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Abstract: Named entity disambiguation (NED) is the task of linking mentions of ambiguous entities to their
referenced entities in a knowledge base such as Wikipedia. We propose an approach to effectively disentangle the
discriminative features in the manner of collaborative utilization of collective wisdom (via human-labeled crowd
labels) and deep learning (via human-generated data) for the NED task. In particular, we devise a crowd model
to elicit the underlying features (crowd features) from crowd labels that indicate a matching candidate for each
mention, and then use the crowd features to fine-tune a dynamic convolutional neural network (DCNN). The learned
DCNN is employed to obtain deep crowd features to enhance traditional hand-crafted features for the NED task.
The proposed method substantially benefits from the utilization of crowd knowledge (via crowd labels) into a generic
deep learning for the NED task. Experimental analysis demonstrates that the proposed approach is superior to the
traditional hand-crafted features when enough crowd labels are gathered.
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1 Introduction

Named entities, which are uniquely identifiable
objects with distinct existence, have now become one
of the most important features on the Web. For ex-
ample, the Linked Open Data (LOD) community
has been publishing structured data for various ap-
plications based on entities; search engines nowadays
exploit entities to enhance their search results (Haas
et al., 2011). However, there is still a large amount
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of unstructured data on the Web, aiming at human
consumption instead of easy machine understanding.

Linking the references of entities (a.k.a. sur-
face form or mention) in these documents to entity-
based knowledge is helpful for machines to under-
stand semantics in unstructured documents, which
also makes it possible for algorithms to enrich these
documents by retrieving information from structured
data. This task is called ‘named entity linking
(NEL)’ or simply entity linking, and it is becoming
an essential technology in the new artificial intelli-
gence (AI) era (Pan, 2016).

Amongst entity linking tasks, named entity dis-
ambiguation (NED) is generally used to discern the
true entity that each mention refers to, usually from
a given candidate set. For example, NED algorithms
attempt to distinguish the mention ‘apple’ between
a kind of fruit and a technology company, depending
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on its surrounding context.

In general, NED can be regarded as a classi-
fication task (e.g., classifying a given mention to
an entity from a referenced knowledge base like
Wikipedia), and the performance of entity disam-
biguation is heavily dependent on the generation of
feature representations of the mention and the entity.

As shown in Fig. 1, conventional feature repre-
sentations on NED are either hand-crafted features
(e.g., term frequency-inverse document frequency
(tf-idf) and bag-of-words (BoW)) or the learned fea-
tures from raw data (sometimes labeled information
is given). In our work, we consider learning fea-
ture representation from the perspective of optimiz-
ing the wisdom of crowds. Crowdsourcing techniques
are employed to acquire sparse and noisy labels pro-
duced by human workers. Features learned from
these crowd labels, which we call crowd features,
are expected to reflect human interpretation of the
task. Unlike conventional feature extraction meth-
ods, crowd features incorporate human knowledge
into machine algorithms.

In this study, we are interested in the following
problems: (1) How to effectively learn the crowd fea-
tures from the wisdom of crowds (e.g., crowd labels)?
(2) Are crowd features capable of enhancing hand-
crafted features? (3) How to collaboratively use both
crowd features and hand-crafted features to improve
the NED performance by using traditional classifica-
tion algorithms?

In particular, we propose an approach called
deep supervised learning via crowd labels (DeCL).
In DeCL, a crowd model is devised to elicit crowd
features from crowd labels, and then the crowd fea-
tures are employed to fine-tune a dynamic convolu-
tional neural network (DCNN). The learned DCNN
is employed to obtain deep crowd features to enhance
the NED classification performance by traditional al-
gorithms with the hand-crafted features. In online
crowdsourced entity linking systems, the proposed
DeCL yields the remarkable gain from crowdsourced
labels by enhancing algorithm matchers and reduc-
ing the total cost in crowdsourcing.

Fig. 1 Hand-crafted features widely employed in tasks in natural language processing. Typical hand-crafted
features include term frequency-inverse document frequency (tf-idf) features and bag-of-words (BoW) fea-
tures, which are both constructed according to a set of manually predefined rules. Other feature extraction
algorithms, such as topic-based features (Blei et al., 2003), employ a learning procedure. However, they still
rely heavily on hand-designed a priori methods (e.g., a graph model). Neural network or deep learning based
feature extraction methods, such as Word2Vec (Mikolov et al., 2013), dynamic convolutional neural network
(DCNN) (Kalchbrenner et al., 2014), and long short-term memory (LSTM) (Hochreiter and Schmidhuber,
1997), learn feature representations directly from the data itself, in either a supervised or an unsupervised
manner. Both hand-crafted features and deep learning based methods are machine algorithms working on
the data, and disregard the wisdom of the crowds. Our method, on the contrary, appropriately deals with
non-perfect labels produced by human workers, and learns crowd features in a semi-supervised manner. Com-
bining it with deep learning techniques, deep crowd features are finally learned in order to transfer the wisdom
of crowds to various datasets



Zhou et al. / Front Inform Technol Electron Eng 2017 18(1):97-106 99

2 Related work

Various methods have been proposed for NEDs
in recent years, and the most traditional methods of
NEDs usually employ a vector space model (VSM).
Bagga and Baldwin (1998) disambiguated entities
across documents with a VSM-disambiguation mod-
ule, which first extracts a concise summary for each
entity and then discovers coreferences among the
entities according to cosine similarities in terms
of tf-idf features of the summaries. Some recent
work used Wikipedia or DBpedia as an auxiliary
source of information for NEDs. Gabrilovich and
Markovitch (2007) proposed explicit semantic anal-
ysis (ESA), which first builds an inverted index of
articles over Wikipedia, and then computes cosine
similarity scores of articles using vectors built on the
inverted index. Bunescu and Paşca (2006) employed
cosine similarity between the mention context and
Wikipedia articles, and trained a support vector ma-
chine (SVM) classifier based on the cosine similarity
score and the taxonomy kernel. Cucerzan (2007)
combined Wikipedia content with VSMs to handle
large-scale NEDs, and an extended feature vector
has been built based on the Wikipedia content and
the entity is disambiguated according to a VSM.

Another principal class of NED methods uses a
graph structure. Gentile et al. (2009) evaluated se-
mantic relatedness over a graph built on the features
extracted from Wikipedia. Hakimov et al. (2012) at-
tempted to identify the correct entity by computing
a centrality factor on the graph built from Wikipedia
article links. Alhelbawy and Gaizauskas (2014) ap-
plied a ranking algorithm to an entity graph in order
to rank the popularity of each candidate entity.

By introducing crowdsourcing techniques into
NED tasks, ZenCrowd (Demartini et al., 2012) dy-
namically generates micro-tasks on an online crowd-
sourcing platform and takes the advantage of hu-
man intelligence to improve the quality of the links.
Moreover, a probabilistic framework is devised in
ZenCrowd to identify unreliable human workers and
make sensible decisions for entity linking, that is,
inferring ground truth of entity linking from noisy
labeling information by a crowd of non-experts.

Unlike ZenCrowd, in which crowdsourcing is
used only as a tool to solve a specific problem, we
consider crowdsourcing as one way to incorporate
human intelligence into machine learning algorithms.

Specifically, we focus on whether it is possible to
learn underlying features effectively (e.g., the crowd
features in this study) from the crowd labels, so
that human perspectives are properly incorporated
into these features. We further discuss whether tra-
ditional classification algorithms benefit from these
learned features.

3 Methods

The proposed DeCL takes the advantage of
crowdsourced data and attempts to enhance the per-
formance of mere machine-based NED algorithms.

The flowchart of the DeCL method is shown in
Fig. 2. In DeCL, we first devise a crowd model which
aggregates crowd labels and elicits underlying crowd
features of all mentions and entities. Then we train
a dynamic convolutional neural network (DCNN)
fine-tuned by crowd features. The trained DCNN
maps given mentions or entities to the so-called deep
crowd features. In the end, the performance of the
NED task is boosted by the collaborative utilization
of deep crowd features and traditional hand-crafted
features.

3.1 Notations

Assume that the set of mentions is M =

{Mi}Ii=1 and the set of entities is E = {Ej}Jj=1. The
goal of NED algorithms is to identify the true entity
in E, with respect to a given mention Mi.

We denote the set of all involved workers by U =

{Uk}Kk=1. The crowdsourcing data can be formulated
as a set of 4-tuples {(uq,mq, eq, tq)}Qq=1, where uq ∈
{1, 2, . . . ,K} is the index of a worker in U , mq ∈
{1, 2, . . . , I} is the index of an involved mention, eq ⊂
{1, 2, . . . , J} is the set of candidate entity indices,
and tq ∈ eq is the index of the entity chosen by
worker Uuq . We further denote the set of all mention
indices in crowdsourced data as Mc = ∪P

p=1{mp},
and the set of all entity indices in crowdsourced data
as Ec = ∪P

p=1ep.
As discussed before, traditional to-be-improved

algorithms also need a training set on NED tasks,
with ground-truth labels provided. Note that in the
training of traditional classifiers, they are not neces-
sarily given any crowdsourced label.

The data for training traditional classifiers con-
sists of a set of 3-tuples {(m̂p, êp, t̂p)}Pp=1, where
mention index m̂p ∈ {1, 2, . . . , I}, candidate entity
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Fig. 2 Intuitive flowchart of the proposed DeCL. In DeCL, the crowd labels (indicating the linking between
mentions in documents and entities in knowledge bases) are served as the input to a devised crowd model
to elicit the underlying crowd features for mentions and entities. The crowd features are assumed to be
compatible with the inferred true labels (e.g., the true linking). The crowd features are then used to fine-tune
a dynamic convolutional neural network, which maps each mention of entities in the test data to deep crowd
features. Finally, the deep crowd features and hand-crafted features are both employed to tackle NED tasks
via an enhanced classifier

indices êp ⊂ {1, 2, . . . , J}, and the ground-truth en-
tity index t̂p ∈ êp.

3.2 Modeling the crowd

In crowdsourcing tasks, each problem is usu-
ally labeled multiple times by different workers for
the sake of reliability. As a result, there might be
conflicts among answers, and the labels are still not
reliable enough due to the sparse and noisy nature
of crowd labels. Unlike previous works on handling
such ‘weakly labeled’ problems (Wu et al., 2015),
a crowd model is devised in our work for label ag-
gregation. In this subsection, we describe a crowd
model which embeds a d-dimensional vector (crowd
features) to mentions or entities in accordance with
the (noisy) crowd labels.

Using notation v(·) as the corresponding d-
dimensional crowd feature vector of a mention or an
entity, then the matrices composed of crowd feature
vectors are denoted as Vm = (vm(i) := v(Mi))

I
i=1

and Ve = (ve(j) := v(Ej))
J
j=1.

We introduce parameter α = (α1, α2, . . . , αK)

constrained by ‖α‖2 = 1 in order to resolve con-
flicts by modeling the ability of workers. Worker
Uk always gives the answer in ‘common sense’ when

αk = 1 while the worker always gives the opposite
answer when αk = −1, and the worker gives a ran-
dom answer when αk = 0.

In our crowd model, α, Vm, and Ve are learned
to minimize the loss function as follows:

L1(α,Vm,Ve) =

Q∑

q=1

∑

j∈eq

−αuqδ
∗(j, tq)〈ve(j),vm(mq)〉

+
η

2

(‖ve(j)‖2 + ‖vm(mq)‖2
)

s.t. ‖α‖2 = 1, (1)

where 〈·, ·〉 is the inner product of two vectors, η is a
regularization parameter, and δ∗(·, ·) is the modified
version of the Kronecker delta function given by

δ∗(x, y) =

{
1, x = y,

−1, x �= y.
(2)

The value of the inner product 〈ve(j),vm(mq)〉
measures the similarity between two crowd feature
vectors. So, the first term in Eq. (1) can be trans-
lated as a penalty for the misclassifications taking
into account users’ abilities. To be specific, the loss
increases in proportion with a worker’s ability if a
mention and an entity labeled by the worker to be
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a pair of entity linking have dissimilar crowd feature
vectors, and vice versa. The second term in Eq. (1)
is a regularization term on the intensity of crowd fea-
ture vectors. Note that instead of adding the norms
of Vm and Ve to the loss function, we regularize the
loss function with the weighted sum of crowd feature
vector norms, according to how many corresponding
labels of each vector are provided by human workers.

We observe from Eq. (1) that, as the loss func-
tion is minimized, crowd features of a pair of a linked
mention and an entity tend to be similar, where the
similarity of two vectors is characterized by the large
inner product between them, when more workers
that are reliable mark them as a matched linking.

3.3 Learning from the crowd

As discussed before, discovering informative fea-
tures is essential to the success of NED algorithms.
The aforementioned crowd model is capable of em-
bedding each entity and a mention in training data
into d-dimensional crowd features by using crowd la-
bels. Since the crowd features are compatible with
human intelligence, it is attractive to employ the
crowd features to refine a deep model, and then con-
duct the fine-tuned deep model to extract appropri-
ate features from the data in the testing set.

As a result, we train a deep model discrimina-
tively in a supervised fashion such that the distances
between entities and mentions are minimized.

We denote the chosen deep model as γ with pa-
rameter θ. More specifically, a dynamic convolu-
tional neural network (DCNN) described in Kalch-
brenner et al. (2014) is employed in our framework.
As shown in Fig. 3, the input of the DCNN is a
feature matrix with each column corresponding to a
word in a textual paragraph, and the output of the
DCNN is a d-dimensional vector. Apart from the
input layer (a feature matrix) as well as the fully
connected layer preceding the output, the remaining
parts of the DCNN are composed of repetitive hidden
layers with identical meta-structure. A hidden layer
can be further divided into four sublayers, namely a
convolution sublayer, a dynamic k-max pooling sub-
layer, a folding sublayer, and a nonlinear sublayer.
All these sublayers except the nonlinear sublayer are
illustrated in Fig. 3.

We extract the textual contexts from mentions
and entities, and represent each word in the textual
paragraph with a real vector using the method pro-

Sublayer B:
folding

Sublayer C:
k-max pooling
k(k_top)=3

Sublayer A:
convolution
feature map
number=2
kernel size=3

Input layer:
number of words=5
dimension of wordvec=4

Output layer:
output dimension d=5

Fig. 3 Structure of the DCNN. We show a DCNN
with five words as the input and each word is repre-
sented as a vector of four dimensions. The output of
the DCNN is a 5-dimensional vector. The network
has one middle layer involved, which consists of sub-
layers A, B, and C. Convolution sublayer A contains
two feature maps, both of which are obtained by the
convolution of the input feature matrix with size-3
kernels. Sublayer B is the folding sublayer, in which
adjacent rows of feature maps are combined. Sublayer
C is a k-max pooling layer, in which we select three
maximum elements in each row from feature maps in
the previous sublayer

posed in Mikolov et al. (2013). For each textual para-
graph, we combine the word vectors by placing them
sequentially into columns of a matrix. We denote the
feature matrices by sm(i) and se(j) for mention Mi

and entity Ej , respectively. Finally, we can obtain
a feature matrix for each mention or entity in the
crowdsourcing data, denoted by Sm = (sm(i))i∈Mc

for mentions Mc and Se = (se(j))j∈Ec for entities
Ec. Note that in practice, the embedded vectors
of words that we use to build the feature matri-
ces are obtained from pretrained results on part of
the Google News dataset, provided by the Word2Vec
Project (https://code.google.com/p/word2vec/).

We fine-tune the DCNN with a loss function
based on the Euclidean distances as follows:

L2(θ) =
∑

i∈Mc

‖γ(sm(i); θ)− vm(i)‖2

+
∑

j∈Ec

‖γ(se(j); θ)− ve(j)‖2

+ ξ‖θ‖2,

(3)
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where ξ is a regularization parameter. The above
can be solved in practice by backpropagating the
gradient of the loss function and applying regular-
ization techniques such as a weight decay. By lever-
aging crowd features (the wisdom of the crowd), the
DCNN can be optimized directly to disentangle the
underlying features of mentions and entities. We call
the feature vectors output by the fine-tuned DCNN
γ( · ; θ) deep crowd features.

3.4 Boosting a classifier with deep crowd
features

We argue that a classifier for the NED task can
substantially benefit from the collaborative utiliza-
tion of deep crowd features and traditional hand-
crafted features.

Now that we have trained a DCNN γ( · ; θ), for
each mention Mi and each entity Ej , and we are
able to create feature matrices sm(i) and se(j) from
their textual contexts, as described in the previous
subsection. These feature matrices are transformed
by the learned DCNN as vm(i) = N(sm(i); θ) and
ve(j) = N(se(j); θ) for mention Mi and entity Ej ,
respectively. These are what we call deep crowd
feature vectors since the DCNN is trained with the
help of crowd features.

For each mention Mi and each entity Ej , we
denote their hand-crafted feature vectors as wm(i)

and we(j), respectively. Then we concatenate their
hand-crafted features and deep crowd features as
follows:

w∗
m(i) = wm(i)�vm(i), (4)

w∗
e(j) = we(j)

�ve(j), (5)

where symbol ‘�’ is for vector concatenation. Af-
ter giving a mention, the concatenation of its deep
crowd features (via the fine-tuned DCNN) and hand-
crafted features are fed into a classifier to perform
NED.

3.5 Classification-based NED algorithms

In the final step of our algorithm pipeline, we
feed our combined features to a classification-based
NED algorithm, which will be discussed in this sub-
section in a little more detail.

Classification-based methods have been adopted
in NED problems in order to handle heterogeneous
features (Bunescu and Paşca, 2006), where an NED

task is transformed into a classification problem,
which can be solved effectively by standard classi-
fiers. With a slight abuse of notation, we denote
general feature vectors of mention Mi and entity Ej

by wm(i) and we(j) respectively in this subsection.
First, we define a joint feature function for arbi-

trary feature vectors x and y by

J(x,y) = |x− y|, (6)

where |·| is an element-wise absolute function. Given
each 3-tuple (m̂p, êp, t̂p) in the training set, we gen-
erate training features and the corresponding labels
by

wp = {(J(wm(m̂p),we(j)), δ
∗(j, t̂p))}j∈êp , (7)

where δ∗(·, ·) is the modified Kronecker delta func-
tion described in Eq. (2).

For a general classification algorithm that out-
puts both class labels and confidence scores, we have
it trained on generated data W = ∪P

p=1wp. Then for
any pair (Mi, Ej), it is possible for us to define a sim-
ilarity score S(Mi, Ej) and a class label L(Mi, Ej),
based on the confidence score and the class label we
obtained by applying the classifier on feature vector
J(wm(i),we(j)). According to how we generate the
training data, a positive L(Mi, Ej) indicates that
Ej matches Mi while a negative label indicates a
mismatch.

Given any mention Mi ∈ M , we compute sim-
ilarity scores S(Mi, Ej) ∀ j ∈ E and pick the top-
scoring entity as the correct match of Mi. In case
we are expected to choose nothing if all candi-
dates mismatch, we reject all candidates if all labels
L(Mi, Ej) (∀j ∈ E) are negative.

We choose AdaBoost as the classification al-
gorithm in our experiments, where the confidence
scores and class labels are obtained intuitively ac-
cording to the intensity and the sign of ensembled
weak classifier scores.

4 Optimization

4.1 Inferencing the crowd model

It is difficult to solve our crowd model directly
by the Lagrange multipliers. Instead, we approxi-
mate the optimization of the crowd model in a two-
step scheme.
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In the first step, we fix the value of parame-
ter α and optimize Ve and Vm using the stochastic
gradient descent as follows:

V (t+1)
m = V (t)

m + ε1 · g(t)
m , (8)

V (t+1)
e = V (t)

e + ε1 · g(t)
e , (9)

where ε1 is the learning rate, g(t)
m and g

(t)
e are the

gradients of a single summation term in Eq. (1) with
respect to Vm or Ve at step t. The ith element in
g
(t)
m and the jth element in g

(t)
e are given as follows:

(g(t)m )i =δ(mq, i)

(
∑

j∈eq

−αuqδ
∗(j, tq)v(t)

e (j)

+ η v(t)
m (mq)

)
, (10)

(g(t)e )j =δ(i, j)

(
∑

j∈eq

−αuqδ
∗(j, tq)v(t)

m (mq)

+ η v(t)
e (j)

)
, (11)

where δ(·, ·) is the Kronecker delta function and
δ∗(·, ·) is its modified version defined by Eq. (2).

In the second step, we fix Vm and Ve, and op-
timize α, which is a simple problem of optimizing a
linear objective function with an equality constraint.
We first simplify the notation of the problem as
follows:

L1(α) =

K∑

k=1

Ckαk + C0 s.t. ‖α‖ = 1, (12)

where

C0 =

Q∑

q=1

∑

j∈eq

η

2

(‖ve(j)‖2 + ‖vm(mq)‖2
)
, (13)

Ck =

Q∑

q=1

∑

j∈eq

−δ(uq, k)δ
∗(j, tq)〈ve(j),vm(mq)〉,

∀ k ∈ {1, 2, . . . ,K}. (14)

Eq. (12) can be effectively solved with the La-
grange multipliers, and the result is given by

αk =
Ck√

C2
1 + C2

2 + . . .+ C2
K

, ∀ k ∈ {1, 2, . . . ,K},
(15)

or

αk =
−Ck√

C2
1 + C2

2 + . . .+ C2
K

, ∀ k ∈ {1, 2, . . . ,K},
(16)

whichever produces a lower loss.

4.2 Fine-tuning DCNN

We followed exactly the same way as in Kalch-
brenner et al. (2014) to train the DCNN, except that
we use the loss function in Eq. (3) for fine-tuning. To
show the way our loss function fits into the stochas-
tic gradient descent framework, we first define a set
of 2-tuples R = {(i, 0)}i∈Mc ∪ {(0, j)}j∈Ec and the
number of tuples in R is |Mc| + |Ec|. Then we can
rewrite Eq. (3) as

L∗
2(θ) =

∑

(i,j)∈R

‖γ(s∗(i, j); θ)− v∗(i, j)‖2, (17)

where

s∗(i, j) =

{
sm(i), i > 0 ∧ j = 0,

se(j), i = 0 ∧ j > 0,
(18)

v∗(i, j) =

{
vm(i), i > 0 ∧ j = 0,

ve(j), i = 0 ∧ j > 0.
(19)

Note that the regularization term on θ is ignored here
because it is brought in by neural network tuning
techniques such as weight decay in practice.

Now Eq. (17) can be solved by applying the
stochastic gradient descent. When given (i, j) ∈ R,
θ is updated by

θ(t+1) = θ(t) + ε2 · g(t)
θ , (20)

where ε2 is the learning rate and

g
(t)
θ =2(γ(s∗(i, j); θ(t))

− v∗(i, j))
∂ γ(s∗(i, j); θ)

∂ θ

∣∣∣∣
θ=θ(t)

. (21)

The derivative part in the last equation can be easily
obtained via back propagation on DCNN.

5 Experiments and results

5.1 Dataset

We train and test our algorithm on the dataset
provided in Demartini et al. (2012), which is a set
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of Human Intelligence Tasks (HITs) records gener-
ated by Amazon Mechanical Turk (AMT) users. In
these HITs, human workers link from mentions de-
tected in several news articles to four knowledge
bases, namely DBpedia (http://www.dbpedia.org),
FreeBase (http://www.freebase.com), GeoNames
(http://www.geonames.org), and New York Times
(http://data.nytimes.com). The ground-truth la-
bels for training baseline algorithms are provided
by a group of authorized users, who will be treated
as normal users when we learn the crowdsourced
features.

The dataset is first pre-processed by discarding
unavailable online news articles, filtering out bro-
ken entity URLs and eliminating invalid HITs. The
statistics of the remaining part of the dataset are
shown in Table 1. There are 487 mentions involved
in this dataset, and 1669 entities are extracted as
candidates from the four knowledge bases.

Table 1 Statistics of the ZenCrowd dataset

Attribute Statistics Attribute Statistics

Mention 487 User 84
Knowledge base 4 Label 7691
Candidate entity 1669 Average 91.56
NED task 1050 labels/user

When we link a single entity to different knowl-
edge bases, these can be treated as distinct NED
tasks. As a result, 1050 valid NED tasks are available
in this dataset. These tasks are labeled by 84 work-
ers, producing 7691 links from mentions to candi-
date entities. Note that it is also possible that a
user rejects all candidate entities for a mention, in
which case we assign a ‘generalized label’ linking the
mention to an empty virtual candidate. There are
11 268 generalized labels in total, and 134.14 per user
on average.

We select a number of these tasks as the training
data while the rest are treated as the testing data.
The ratio of training-testing data size remains a vari-
able in our experiments. We also split the crowd-
sourced labels according to whether the labeled task
is in the training set. Generally speaking, a larger
training set of NED tasks indicates more crowd la-
bels for us to train our model.

Evidence can be found in this dataset that hu-
man and machine algorithms do not always agree
with each other. Here, two examples are listed in
Table 2, showing that there are cases for both crowd

workers and algorithms to outperform each other.
We can see in the first sample that the mention

‘Rhode Island Avenue’ is incorrectly linked by the al-
gorithm to an avenue, while two out of three workers
label it correctly as a station. In the second sample,
the algorithm correctly identifies the ‘United States’
as a nation, and most of the workers give a wrong
result. It can be concluded from the above examples
that humans sometimes view the problem differently
from a machine algorithm. The power of crowd fea-
tures rises from these differences, such that they are
expected to be good complements of conventional
features.

5.2 Processing and configuration

For each mention, we extract the context sur-
rounding its first appearance in the news articles
with the window size set to 50. As for each entity,
we extract a descriptive paragraph in English from
the knowledge base as its description.

Hand-crafted features such as tf-idf features are
then extracted from mention contexts and entity de-
scriptions. To introduce these features in brief, a
tf-idf feature is a widely used text feature weighing
each word in the vocabulary by the product of its
term frequency in a document and its inverse docu-
ment frequency on a corpus.

In our experiments, the length of deep crowd
features is set to d = 5 or 300, and the regularization
parameter η = 0.5 (we do not care about ξ since
regularization of DCNN is achieved by some tuning
techniques in practice). We use a three-layer DCNN,
with 3, 4, 2 feature maps and 6, 5, 3 convolution
kernel sizes in each layer in the order from input
to output. We employ an AdaBoost classifier with
decision trees as weak learners.

5.3 Experimental results

Table 3 shows the NED accuracies of our algo-
rithm on the ZenCrowd dataset. We can see from
the results that the accuracy on combined features
outperforms that on tf-idf features alone in all cases
except when the ratio of training-testing data size
is 5:5. The more crowd labels we use to train our
model, the larger performance gain we obtain with
the DeCL method.

Also, note that the great variance in deep crowd
feature dimensions between 5 and 300 does not make
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Table 2 Two samples from the ZenCrowd dataset

Mention User ID / Candidate Mention User ID / Candidate
detected Algorithms entities detected Algorithms entities

· · · trains will
share
a track between
New York Avenue
and Rhode
Island Avenue
stations · · ·

33 RIA (station)a

· · · they planned
to work closely
with the United
States, Europe
and India to plan
· · ·

7 These United States
(rock band)c

26 RIA (station)a 59 Electoral College
(institution)d

47 RIA (avenue)b 39 United States
(state)e

tf-idf +
CosDistance

RIA (avenue)b tf-idf +
CosDistance

United States
(state)e

In the first columns, there are pieces of sentences in the news articles, in which the mention is marked in bold font. The
second columns indicate whether the label is produced by a user or an algorithm, and user IDs or the algorithm descriptions
are presented correspondingly. The third columns specify the entity that users or algorithms link the mention to, with correct
links marked in bold font. Note that users are allowed to reject all candidate entities in this dataset, and such cases are not
shown in this table due to the limited space
a http://dbpedia.org/page/Rhode_Island_Avenue_%E2%80%93_Brentwood_%28WMATA_station%29
b http://dbpedia.org/page/Rhode_Island_Avenue_%28Washington,_D.C.%29
c http://dbpedia.org/page/These_United_States
d http://dbpedia.org/page/Electoral_College_%28United_States%29
e http://dbpedia.org/page/United_States

Table 3 Accuracy comparisons on NED tasks in terms of two dimensions of deep crowd features

Feature

Accuracy

Deep crowd feature dimension: 5 Deep crowd feature dimension: 300

9:1 8:2 7:3 9:1 8:2 7:3 5:5

tf-idf + DCF 78% 71% 69% 77% 71% 69% 67%
tf-idf 74% 70% 69% 74% 70% 69% 69%

Accuracies of NED tasks are given by applying AdaBoost on combined features (tf-idf + deep crowd features (DCF)) and tf-idf
features respectively, in the settings of different ratios (9:1, 8:2, 7:3, and 5:5) of training data size to testing data size. tf-idf
dimensions are the same, i.e., 18 478

much difference in NED accuracy, which we think is
because they carry similar amount of information
transferred from the crowd labels, for which even a
5-dimensional vector is expressive enough.

6 Conclusions and future work

We conclude from our experimental results that
our methods can effectively improve conventional
vector space NED algorithms even with a compact
auxiliary feature space. We believe such enhance-
ment to be more significant with more crowd labels
involved, according to our observation on the effects
of different ratios of training-testing data sizes. We
believe this to be a promising way to make full use of
crowdsourced labels produced by NED/NEL systems
that arm themselves with the power of the crowd.

However, there is still much room for improve-
ment: (1) It is beneficial to devise a more subtle
crowd model and make full use of information from

HIT records; (2) An efficient online training scheme
is needed to incorporate our method into an online
NEL system.
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