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Abstract: The density peak (DP) algorithm has been widely used in scientific research due to its novel and effective
peak density-based clustering approach. However, the DP algorithm uses each pair of data points several times
when determining cluster centers, yielding high computational complexity. In this paper, we focus on accelerating
the time-consuming density peaks algorithm with a graphics processing unit (GPU). We analyze the principle of the
algorithm to locate its computational bottlenecks, and evaluate its potential for parallelism. In light of our analysis,
we propose an efficient parallel DP algorithm targeting on a GPU architecture and implement this parallel method
with compute unified device architecture (CUDA), called the ‘CUDA-DP platform’. Specifically, we use shared
memory to improve data locality, which reduces the amount of global memory access. To exploit the coalescing
accessing mechanism of GPU, we convert the data structure of the CUDA-DP program from array of structures to
structure of arrays. In addition, we introduce a binary search-and-sampling method to avoid sorting a large array.
The results of the experiment show that CUDA-DP can achieve a 45-fold acceleration when compared to the central
processing unit based density peaks implementation.
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1 Introduction

Clustering is an unsupervised classification tech-
nique that aims to separate unlabeled datasets
into finite categories or clusters (Xu and Wunsch,
2005). Because clustering can find hidden patterns
in datasets, it has been widely used in scientific re-
search, such as machine learning (He et al., 2016),
computer vision, and bioinformatics. Several clus-
tering algorithms have been proposed to fit various
situations, but each algorithm has its drawbacks.
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K-means (MacQueen, 1967) and K-medoids (Park
and Jun, 2009) methods take the centers of the data
points as the corresponding cluster centers; however,
such centers do not apply to nonspherical clusters,
and the clustering results are influenced by the num-
ber of clusters. Hierarchical clustering algorithms
(e.g., balanced iterative reducing and clustering us-
ing hierarchies (BIRCH) (Zhang et al., 1997)) orga-
nize data into a hierarchical structure according to
the proximity matrix. However, the time complexity
of such algorithms is high, and the number of clusters
needs to be specified in advance. A model-based clus-
tering algorithm, self-organizing map (SOM) (Koho-
nen, 1990), sets a model for each cluster and finds the
best fit for the model; however, the model is not nec-
essarily correct, and the clustering result is sensitive
to the parameters.
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The density peak (DP) clustering algorithm was
developed by Rodriguez and Laio (2014). It is based
on density and distance theory. DP considers data
points surrounded by neighboring points with lower
local density as cluster centers. Here, ‘lower’ means
that the local density of the point is lower than that
of at least one point within a certain range. It is
observed that cluster centers are far away from each
other, meaning that the cluster centers have rela-
tively large distance from data points with a higher
local density.

Compared with other previous clustering algo-
rithms, DP has many advantages. Unlike K-means
and K-medoids (Park and Jun, 2009) which are effec-
tive only on spherical clusters, DP is able to detect
arbitrary clusters. In addition, the accuracy of DP is
unnecessarily depending on the capability of the trial
probability to represent the data. In contrast with
DP, the distribution-based algorithms (e.g., Gau-
ssian mixture model (GMM) (Rasmussen, 2000)) re-
quire data points with a mix of predefined proba-
bility distribution functions to obtain good results.
Furthermore, DP can automatically detect cluster
centers with only the distance between data points,
while K-means and density-based spatial clustering
of applications with noise (DBSCAN) (Ester et al.,
1996) require prior knowledge about the dataset. For
example, K-means requires the number of clusters,
and ε and minPts are needed for DBSCAN. Last but
not least, DP assigns all data points to clusters at
one time, which means that it can avoid the con-
vergence, whereas other algorithms may have local
minimum results with improper initial states. As a
convenient, novel, and effective clustering algorithm,
DP has been widely applied in a variety of fields (e.g.,
time series analysis (Begum et al., 2015), biochemi-
cal simulation (Zamuner et al., 2015), and computer
vision (Dean et al., 2015)) and shown good results.

Although DP has many attractive characteris-
tics, its computational complexity is very high, es-
pecially with the increase of data size and data di-
mension. This characteristic hampers the wide us-
age of the DP algorithm. To decide the cluster
centers and correctly classify the points to the cor-
responding cluster, DP needs to compute two ele-
ments, local density ρ and distance δ, of each point
with higher density. Both of these elements depend
on the distances between all pairs of data points.

Assuming that the size of the dataset is N, the com-
putation complexity of the distance between each
pair of points is O(N2). Moreover, similar to that
of ε in DBSCAN, the magnitude of local density is
sensitive to the threshold (denoted by dc) which de-
termines that the average number of neighbors is
around 1% to 2% of the total number of data points.
Generally, the procedure of computing dc is imple-
mented by sorting the values of all the distances, and
then finding their locations in the sorted distance list.
As we know, sorting a large array is very expensive.
For large-scale and high-dimensional datasets, the
time consumption is too high.

To relieve the time consumption problem, in the
past few years, some researchers have devoted them-
selves to accelerating DP using parallelization and
distribution methods. Zhang et al. (2016) proposed
an approximate algorithm named LSH-DDP, which
exploits locality-sensitive hashing (LSH) and paral-
lelizes DP with a MapReduce model. Li et al. (2016)
accelerated the computation of distance and thresh-
old in DP with a graphics processing unit (GPU).
The implementation is based on JCuda and an ac-
celeration only about 7 folds is achieved; however,
the power of GPU computation has not been effec-
tively exploited.

In this paper, we propose a GPU-accelerated
DP algorithm with compute unified device architec-
ture DP (CUDA-DP). In this acceleration algorithm,
we redesign the data structure of the data point ar-
ray. We do not use the traditional array of structure
(AOS), but the structure of array (SOA) form. Ex-
tracting data point features from the same dimen-
sion and putting them into a large array in which
the features of the same dimension are stored con-
tiguously, can exploit the global memory coalescing
mechanism to avoid data access divergence. Consid-
ering the imprecision property of dc, we introduce
a sampling method to compute the approximate dc
and allow a trade-off between sampling and the bi-
nary search method. CUDA-DP also optimizes the
process of computing δ. We use shared memory and
perform reduction twice to obtain δ for each data
point, avoiding circular dependencies. Compared
with the central processing unit (CPU) based DP
implementation, the CUDA-DP algorithm achieves
an acceleration larger than 45 folds.
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2 Density peak preliminaries

2.1 Introduction

DP is a new clustering algorithm proposed
by Rodriguez and Laio (2014). The algorithm
determines cluster centers based on the idea that
cluster centers are surrounded by neighbors with a
lower local density ρ, and at a relatively large dis-
tance δ from any other higher density points. The
DP clustering process can be divided into five steps:
(1) calculating the distance matrix, (2) estimating
dc, (3) computing the local density, (4) computing
the minimum distance δ from a data point with
higher density, and (5) finding the cluster centers
and assigning the remaining data points to the cor-
responding cluster. The detailed DP algorithm is
illustrated in Algorithm 1.

Algorithm 1 Density peak algorithm
1: Let {pi}Ni=1 be the data points;
2: Compute distance {di,j}Ni,j=1;
3: Find a reasonable threshold dc;
4: Compute local density {ρi}Ni=1;
5: Obtain distance {δi}Ni=1 and the index of the nearest

point with higher density;
6: Decide cluster centers with relatively large ρ and δ;
7: Assign remaining points to the corresponding cluster

centers.

To determine the cluster centers, two properties,
local density ρ and distance δ, of each point should
be calculated. The local density ρi of point i can be
calculated by

ρi =
N∑

i�=j

exp

(
−
(

di,j

dc

)2
)
, (1)

where di,j is the distance between data points i and
j, and dc is the threshold called the ‘cutoff distance’.
It should be noted that the definition of distance
can be Euclidean distance, Manhattan distance, etc.
There are also some other accurate measures to es-
timate the local density (Fukunaga and Hostetler,
1975; Cheng, 1995).

When the amount of data is small, the relative
magnitude of the local density may be affected by
the choice of dc, whereas in large-scale data, the DP
algorithm is strongly robust in the selection of dc.
Rodriguez and Laio (2014) suggested that one should
choose a reasonable dc so that the average number of

neighbors with a higher local density is around 1%
to 2% of the total number of points. To estimate the
dc that satisfies this requirement, an effective way is
the binary search method.

The binary search method first finds a reason-
able maximum value dcmax and a minimum value
dcmin as a boundary. If the number of elements that
are smaller than (dcmin + dcmax)/2 in the distance
matrix is greater than 2%N2, then (dcmin + dcmax)/2

is set to the new maximum value boundary dcmax ;
otherwise, it will be set as the new minimum value
boundary dcmin. The detailed execution flow of the
binary search method is shown in Algorithm 2.

Algorithm 2 Binary search method
Input: dcmax , dcmin , p // (dcmax ,dcmin) is the initial search
// bound, and p controls the precision of dc
Output: dc

1: Let M be the distance matrix
2: while dcmax − dcmin > p do
3: n ← CountIf(M, (dcmin + dcmax)/2) // count the

// elements smaller than (dcmin + dcmax )/2

4: if n > 2%N2 then
5: dcmax ← (dcmin + dcmax)/2

6: else
7: dcmax ← (dcmin + dcmax)/2

8: end if
9: end while

10: return (dcmin + dcmax)/2

The distance δi of point i is defined as

δi = min
j|ρj>ρi

(di,j) , (2)

where j is the index of the point that is the nearest
neighbor in the dataset in which the data point has
a higher density than point i. That is, among all the
points with a higher density than point i, point j has
the shortest distance (δi) from point i. For the point
whose local density is the largest in the dataset, it is
obvious that the point is a cluster center; thus, δ for
this point is defined as δi = maxj (di,j). The points
with a large δ and a relatively high ρ are considered
as cluster centers; points with a relatively high ρ and
a low δ are isolated.

The algorithm assigns the remaining point after
finding the cluster centers in one step. Let qi denote
the index of sorted {ρi}N1 in descending order. Then
we assign each point to the same cluster as its near-
est neighbor from data points q1 to qN . After this
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process, each of the data points will be assigned to
the cluster to which it belongs, and the clustering
process is completed.

2.2 Execution time analysis of the density
peak

Given a dataset of size N , the time complexi-
ties of computing the distance matrix, estimating dc,
and calculating the local density and distance δ are
all O(N2), whereas the computational complexity of
assigning labels is only O(N). To study the time
overhead of the four major computational processes
in the sequential algorithm, we test each part of the
sequential program with different dataset sizes. The
test results indicate that the execution time of the
sequential program rises non-linearly with the num-
ber of data points (Fig. 1a). Among the four parts
of the sequential program, the calculation of local
density and the time overhead of estimating dc grow
fastest. The time required for computing threshold
dc is 600 ms and 2500 ms when the sizes of datasets
are 10 000 and 20 000, respectively. The total
execution time of the program can be calculated from
the four components. According to Fig. 1a, we can
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Fig. 1 Time overheads of the sequential program for
2D datasets with different sizes (a) and under differ-
ent data point dimensions (b) (Each of the datasets
contains 1024 points)

obtain the time distribution of different parts easily,
and component dc consumes more than 30% of the
total execution time. We further test the effect of the
dimensions of the data points on the time overhead
of computing the distance matrix. The results are
shown in Fig. 1b. We can see that as the data di-
mensions are multiplied, the time of computing the
distance matrix grows linearly.

2.3 Parallel potential and challenges

Compared with that of a traditional CPU, GPU
computation capability is significantly higher. As
mentioned earlier, the distance matrix and local den-
sity computations require a mass of floating-point
operations, which gives GPU a huge opportunity to
accelerate these computation-intensive components.
Because the DP algorithm shows a good data-level
parallelization, a large number of threads start pro-
cessing different points simultaneously with a GPU.
Moreover, the GPU memory system is more efficient
than that of CPU. The bandwidth of GPU’s global
memory is several times that of CPU’s main mem-
ory. This gives GPU an advantage when accessing
large-scale data. In the DP algorithm, finding clus-
ter centers is based on the distance matrix, mean-
ing that the large distance matrix with size N2 will
be read and written at least once. Higher memory
bandwidth can significantly reduce the data access
overhead.

As explained in the previous subsection, the
time taken to calculate parameter dc is relatively
long. Although the binary search method can
quickly find dc in a reasonable range, it needs sev-
eral iterations to reduce the dc selection range until
the accuracy requirement is met. In each iteration,
counting the number of elements whose value is less
than dc over the whole distance matrix consumes
much time. In fact, the counting process can be sped
up significantly with the GPU’s shared memory.

The same operation is executed for each data
point when computing ρ and δ. The local density of
each data point i requires transform and the reduce
operations of the distance from point i to all of the
other points. The process of calculating δ is to loop
through all the data points to find the distances from
the higher density points. Because calculating ρ and
δ for a data point does not affect the calculation of
other data points, we can calculate these two metrics
for the N data points in parallel.
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Each element di,j of the distance matrix is cal-
culated by reading the M -dimensional data of data
points i and j. The computations of the elements of
the distance matrix are independent of each other;
thus, parallel implementation is appropriate for the
computation of the distance matrix; the acceleration
effect of parallel implementation is more remarkable
as data amount N and data dimension M increase.

Parallelization with GPU requires solving the
following issues: Calculating the distance matrix re-
quires two memory accesses for each element; how-
ever, the computational overhead of a pair of data
points is not large. As a result, the computational
resource utilization rate of GPU is not high, and the
memory access cost becomes the bottleneck in cal-
culating the distance matrix. Minimizing the num-
ber of memory accesses is the key to improving the
efficiency of parallel implementation. In other GPU-
based implementations, a lot of duplicate memory
accesses waste computing resources. Moreover, dc
is a robust parameter; thus, it is not necessary to
compute the exact dc in large-scale datasets. The
process of estimating dc requires a trade-off between
accuracy and efficiency. Furthermore, computing the
local density of each data point and the distance δ

needs to be repeated N times, and there are circu-
lar dependencies in these two processes. Efficient
parallel implementations should avoid these loops.

2.4 Related works

Previous studies on the parallelization of clus-
tering algorithms include parallel clustering algo-
rithms based on distributed systems and GPU-based
parallel accelerations. For the characteristics of
distributed systems, researchers have applied some
new data structures to improve parallelism in the
clustering algorithm (Arlia and Coppola, 2001; Xu
et al., 2002). Some researchers have studied boost-
ing the performance of parallel clustering algorithms
by improving the load balance of distributed sys-
tems (Garg et al., 2006). In widely used distributed
architectures, such as MapReduce and Spark, some
researchers have developed efficient parallel cluster-
ing algorithms (Zhao et al., 2009; Sarazin et al.,
2014; Meng et al., 2016). Because GPUs are widely
applied to parallel acceleration, a number of stud-
ies have focused on the use of GPU-accelerated
clustering algorithms. A GPU-based K-means im-
plementation (Shalom et al., 2008) achieves 7- to

22-fold gain by avoiding the need for data and clus-
ter information transfer between GPU and CPU. G-
DBSCAN (Andrade et al., 2013) can be 100 times
faster than the sequential version by using graphs to
explore various parallelization opportunities.

Similar to our study, fast search and find of den-
sity peaks (FSFDP) focuses on paralleling the calcu-
lation of the distance matrix and the dc using GPU
(Li et al., 2016). Compared with our work, the work
of Li et al. (2016) has no optimization of data struc-
ture, and the acceleration of distance matrix calcu-
lation is only 4.39-fold in a 15-dimensional dataset
containing 10 126 data points. Unlike our research,
which uses an approximate method to estimate dc,
the work of Li et al. (2016) tries to find a more accu-
rate dc, which is not necessary for the final clustering
result. Li et al. (2016) achieved a 15.75-fold acceler-
ation on the same dataset mentioned above.

3 Parallelization on GPU and opti-
mization

3.1 Parallelization on GPU

Based on the analysis in Section 2, we initially
propose the GPU parallel strategy, and discuss the
opportunity for further optimization.

Distance matrix M: A simple and intuitive
model that exploits thread parallelism involves
launching one thread to calculate the correspond-
ing distance. Fig. 2 illustrates the idea of a
memory accessing strategy for calculating distances
di,j , di+1,j , ... within a thread block. Each thread ac-
cesses two data points and calculates the Euclidean
distance between them.

In fact, the calculation of the distance matrix
in row i reads the same data point i; thus, the cal-
culation of the same row distance matrix does not
need to access the global memory 2N times. Be-
cause the data in the shared memory are visible to
all threads in the same thread block, we allocate
the shared memory to store the data points that
are shared within the thread block. To increase the
compute-to-global memory access ratio in a single
thread, we make one thread handle x elements of the
distance matrix. Fig. 3 illustrates the memory ac-
cessing strategy with the shared memory. As shown
in Fig. 3, x data points are read to shared memory in
advance. Each thread in the thread block reads one
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shared memory (blockDim.x: dimension of the thread
block in GPU)

data point from the shared memory and the corre-
sponding data point from global memory to calculate
the distance simultaneously. When the procedure is
completed, these threads use the next data point in
shared memory to calculate the rest of the elements
of the distance matrix. Because the shared mem-
ory bandwidth is more than 10 times larger than the
global memory, this strategy will significantly reduce
the program’s memory access time. Moreover, the
thread uses the data points stored in the registers
to calculate multiple distances, making it effective in
exploiting the floating-point computing power of the
GPU.

Estimated cutoff distance dc: In CUDA-DP, for

each iteration of the binary search method, we launch
a kernel function to do the counting job. In the ker-
nel function, each thread block counts the elements
in one row of the distance matrix when distance di,j
is smaller than (dcmin + dcmax)/2. We also use shared
memory to store the partial sum in the counting pro-
cess. Finally all the thread blocks obtain the to-
tal number of the points that meet the requirement
through the atomic-add operation.

Local density ρ: We create one thread block for
each data point, while each thread block allocates an
array in the shared memory. The size of the shared
memory array is the same as that of the thread block.
Each thread saves a temporary value of local density
ρi calculated by Eq. (1) in its corresponding element
in the array. After that, the local density of each
data point is calculated by a reduction operation on
the shared memory array.

Distance δ: For each data point, the computa-
tion flow of δ is illustrated in Algorithm 3.

Algorithm 3 Computing δ for data point i
Input: Distance matrix M and density array ρ

1: flag← false
2: δ ←∞
3: index ← 0 // ‘index’ stores the index of the nearest

// point with a higher density
4: for j ← 0 to N do
5: if ρ[i] < ρ[j] then
6: if !flag then
7: δ ←M [i][j]

8: index ← j

9: flag ← true
10: continue
11: end if
12: if δ < M [i][j] then
13: δ ←M [i][j]

14: index← j

15: end if
16: end if
17: end for

For each data point, Algorithm 3 finds its near-
est point with a higher density and stores its cor-
responding index. There are circular dependencies,
and the maximum distance for the maximum density
point needs to be searched again. As the hardware
in GPU lacks loop and branch instruction optimiza-
tion, if we create a single thread to compute distance
δ, the parallelism would be low. However, it would
also take a long time for thread execution.
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In the optimized δ computation flow, we ob-
tain δ and the corresponding index by two reduction
operations. Similar to the reduction operation in
computing the local density, we allocate a shared
memory array to implement reduction, and the size
of the array is the same as the size of the thread
block.

The reduction process first obtains the maxi-
mum distance from each data point to other points,
and then initializes the array in the shared mem-
ory used for parallel lookup of δ with this maximum
value. Thus, in the process of a parallel search for
δ, the δ value of the maximum-density point will be
the initial value of the array, while the δ’s of other
data points and their corresponding indices will be
reduced to the first element in the shared memory
array.

3.2 Data structure optimization

Because the data points are stored in a mem-
ory system with AOS form, threads within the same
thread block span multiple memory spaces when ac-
cessing the same dimension of adjacent data points.
The data access is illustrated in Fig. 4a. In the
hardware implementation of GPU, the thread block
executes the program by grouping the threads into
units of warps. Grouping of threads into warps is
relevant not only to computation, but also to mem-
ory access. The device coalesces memory loads and
stores that are issued by threads of a warp into as few
transactions as possible. The concurrent accesses of
the threads of a warp will coalesce into a number of
transactions equal to that of cache lines which are
necessary to service all of the threads of the warp
(NVIDIA, 2016). For example, for 32D floating-
point data, a single coalesced memory access of a
warp can read only one data point. To allow all
threads within a warp to calculate the distance in
parallel, the program also needs memory access op-
erations several times. This means that the array of
structures will result in accessing a larger cache and
more instances of cache line access, which increases
the number of concurrent accesses. This is the rea-
son why the basic GPU parallelization method can
still be optimized.

As illustrated in Fig. 4a, the traditional way to
organize data points is to use AOS. It means that the
data of one dimension is contiguous with its neighbor
dimension, but is far from the same dimension of the
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next data point with the same dimension in memory.
Actually, multiple threads execute the calculation of
data points of the same dimension simultaneously.
To obtain data of the same dimension in one memory
access as much as possible, we need to store them
contiguously.

We reorganize the data structure from an AOS
to SOA to address this problem. SOA is a method
of storing an array of multidimensional data points.
As shown in Fig. 4b, one row represents an array
structure containing the same dimension of all data
points, and the size of this array is equal to the num-
ber of data points. Although the values for differ-
ent dimensions from one data point are separated
in a different array, it has no negative influence on
the acceleration effect. In our CUDA-DP implemen-
tation, we store the data point as an SOA in the
memory when we get data, and then transfer it into
the global memory of GPU. SOA is located in global
memory. As the data point in shared memory is
copied from global memory, the data structure in
shared memory is also an SOA. Only in the step of
computing the distance matrix, does the data point
need to be accessed in global memory and SOA to be
used. It is unnecessary to add adaptive coding for the
algorithm.
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In this approach, the values for the data points
of the same dimension are stored continuously. For
example, 32D floating-point values (4 bytes) are
buffered in a cache line of 128 bytes, and a single
coalesced transaction can service that memory ac-
cess. This obviously decreases the number of mem-
ory accesses and makes full use of the parallelism and
concurrency of the thread warp.

3.3 Estimating dc with sampling method

Although we try to exploit GPU to speed up the
calculation process, multiple iterations of the binary
search method can not be parallelized further. As the
number of iterations increases, the additional over-
head of invoking the kernel function will be greater.
Fortunately, the choice of dc has little effect on the
order of local density in large-scale data; thus, the
clustering results are robust to dc selection. Based
on this observation, we use the sampling method as
the other way to estimate dc to avoid this problem
of the binary search method.

The sampling method estimates dc by sorting
a subset of the distance matrix in which the ele-
ments are randomly selected. Suppose we select x
elements in each row of the distance matrix. We
start N threads; one thread handles one row of ma-
trix elements, and each thread generates x random
integers in the range of 0 to N and stores the cor-
responding element in a global memory array. After
that, we invoke the Thrust library to sort the global
memory array and estimate dc.

The choice between these two measures depends
on the dataset. If the scale of the dataset is small, a
high accuracy of dc is the major consideration, and
the binary search method will be a better choice. On
the other hand, for a large-scale dataset, the sam-
pling method can meet the requirements of accuracy
and processing time of the algorithm.

4 Experimental evaluation

4.1 Experimental setup

In this section, we experiment with acceleration
of the CUDA-DP algorithm. Then the optimization
results of the GPU program before and after adjust-
ing the data structure are compared. Finally, we test
whether the estimated dc affects the clustering effec-
tiveness. The experiment platform is the NVIDIA

Kepler K40m GPU, whose configuration used for
evaluation is shown in Table 1. The acceleration
comparison object is the sequential algorithms run-
ning in the Intel Xeon E5-2620 with six cores and 256
GB of memory. For 50 000 2D floating data points,
10 GB of memory space is required to store the dis-
tance matrix. As a result, memory space must be
sufficient for DP.

Table 1 GPU (NVIDIA Kepler K40m) configuration

Parameter Value

Peak performance (double-precision) 1.43 Tflops
Peak performance (single-precision) 4.29 Tflops
Warp size 32
GlobalMem 12 GB
CUDA core 2880
Core frequency 745 MHz
Memory bandwidth 288 GB/s

We use CUDA to implement CUDA-DP. CUDA
provides a number of efficient function interfaces and
helps reduce development difficulty. In the CUDA-
DP algorithm, sorting, reduce, transform, and other
operations can be implemented with the Thrust
library.

The datasets used for the experiment are listed
in Table 2. The first dataset (Zhang et al., 1997)
contains 100 000 2D data points. In the first part
of the experiment, we use a series of subsets of this
dataset to test the acceleration of CUDA-DP. In the
second part, the five intermediate datasets (Franti
et al., 2006) collectively referred to as Dim-sets, are
used to test the acceleration of the distance matrix
for different data dimensions and to compare the
acceleration effect of the optimization in the data
structure. The last two datasets (Veenman et al.,
2002) are used to compare the clustering effects of
the sampling method and the binary search method.

Table 2 Datasets for the experiment

Dataset Dimension Number of instances

BIRCH 2 100 000
Dim32 32 1024
Dim64 64 1024
Dim256 256 1024
Dim512 512 1024
Dim1024 1024 1024
D31 2 3100
R15 2 600
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4.2 Acceleration of density peak algorithm
with CUDA

The experiment in this subsection consists of
two parts. First, we test the acceleration effect
of the CUDA-DP algorithm under different scales,
some of which are subsets of BIRCH, which is a 2D
dataset (Table 2). Limited to the memory of a single
GPU, the maximum size of the experimental dataset
reaches 46 000 data points. A sequential program for
the experiments allocates an array to store data and
minimize unnecessary function calls to reduce the
time overhead. Because parameter dc obtained from
the binary search method is more accurate (for more
details see Section 4.4), we use the binary search
method to calculate dc in the CUDA-DP acceleration
test. Each thread block in the test starts with 128
threads. We record CUDA-DP acceleration and the
four computing steps on different dataset sizes. The
acceleration of each step with datasets of different
sizes is shown in Fig. 5a. When the amount of data
is 46 000, computing the distance matrix achieves
a 45-fold acceleration. Meanwhile, the speed of dc
calculation achieves 22 times the speed ratio, and
computing speed δ achieves a 64-fold acceleration.
The local density computation is dramatically in-
creased by 150 folds. In the sequential program,
calculating the local density invokes the exponential
function N2 times. However, the exponential func-
tion is just invoked once per thread in GPU, and the
stream processor executes the exponential functions
faster. Therefore, in the calculation of local density,
the CUDA-DP acceleration effect is significant.

Fig. 5b represents the acceleration of the whole
application when compared with the sequential pro-
gram, including the four steps illustrated in Fig. 5a
and other overhead (e.g., the I/O and some serial
codes). As shown in Fig. 5b, the acceleration of
CUDA-DP initially increases linearly with the num-
ber of datasets. After reaching 10 000 points, the ac-
celeration ratio still increases, but not significantly.
When the data size reaches 46 000, our implementa-
tion can accelerate the execution by a factor of up to
45, compared to the sequential version of DP.

Then, we test the acceleration effect of different
thread block sizes. This experiment uses a subset
of BIRCH containing 20 000 data points. We still
use the binary search method to calculate dc. The
experiment starts with 32 threads per thread block
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Fig. 5 Acceleration of the four computing procedures
(a) and of the density peak algorithm with CUDA in-
cluding the computing process and data transferring
operations (b) for 2D datasets of different sizes with
a maximum data size of 46 000

and doubles the number of threads until it reaches
1024, which is the maximum number of threads for
a 1D thread block. A warp in the K40m GPU con-
sists of 32 threads; thus, the thread block size in our
experiments is a multiple of 32. The results of this
experiment are shown in Fig. 6.

32 64 128 256 512 10240

50

100

150

200

250

300

350

400

450

500

Ti
m

e 
(m

s)

Size of thread block 

 

 
Distance matrix
Threshold dc
Local density ρ
Distance δ

Fig. 6 Time taken to execute the four computational
procedures with thread blocks of different dimensions
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As we know, threads within the same thread
block share data through shared memory, and ev-
ery stream-multiprocessor (SM) has its own shared
memory in GPU; thus, threads within a thread block
must be executed within the same SM. Warp is the
smallest unit of CUDA program execution. While a
warp is accessing memory, another warp can be ex-
ecuted in SM at the same time. Therefore, a thread
block consisting of multiple warps can make full use
of SM’s computing and storage resources. It can be
observed that the computation time decreases as the
thread block size increases from 32 to 128. However,
as the size of the thread block continues to increase,
the number of thread blocks that can be scheduled
on an SM is reduced, affecting the scheduling ef-
ficiency of SM. Thus, when the size of the thread
block continues to increase to 1024, the time over-
heads of computing the distance matrix, ρ, and δ do
not continue to decrease, but increase slightly.

It is worth noting that the time overhead of com-
puting dc decreases as the thread block size increases.
SM has no branch prediction part and no error recov-
ery mechanism. Therefore, when a branch is encoun-
tered, SM must wait for branch address calculation
to complete the subsequent instruction and continue
to work. This means that when each thread un-
avoidably performs some branch operations, serial
operation is executed sequentially and the branch
overhead cannot be hidden by branch prediction. In
CUDA-DP, the calculation of dc is very simple for
each thread, while the other three computation por-
tions have more loops and branch instructions. Thus,
when the thread block size exceeds 128, the perfor-
mance gain from increase in the number of threads
in these three portions is less than the loss.

4.3 Effect of data structure optimization

In this section, we test the impact of optimiza-
tion of the data structure on accelerating the calcu-
lation of the distance matrix. Calculating the dis-
tance matrix is also a time-consuming part of the
sequential program. To make full use of warp con-
current memory access characteristics and reduce the
number of memory accesses, this study optimizes
AOS into SOA. To test the effectiveness of this opti-
mization method, we use the Dim-sets in which data
points have various data dimensions for testing. The
number of data points in the dataset is 1024, and
the data dimension increases from 32 to 1024. The

results of this experiment are shown in Fig. 7.
The results show that the program with SOA

achieves an acceleration factor of 5.4, compared to
that with AOS in 32-dimensional data. As the data
point dimension increases, the acceleration also in-
creases. The acceleration reaches 9.2-fold when the
dimension of data points is 1024. In AOS, the access
memory stride between adjacent threads increases
when the dimension increases. In this case, the prob-
ability of the missing cache will increase, resulting in
more memory access overhead. As a result, when
the data dimension increases, the optimization effect
will be better.

4.4 Trade-off between binary search method
and sampling method

In this section, we compare the effectiveness and
efficiency of the sampling and binary search meth-
ods. We observe the clustering results from these
two methods on different-scale data to verify their
effectiveness. By testing the time overhead of the
two methods, we compare their efficiencies. We ran-
domly selected 1% distance samples. The test results
on different datasets are shown in Table 3.
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Fig. 7 Running time under datasets with different
dimensions using array of structures and structure of
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Table 3 Comparison between the binary search
method and sampling method

Dataset
Time (ms) Value

Binary
search

Sampling
Binary
search

Sampling

R15 1.3 1.0 0.347 0.393
D31 3.8 1.1 1.151 1.073
BIRCH (5000) 11.8 1.4 7.653 7.364
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Using sampling to estimate dc will contribute
to inevitable bias. The deviation is more obvious in
small-scale datasets. As shown in Table 3, on R15,
the value deviation between the sampling method
and the binary search method is 0.046, which is
13% of the value from the binary search method.
The value deviation from the experiment on BIRCH
(5000) is significantly lower than that on R15, with
only 3.8%. Concerning the time overhead, when the
size is 600, the sampling method takes 1.0 ms to eval-
uate dc, while binary search takes 1.3 ms, causing lit-
tle reduction in time. With a larger dataset, the time
overhead of the sampling method increases slightly,
while it increases much faster for the binary search
method. The ampling method takes only 1.4 ms,
and can save nearly 90% of the time overhead com-
pared with the binary search method when the num-
ber of data points is 5000. As indicated in Section
2.2, the time complexity of calculating dc increases
non-linearly with the number of data points, and the
time deviation between these two methods will be
more significant on large-scale datasets. According
to the results of the experiment, when the amount
of data is further increased, it can be predicted that
the sampling method will speed up the calculation
of dc more significantly and accurately.

We obtain the decision graphs and clustering re-
sults to assess the impact of sampling on the cluster-
ing results. The coordinates in these decision graphs
are based on ρ and δ. The cluster centers are de-
termined by choosing the points with large ρ and
δ. Figs. 8 and 9 show the decision graphs obtained
by these two methods on datasets R15 and D31,
respectively.

Figs. 8a and 9a are obtained by the binary search
method, while Figs. 8b and 9b are drawn using (ρ, δ)

obtained by the sampling method. We can see that
the two decision graphs are basically the same. The
number of density peaks selected for the cluster cen-
ter is the same. Although there are some differences
in the coordinates (ρ, δ) in the two graphs, they do
not affect the selection of the cluster centers and
the assignment of the remaining data points to the
cluster. The clustering results corresponding to the
decision graph are shown in Figs. 10 and 11. These
clustering results are highly consistent, proving that
the estimated dc’s are valid for the CUDA-DP
algorithm.
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Fig. 8 Decision graphs obtained by the binary search
method (a) and the sampling method (b) on R15
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method (a) and the sampling method (b) on D31
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Fig. 10 Clustering results obtained by the binary
search method (a) and the sampling method (b) on
R15
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Fig. 11 Clustering results obtained by the binary
search method (a) and the sampling method (b) on
D31

5 Conclusions

In this paper, we propose a parallel imple-
mentation DP algorithm CUDA-DP, which is based
on a GPU platform to reduce the time overhead
associated with the DP algorithm. Based on the
theoretical analysis of DP, we designed a parallel im-
plementation scheme that makes full use of GPU
hardware characteristics. In addition, in CUDA-
DP, we reorganized the data structure in the GPU
global memory. It significantly reduces the memory
access overhead. The validity and efficiency of the
threshold dc were also compared between the binary
search-and-sampling methods. In the experiment,
compared with the sequential program, CUDA-DP
achieves an acceleration factor larger than 45 folds.

CUDA-DP is limited by the memory size of a
single GPU. The next step is focusing on extending
CUDA-DP to multiple GPUs. In the future work, it
can be used in resource allocation (Li et al., 2015),
text clustering, image processing, and other specific
areas to accelerate these applications.
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