could model. From the perspective of agent i,
a cloud consists of drops {γl

ij |j ∈ Ni}. Exi is figured
out through data fitting, and the fitting curve is as
follows:

ylij = exp

(
−(γl

ij − Exl
i)

2

2Enl
i

2

)
, ∀ j ∈ Ni, ∀ l ∈ [1,m],

(34)
where ylij denotes the unified number of drops, which
equals γl

ij , and maxj∈Ni y
l
ij = 1.

Enl
i is the standard deviation of {γl

ij |j ∈ Ni}
and Heli is the standard deviation of {Ẽn

l

ij |j ∈ Ni},
where

Ẽn
l

ij =

√
−(γl

ij − Exi)
2

ln yij
, ∀ j ∈ Ni, ∀ l ∈ [1,m].

(35)
After [Exl

i,Enl
i,Heli] have been calculated, γl

i is
updated as follows:
{

γl
i = normrnd(Exi,

˜En)li, ∀ l ∈ [1,m],

Enl
i = normrnd(Enl

i,Heli), ∀ l ∈ [1,m],
(36)

where normrnd(x, y) returns a random number that
obeys the normal distribution with x being the mean
value and y the standard deviation.

5 Simulation

Three kinds of agents, 15 in total, are set here,
denoted by H, M, and S, which are labeled by blue
box, red box, and green box, respectively (references
to color refer to the online version of the figure). The
parameters of the agents are given in Table 8.

Table 8 Parameters of agents

Agent Detectors Maximum Probability of a
type assembled fire power first-round hit

H SAR, CCD, ERD 0.5 0.85
M SAR, CCD 1.0 0.77
S CCD, ERD 0.7 0.82

Agents patrol in the area of the reconnaissance
mission and then the combat mission. To distin-
guish the ability of an agent, the ability of an agent
to execute a task is called desire here. The desire of
an agent to execute the reconnaissance mission and
the combat mission is shown in Figs. 3 and 4, respec-
tively.

−20 −10 0 10 20 30 40 50 60 70
−20

−10

0

10

20

30

40

50

60

70

x (m)

y 
(m

)

1 0.761

2 0.715

3 0.762
4 0.759

5 0.751

6 0.537

7 0.570

8 0.576

9 0.524

100.528

110.641

120.639

130.629140.631

150.610

Fig. 3 Desire for the reconnaissance mission

Agents patrol in the area of 90 m × 90 m. The
desire of an agent is shown at the top right of the
box. The blue point in the center of Fig. 4 means the
target, and the blue circle means the range of the fire
power in relation to the target.
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Fig. 4 Desire for the combat mission

The five abilities of agents in the multi-agent
system associated with Figs. 1 and 2 are shown in
Tables 9 and 10, respectively.

Table 9 Five abilities of agents for the reconnaissance
mission

Agent Cm R Ct M E

1 0.3949 1.0000 0.3345 0.6299 0.8380
2 0.3002 1.0000 0.3229 0.4287 0.8346
3 0.4133 1.0000 0.3278 0.6299 0.8341
4 0.3877 1.0000 0.3336 0.6299 0.8330
5 0.3334 1.0000 0.3237 0.6299 0.8338
6 0.0429 0.5000 0.5997 0.6788 0.8355
7 0.3487 0.5000 0.6049 0.6299 0.8366
8 0.4156 0.5000 0.5942 0.6299 0.8337
9 0.2464 0.5000 0.6054 0.4287 0.8340
10 0 0.5000 0.5677 0.6788 0.8370
11 0.0429 0.8000 0.4410 0.6299 0.8349
12 0.2684 0.8000 0.4514 0.4287 0.8317
13 0.0429 0.8000 0.4416 0.5557 0.8371
14 0.0429 0.8000 0.4628 0.5557 0.8339
15 0.0429 0.8000 0.4473 0.4287 0.8368

In Fig. 3 and Table 9, more neighbors and de-
tectors enhance the desire of an agent to execute the
reconnaissance mission. In Fig. 4 and Table 10, agent
8 and agent 2 are of almost the same distance from
the target, while agent 8 has stronger abilities in
terms of combat, motor, and energy (Table 10), and
agent 8 is more able to execute the combat mission.
Although agent 8 has a stronger combat ability than
agent 2, and agent 2 is closer to the target than agent
8, which makes the energy sufficient. For the agents
out of the blue circle, their combat ability is much

Table 10 Five abilities of agents for the combat mis-
sion

Agent Cm R Ct M E

1 0.3112 0.1570 0.0333 0.6299 0.4818
2 0.0429 0.3465 0.2129 0.4287 0.6583
3 0.0429 0.1079 0.0212 0.4287 0.4109
4 0.3368 0.5948 0.2460 0.6299 0.8204
5 0.3011 0.5195 0.2254 0.6788 0.7804
6 0.2384 0.1152 0.3828 0.6788 0.6221
7 0.3593 0.0382 0.0519 0.6299 0.4657
8 0.2406 0.1356 0.3895 0.6299 0.6495
9 0.0429 0.0081 0.0230 0.4287 0.3380
10 0.2498 0.0357 0.0490 0.5557 0.4636
11 0.3217 0.1357 0.0357 0.6299 0.4438
12 0.2348 0.3519 0.3057 0.6299 0.6793
13 0.0429 0.1223 0.0324 0.5557 0.4338
14 0.2498 0.1120 0.0326 0.5557 0.4146
15 0.0429 0.2557 0.2151 0.5557 0.5840

weaker than that of the agents within the circle.
In coalition formation simulation, 30 enemies

are randomly distributed in three areas, and 30
agents are assigned in three coalitions to eliminate
the enemies. All are set to three different kinds. The
simulation is shown in Fig. 5.

Fig. 5 Simulation of task execution

One hundred rounds of task allocation are sim-
ulated, where the energy abilities, detectors assem-
bled, and first-round fit probability are given ran-
domly in each round. The success rate of task ex-
ecution is 97%. The strategy of destroying enemies
is not studied here. Simulation results have shown
the effectiveness of the established model and the
distributed algorithm.

During each of these 100 rounds of task execu-
tion, each required capability for a task is estimated
by a human being. The redundancy of the capability
before and after compensation for five capabilities is
shown in Figs. 6a–6e.
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Fig. 6 Redundancy of the first (a), second (b), third
(c), fourth (d), and fifth (e) capability before and after
compensation

Redundancy is calculated as

Redundancy =
RT − ATR

RT
, (37)

or

Redundancy =
R̃T − ATR

R̃T
. (38)

Figs. 6a–6c show that this human being prefers
to estimate higher and different values for different
capabilities. The compensation mechanism can re-
duce the gap between the estimate and the actual
value, avoiding 60% of redundancy.

6 Conclusions

The models of task-oriented collaborative abil-
ities are designed for coalition formation. Exclusive
competitions during coalition formation are reduced
by proposing a stochastic mechanism. In addition,
an artificial intelligent algorithm named cognitive
compensation is proposed to help agents understand
the commands from human beings. Numerical simu-
lations show the validity of the proposed model and
the distributed artificial intelligent algorithm.
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