
Ye and Zhao / Front Inform Technol Electron Eng   2018 19(4):524-535 524

 

 

 

 

Syntactic word embedding based on  

dependency syntax and polysemous analysis* 
 

Zhong-lin YE1, Hai-xing ZHAO†‡1,2 
1School of Computer Science, Shaanxi Normal University, Xi’an 710119, China 

2School of Computer, Qinghai Normal University, Xining 810800, China 
†E-mail: h.x.zhao@163.com 

Received Dec. 21, 2016; Revision accepted Apr. 17, 2017; Crosschecked Apr. 12, 2018 

 

Abstract: Most word embedding models have the following problems: (1) In the models based on bag-of-words contexts, the 
structural relations of sentences are completely neglected; (2) Each word uses a single embedding, which makes the model in-
discriminative for polysemous words; (3) Word embedding easily tends to contextual structure similarity of sentences. To solve 
these problems, we propose an easy-to-use representation algorithm of syntactic word embedding (SWE). The main procedures 
are: (1) A polysemous tagging algorithm is used for polysemous representation by the latent Dirichlet allocation (LDA) algorithm; 
(2) Symbols ‘+’ and ‘−’ are adopted to indicate the directions of the dependency syntax; (3) Stopwords and their dependencies are 
deleted; (4) Dependency skip is applied to connect indirect dependencies; (5) Dependency-based contexts are inputted to a 
word2vec model. Experimental results show that our model generates desirable word embedding in similarity evaluation tasks. 
Besides, semantic and syntactic features can be captured from dependency-based syntactic contexts, exhibiting less topical and 
more syntactic similarity. We conclude that SWE outperforms single embedding learning models. 
 
Key words: Dependency-based context; Polysemous word representation; Representation learning; Syntactic word embedding 
https://doi.org/10.1631/FITEE.1601846                                           CLC number: TP391 
 
 

1  Introduction 
 

The processing of a natural language model 
should be transformed into a machine learning one, 
and the best method is representation learning (Hin-
ton, 1986; Bengio et al., 2003). Word distribution in 
corpora is determined by multiple latent factors. The 
main purpose of representation learning is also to 
deconstruct the latent factors in language models. 

There are different types of continuous and discrete 
word representations, among which the main purpose 
of representation learning of words is to represent 
words as vectors. 

There are mainly two methods for continuous 
word representation: distributional representation and 
distributed representation. In distributional represen-
tation, words are represented using a co-occurrence 
matrix based on the theory of distributional hypothe-
sis. In distributed representation, words are repre-
sented by a compressed, low dimensional, and dense 
vector. Discrete word representation is another 
method that adopts a ‘one-hot’ representation form. 
Distributed word representation is the mainstream 
approach. Word2vec (Mikolov et al., 2013) is a kind 
of implementation of distributed representation. 

One-hot representation is an original approach of 
word embedding. The vector length of one-hot is 
equal to the size of the directory in the corpus. The 

Frontiers of Information Technology & Electronic Engineering 

www.jzus.zju.edu.cn; engineering.cae.cn; www.springerlink.com 

ISSN 2095-9184 (print); ISSN 2095-9230 (online) 

E-mail: jzus@zju.edu.cn 

 

‡ Corresponding author 
* Project supported by the National Natural Science Foundation of 
China (Nos. 61663041 and 61763041), the Program for Changjiang 
Scholars and Innovative Research Team in Universities, China (No. 
IRT_15R40), the Research Fund for the Chunhui Program of Ministry 
of Education of China (No. Z2014022), the Natural Science Founda-
tion of Qinghai Province, China (No. 2014-ZJ-721), and the Funda-
mental Research Funds for the Central Universities, China (No. 
2017TS045) 

 ORCID: Zhong-lin YE, http://orcid.org/0000-0002-2429-3325 
© Zhejiang University and Springer-Verlag GmbH Germany, part of 
Springer Nature 2018 

Administrator
新建图章

http://crossmark.crossref.org/dialog/?doi=10.1631/FITEE.1601846&domain=pdf


Ye and Zhao / Front Inform Technol Electron Eng   2018 19(4):524-535 525

one-hot representation approach can result in seman-
tic ambiguity between words. Distributional repre-
sentation uses a co-occurrence matrix to represent the 
word embeddings. The co-occurrence matrix, using a 
high-frequency dictionary as a context window, is 
also a kind of high-dimensional and sparse represen-
tation (Baroni and Lenci, 2010; Turney and Pantel, 
2010). Word2vec applies the local contexts, and 
contexts are captured mainly by a bag-of-words 
model, a linear model, or an n-skip-gram-bi-grams 
model. The above methods consider one or more 
words around the current word, but they have some 
fatal defects. For example, some words in the context 
are not meaningless for the current word, or some 
important words are out-of-reach within a small 
window. Syntactic analysis based on dependencies 
achieves good performance in a variety of tasks 
(Goldberg and Nivre, 2012, 2014). Meanwhile,  
dependency-based contexts outperform word-based 
contexts (Levy and Goldberg, 2014). Thus, we gen-
eralize the skip-gram algorithm by replacing the 
bag-of-words contexts with dependency-based con-
texts. The symbols ‘+’ and ‘−’ are introduced to in-
dicate the directions of dependencies, and depend-
ency skip is applied to denote indirect dependencies. 
Consequently, the word embeddings based on 
bag-of-words contexts tend to contextual structure 
similarity of sentences, and our dependency-based 
contexts tend to syntactic similarity of sentences. 

Existing distributed representation approaches 
neglect the representation of polysemous words. 
Words with different contexts share some representa-
tions, which causes the loss of some information. We 
propose an approach to tag the polysemous words 
based on the combination of the latent Dirichlet al-
location (LDA) and clustering algorithms. The LDA 
algorithm is first used to find the topic distribution. 
The voting strategies are then applied to obtain the 
sense of the polysemous words by topic distribution. 
Finally, the polysemous words are tagged by a clus-
tering algorithm based on the context, and the clus-
tering amount of the K-means algorithm (Krishna et 
al., 1999) is set to equal to the amount of sense.  

In this paper, dependency-based contexts and 
polysemous language models are proposed to train 
the syntactic word embedding (SWE). The aim of 
SWE is to ensemble semantic and syntactic contexts 
into word embeddings. Regardless of the previous 

hypothesis, we propose a new hypothesis that words 
with similar semantic and syntactic contexts should 
have similar word embeddings. The dependency- 
based word embedding has less topical similarity and 
more syntactic similarity. 

In this paper, our contributions are:  
1. We propose a polysemous language model to 

generate multiple word embeddings for polysemous 
words. 

2. We generalize the skip-gram model with op-
timized dependency-based contexts, and our model 
produces markedly different embeddings. 

3. Our model can generate state-of-the-art word 
embeddings for word similarity tasks. The proposed 
SWE model is less topical and exhibits more func-
tional similarity compared with other embedding 
models. 
 
 
2  Related work 
 

As a result of representation learning of words, 
word embedding is a suitable tool for natural lan-
guage processing. Word embedding can be used for 
named entity recognition (NER), semantic role la-
beling (SRL), and part-of-speech tagging (Ren et al., 
2016; Zhai et al., 2016).  

Distributed and distributional representations 
adopt context information to generate embeddings. 
For the co-occurrence matrix, major improvements 
are achieved based on the co-occurrence and dimen-
sionality reduction operations, such as the dimen-
sionality reduction technique based on singular value 
decomposition (SVD) (Bullinaria and Levy, 2007), 
the LDA algorithm (Ritter et al., 2010), principal 
component analysis (PCA) (Lebret and Collobert, 
2014), and the co-occurrence matrix based on proba-
bility (Lebret and Collobert, 2015). The distributed 
representation (Hinton, 1986), which has been widely 
used and improved, is usually called ‘word repre-
sentation’ or ‘word embedding’. It seems that the 
count-based distributed representation method even-
tually encounters a bottleneck. Accordingly, the lan-
guage model based on neural networks (Xu and 
Rudnicky, 2000; Bengio et al., 2003; Mnih and Hin-
ton, 2008) is proposed and it shows desirable per-
formance on various natural language tasks (Nguyen 
et al., 2016; Wang et al., 2016). 



Ye and Zhao / Front Inform Technol Electron Eng   2018 19(4):524-535 526

Firth (1957) and Harris (1981) assumed that 
words in similar contexts have similar meaning. The 
basic idea of a language model based on neural net-
works is that word meaning is influenced and deter-
mined by its contexts. Thus, each word in the context 
is randomly initialized to an embedding and then 
trained on a large corpus. The idea of the former 
modeling is that similar words should have similar 
word embeddings in the semantic space. Word2Vec 
(Mikolov et al., 2013) is an implementation based on 
a probabilistic model using deep learning with a 
three-layer neural network. Word2Vec has been im-
proved and various versions of Word2Vec have been 
generated, such as the global vectors for word repre-
sentation (GloVe) (Pennington et al., 2014). GloVe is 
an unsupervised learning model based on a word- 
word co-occurrence matrix, rather than an entire 
sparse matrix or individual context windows in a large 
corpus. The performance of Word2Vec can be greatly 
improved when dependency-based contexts, rather 
than word-based contexts, are adopted (Levy and 
Goldberg, 2014). The language modeling of polyse-
mous words is then presented, which assumes that 
many words are polysemous and that global contexts 
can also provide useful information for learning word 
embedding (Huang et al., 2012). Some other poly-
semous language models have been proposed based 
on a probability model (Tian et al., 2014) and topical 
word embedding (Liu et al., 2015). The above ap-
proaches of the polysemous language model consider 
the global contexts. However, the sense of polyse-
mous words has weak connections with global con-
texts. We should concentrate on local contexts for 
comprehending polysemous words and training the 
polysemous language model. 

 
 

3  Syntactic word embedding 

3.1  Architecture overview 

The dependency-based SWE presented in this 
study avoids the training defects of the polysemous 
language model. Capturing the semantic and syntactic 
contexts to word embeddings, our approach makes 
the embedding less topical and exhibits more func-
tional similarity.  

Fig. 1 depicts the main procedures of SWE. As 
the input of the training procedures of SWE, texts are 

used to generate bag-of-words contexts for each word. 
Then it feeds each word–context pair into the learning 
algorithm. Consequently, the real input of Word2Vec 
is a collection of word–context pairs. Therefore, we 
can replace the original word–context pairs with 
whatever content we want. We choose syntactic de-
pendencies as the contexts of current words. Note that 
word–context pairs may have no connection with 
current words, which would bring noisy data into the 
model. Based on the original skip-gram model, our 
optimized approach adds a polysemy tagging layer, 
and the polysemous words are tagged by contexts and 
context topics. As the polysemous words in different 
contexts should have different senses and multiple 
embeddings, we use w|ti to denote the polysemous 
words and their context topics. More details are 
shown in Algorithm 1. 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 

Algorithm 1  Syntactic word embedding generation 
Input: entire corpus  
Output: polysemous language model 

1:    corpusWikipedia text 
2:    for scorpus do 
3:         sdenoising(s) 
4:         list.add(s) 
5:    end for 
6:    corpuspolysemytagging(corpus) 
7:    for sentenceicorpus do 
8:         for wordjsentencei do 
9:              cxtcontextcapturing(wordj, sentencei) 
10:            map.put(wordj,i, cxt) 
11:    end for 
12:  end for 
13:  polysemymodelskip-gram(map) 

 

 

Fig. 1  Comparison of the original procedures and opti-
mized procedures while training the syntactic word 
embedding 



Ye and Zhao / Front Inform Technol Electron Eng   2018 19(4):524-535 527

In Algorithm 1, the SWE generating algorithm 
includes mainly three functions: polysemytagging, 
contextcapturing, and skip-gram. The procedures of 
the three functions are as follows. 

3.2  Algorithm details 

3.2.1  Polysemy reorganization and tagging 

The polysemous representations are processed at 
the polysemy tagging layer. We assume that the word 
is a polysemous word if the word appears in several 
different topics and the number of topics must be 
greater than 1. Based on the assumption, we adopt the 
following procedures. First, the topic number of LDA 
is selected within the array [10, 20, 30, 50, 80, 130, 
200, 500]. The appearance frequency is counted un-
der different topic numbers. There are 433 158 words 
where the word frequency is greater than 1. Therefore, 
the word number under each topic is set to 
433 158/topic_number. Then the appearance fre-
quency under different topic numbers is voted to 
obtain the sense number of polysemous words. The 
smaller value is retained when the final voted results 
are equal. The sense number of polysemous words is 
calculated by the LDA algorithm and voting approach. 
The polysemous words need to be tagged using a 
clustering algorithm with bag-of-words contexts. The 
clustering number is set the same as the sense number. 
Through the above steps, the polysemous words are 
tagged by their senses and contexts. Finally, the cor-
pus consists of polysemous and non-polysemous 
words. The details about polysemy tagging are shown 
in Algorithm 2. 

3.2.2  Finding dependency-based contexts 

In the Word2Vec model, the contexts are defined 
as the surrounding words of the current word within a 
window threshold. The context from the symmetric or 
asymmetric window that contains the current word is 
called the symmetric or asymmetric context window. 
The same numbers of words, before and after the 
current word, are added to the windows in the sym-
metric context window. The asymmetric situation is 
that the numbers of words before and after the current 
word are different. 

How to capture the context words from the 
context window? The original implementation is 
based on the bag-of-words contexts, which are com-
posed of linear bag-of-words contexts and n-skip- 

gram-bi-grams contexts using the n-gram method. 
The former regards consecutive several words as 
context. The latter captures the context words by 
skipping n words in the context window. Dependen-
cy-based syntactic contexts can capture more deeply 
semantic and syntactic information than bag-of-words 
approaches, as we take the sentence “American sci-
entist discovers evidence for liquid water on Mars” as 
an example in Fig. 2. 

 
Algorithm 2  Polysemy tagging 
Input: the entire corpus segmented into separated sentences 

by full stop, comma, exclamation, and semicolon  
Output: the corpus with the tagged polysemy 

1:    topic[10, 20, 30, 50, 80, 130, 200, 500] 
2:    for i=0 to 7 do 
3:         for j=1 to i do 
4:              LDA[j]topic and word distribution 
5:              if LDA[j].contains(wordk+topic[i]) then  
6:                 map_topic.put(wordk+topic[i], 

map_topic(wordk+topic[i])+1) 
7:              end if 
8:         end for 
9:    end for 
10:  for map_t in map_topic do 
11:    sensenumbervote(map_topic) 
12:       sensemap.put(map_t.getkey(), sensenumber) 
13:  end for 
14:  for map_s in sensemap do  
15:        sensemap.put(map_s.getkey(),  

getrelatedsentence(map_s.getkey())) 
16:        if ispolysemy(map_s.getkey()) then 
17:            Kmap_s.get(map_s.getkey()) 
18:            category_sentencewordKmeans(corpus,  

                   map_s.getkey(), K) 
19:            clustermap.put(map_s.getkey(), 

                                    category_sentenceword) 
20:        end if 
21:  end for 
22:  for wordk in corpus do 
23:       if ispolysemy(wordk) then 
24:          categorygetcategory(clustermap) 
25:          sentencetagging(wordk, category) 
26:       end if 
27:  end for 

 
In Fig. 2, the current word is ‘discovers’ and the 

size of window is two around the target word. Thus, 
there are four contexts (two words before and two 
words after the target word). Consequently, the con-
texts w−2, w−1, w1, and w2 are American, scientist, 
evidence, and for, which may result in the discovers 



Ye and Zhao / Front Inform Technol Electron Eng   2018 19(4):524-535 528

being a context of both ‘scientist’ and ‘evidence’, or 
may result in ‘scientist’ and ‘evidence’ ending up as 
neighboring words in the embedding space. Generally, 
the window size is set to five for capturing broad 
information. The optimized dependency-based syn-
tactic contexts are presented and used in our model. 
We first gain the syntactic dependencies using the 
Stanford parser. The stopword and its dependencies 
with other words are deleted. We introduce the de-
pendencies ‘+’ and ‘−’ to capture the directions of 
dependencies. For example, the word ‘for’ is a stop-
word; thus, it needs to be deleted and the dependency 
‘case−’ is also deleted. Consequently, there are 889 
stopwords, including prepositions, conjunctions, and 
link-verb. 

We also introduce dependency ‘skip’ to link 
these words that are out-of-reach to a small window 
of bag-of-words. ‘Skip’ is a kind of indirect relation, 
which just consists of two direct dependencies. For 
example, the dependency ‘skip+’ (discovers, water) 
can be composed of the dependencies ‘nsubj’ (dis-
covers, evidence) and ‘nmod’ (evidence, water), 
which denote a forward relation. All dependencies of 
the illustrated sentence are listed in Table 1. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
In Table 1, the dependency-based syntactic 

contexts can capture the semantic and syntactic in-
formation. The similar results can be found in the 
semantics literature. The syntactic contexts can also 
filter out coincidental contexts, which are within the 
window but indirectly related to the target word. For 
example, the context of the word ‘liquid’ is just the 

word ‘water’ in Fig. 2. Details about capturing the 
syntactic context are shown in Algorithm 3. 

 
 
 
 
 
 
 
 
 
 
 
 

 

Algorithm 3  Context capturing 
Input: word and sentence  
Output: word contexts 

1:    list.add(dep(wordi, wordj)Parser(sentence)) 
2:    for lstlist do 
3:         if isstopword(wordi) then  
4:            listdelete(wordi, dep(wordi, wordj)) 
5:         end if 
6:         if dep(wordi, wordj)&&dep(wordj, wordk) then 
7:            generating dep(wordi, wordk) 
8:         end if 
9:    end for 
10:  for lstlist do 
11:    if ij then 
12:          dep(wordi, wordj)dep+(wordi, wordj) 
13:       else 
14:          dep(wordi, wordj)dep−(wordi, wordj) 
15:       end if 
16:       map.put(wordi, dep(wordi, wordj)) 
17:  end for 

 

3.2.3  Skip-gram model  

Word2vec offers two models, CBOW and 
skip-gram, which can be optimized by hierarchical 
softmax and negative sampling (NEG) (Mikolov et al., 
2013). The hierarchical softmax approach builds a 
Huffman tree for all words using the word frequency. 
The shortcoming of this method is that the training 
procedure is time-consuming. Negative sampling, a 
simplification of noise contrastive estimation, is used 
to improve the training efficiency and the quality of 
embedding. Therefore, the skip-gram with NEG is 
applied in our model. In this study, we generalize and 
rebuild the skip-gram model from the linear bag-of- 

Table 1  Examples of dependency-based syntactic contexts

Word Context 
American scientist/compound−, discovers/skip− 
Scientist American/compound+, discovers/nsubj− 
Discovers American/skip−, scientist/nsubj−, 

evidence/nsubj+, water/skip+ 
Evidence discovers/nsubj+, water/nmod+, Mars/skip+

Liquid water/amod− 
Water liquid/amod−, evidence/amod+, 

discovers/skip+, Mars/nmod+ 
Mars water/nmod+, evidence/skip+ 

The example sentence is analyzed using the Stanford parser 

American scientist discovers evidence for liquid water on Mars

American scientist discovers evidence liquid water Mars

compound-
nsubj- nsubj+

case-

amod-

nmod+

compound-
nsubj- nsubj+ amod-

nmod+nmod+

skip+
skip-

skip+

nmod+

case-

Fig. 2  Illustration of dependency-based syntactic contexts
The first sentence is the original result of syntactic dependency
analysis. The second sentence is the result of optimized syn-
tactic dependency. The red line denotes skip dependency. The
symbol ‘+’ or ‘−’ denotes the direction of dependency. Refer-
ences to color refer to the online version of this figure 



Ye and Zhao / Front Inform Technol Electron Eng   2018 19(4):524-535 529

words contexts to the dependency-based syntactic 
contexts. 

The training procedure of the skip-gram model is 
as follows. For context(w) of word w, the negative 

subset is neg(u) and neg(u)≠. For all uD, the label 
is defined as 

 

1,    = ,
( )

0,   ,
w u w

L u
u w


  

                      (1) 

 
where Lw(u) is the label of word u. The labels of pos-
itive and negative sampling are 1 and 0, respectively. 

For a word and its contexts (w, context(w)), the 
objective function of skip-gram is to maximize the 
probability 

 

context ( )  { } neg ( )

( ) ( | )
tt w u w w

g w p u t
  

   ,         (2) 

where 
T

T

( ( ) ), ( ) 1,
( | )

1 ( ( ) ), ( ) 0,

u w

u w

v t L u
p u t

v t L u

 
 

 

 
 

       (3) 

 
σ(∙) is the sigmoid function, v(t) is the embedding of 
word t, u is one of the words in the context, θu  is the 
embedding of word, and negt(w) denotes the subset of 
the negative sample of word t. For a given corpus C, 
the optimized target function is defined as 

 
( ).

w C

G g w


                             (4) 

 
For the optimized target function, the logarithm 

computing processes are as follows: 

 






T ( )

context( ) { } neg ( )

T 1 ( )

T

context( ) { } neg ( )

T

log log ( )

log ( )

   log [ ( ( ) )]

        [1 ( ( ) )]

    = ( ) log[ ( ( ) )]

      (1 ( )) log[1 (

w

t

w

t

w C

w C

u L u

w C t w u w w

u L u

w u

w C u w u w w

w

G g w

g w

v t

v t

L u v t

L u v





   



   

 





 



   





  

  



 

 

 

 ( ) )] .ut 
 

(5) 

 

Then Eq. (5) can be simplified as follows: 
 




T

T

( , , ) ( ) log[ ( ( ) )]

               (1 ( )) log[1 ( ( ) )] .

w u

w u

L w t u L u v t

L u v t

 

   

 

 
    (6) 

 
In this study, problem (6) is optimized using the 

stochastic gradient ascent algorithm. The updating 
rules of θu and v(t) are as follows: 

 
T: [ ( ) ( ( ) )] ( ),u u w uL u v t v t               (7) 

{ } neg ( )

( , , )
( ) : ( ) .

( )
tu w w

L w t u
v t v t

v t


 


 

        (8) 

 
The details about how to train a model and gen-

erate the word embedding have been presented. Al-
gorithm 4 gives the skip-gram algorithm and updating 
procedures of word embedding. 

 

Algorithm 4  Skip-gram  
Input: word and its contexts  
Output: polysemous language model 

1:    for tcontext(w) do 
2:         e=0 
3:         for u{w}negt(w) do 
4:              q(vT(t)u) 
5:              g(Lw(u)−q) 
6:              e:e+gu 
7:             u:u+gv(t) 
8:         end for 
9:         v(t):v(t)+e 
10:   end for 

 
Mikolov et al. (2013) adopted the Word2Vec 

model, and the best performance is achieved when the 
embedding length is 300. Then the Word2Vec model 
is continually optimized. Consequently, hierarchical 
softmax and negative sampling are applied to opti-
mize the presentation model. The efficiency of the 
model reaches a peak when the negative sampling 
number is 15 and the length of embedding is 300. The 
best accuracy is achieved when the window size is 10 
and the embedding length is 300 in word representa-
tion for the GloVe approach, and the accuracy is 
gradually changed. In our model, we set the window 
size as 10, embedding length as 300, and negative 
sampling (the number of negative contexts to sample 
for each correct context word) as 15. 



Ye and Zhao / Front Inform Technol Electron Eng   2018 19(4):524-535 530

4  Experiments and evaluation 

4.1  Word similarity dataset 

Word embedding is usually evaluated and 
measured by word similarity tasks. We also used this 
method in our experiment. The similarity datasets 
include Rubenstein and Goodenough (RG) (Ru-
benstein and Goodenough, 1965), WordSimilarity- 
353 (WS) (Finkelstein et al., 2002), Sentential Con-
Text Word Similarity (SCWS) (Huang et al., 2012), 
Rare Word (RW) (Luong et al., 2013), and Sim-
Lex-999 (SimLex) (Hill et al., 2015). Each dataset is 
described in Table 2. The datasets consist of word 
pairs along with human-assigned similarity judg-
ments. The judgments are made by at least 10 lin-
guists. Each dataset contains different numbers and 
categories of subjects. The types of word pairs in-
clude noun–noun, verb–verb, adjective–adjective, 
verb–noun, noun–adjective, and verb–adjective. 

 
 
 
 
 
 
 
 
 
 

 
 

4.2  Data corpus preprocessing and denoising 

Our English corpus was composed of the entire 
Wikipedia. The following procedures are conducted 
with the corpus: (1) Text information was extracted 
from the original English Wikipedia pages. (2) The 
appearance frequency of each word in the similarity 
datasets was counted in the corpus. We deleted those 
sentences that did not contain words in the similarity 
datasets. Their appearance frequency was more than 
20 000. (3) The noisy symbols and characters were 
filtered. Additionally, the appearance frequency of 
each word was counted in the corpus. 722 960 words 
were deleted because the word frequency was 1. 
Consequently, there were 433 158 non-repeating 
words and 3 776 346 sentences in the corpus. (4) All 
texts were segmented by full stop, comma, exclama-

tion, and semicolon. Each sentence in the corpus  
was saved in a single row. (5) All the uppercase 
characters were converted to lowercase ones. All 
quantifiers were replaced with the string ‘NUMBER’. 

4.3  Polysemy and visualization 

Polysemous word recognition and training are 
the main tasks of our language model. Traditional 
word embedding is a single low-dimensional vector, 
ignoring the implied multiple word meanings. A per-
fect model should train multiple embeddings for 
polysemous words. We adopted the LDA algorithm to 
find the polysemous words and count the sense 
amount by voting strategies. For example, the apple, 
star, left, and cell are polysemous words, which have 
at least two senses and represent different senses in 
different contexts. For these words, the appearance 
frequency of polysemous words in different topics 
was calculated and shown in Table 3. 

 
 
 
 
 
 
 
 
 
 
 

 
 
In Table 3, we counted the appearance frequency 

under different topic amounts. We assumed that a 
word is a polysemous word if it occurs in different 
topic distributions. Accordingly, the word sense 
number can be gained based on the appearance fre-
quency of polysemous words in different topics. The 
polysemous words were tagged and divided into 
multiple words. For example, the word sense number 
of stars is three. Therefore, the word star is tagged 
into star1, star2, and star3. Another question is how to 
place the three words into the corpus using contexts. 
A K-means clustering algorithm was adopted in this 
procedure. The K value of the clustering algorithm 
was set to the sense number of polysemous words. 
The polysemous words were tagged using their con-
texts with the clustering algorithm, and then they 

Table 2  Word similarity datasets 

Dataset* 
Pair 

number 
Subject 
number 

Linguist 
number 

Word 
number

WS 353 29 13–16 

4924 
SimLex 999 3 0–10 

SCWS 2003 7 0–10 

RW 2034 4 0–10 
* The four datasets were used to evaluate the performance of our 
method and other methods. All the attribute contents of each dataset 
are shown. The last column is the total number of words without 
repetition in the distinct datasets 

Table 3  The number of topics  

Word
Topic number 

Vote
10 20 30 50 80 130 200 500

Apple 4 3 5 3 0 2 2 2 2 

Star 4 3 4 6 3 6 3 4 3 

Left 3 5 6 6 6 19 3 3 3 

Cell 7 4 5 2 2 2 2 3 2 

Take ‘apple, star, left, and cell’ as an example to explain how to 
obtain the sense amount, which is used for the cluster algorithm. The 
appearance frequency of each word in different topic numbers is 
voted to obtain the possible number. Generally, polysemous words 
occur in multiple topic distribution spaces 



Ye and Zhao / Front Inform Technol Electron Eng   2018 19(4):524-535 531

were added to the corpus for training to obtain the 
language model containing polysemous words. Using 
the model, the nearest words to the target word are 
shown in Table 4. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
In Table 4, different topical contexts can gener-

ate different word embeddings for polysemous words. 
Additionally, we show the five nearest words as 
above. The first column is the polysemous word. The 
second column is the result of polysemy tagging. The 
third column is topic category. The last column is the 
nearest word. For example, the polysemy cell is 
tagged into two words cell1 and cell2. The former and 
the latter are the vocabularies related to the electronic 
product and biology, respectively. The polysemous 
word ‘apple’ has two topical contexts, which can also 
be tagged into two words apple1 and apple2. The 
former and the latter are the vocabularies about fruits 
and technology corporations, respectively. Therefore, 
cell1 and apple1 are closer in the semantic model cy-
berspace. If the polysemous words are represented by 
a single embedding, which would lose the other mul-

tiple senses within various contexts, this is a com-
promised approach. Based on this approach, the sim-
ilarity is less than the actual similarity in similarity 
computing tasks. 

As described above, we generate five nearest 
words for polysemous words. To observe the space 
relative distribution between polysemous and neigh-
boring words, we need to generate more neighboring 
words and their word embedding. If there is a close 
relationship among these words, they should be 
nearer in the language model cyberspace. Fig. 3 
shows the similarity results of SWE embedding using 
the T-SNE algorithm (Mnih and Hinton, 2008) in the 
original higher-dimensional space. 

 In Fig. 3, the blue marks represent polysemous 
words, and other marks denote the neighboring words. 
Different neighboring words use different color marks. 
Apple and cell have two kinds of topical contexts. 
Left and star have three kinds of topical contexts. 
Based on the T-SNE algorithm, the high-dimensional 
embedding can be projected into a two-dimensional 
space. In Fig. 3, there exists the clustering phenom-
enon between tagged polysemous words and neighbor 
words. For example, in Fig. 3a, apple1 is the context 
about electronic products, and the neighbor words of 
apple1 are sony, xbox, hp, ipod, and so on. They are 
all e-products, which belong to a common cluster. The 
other neighboring words of apple2 are in another 
cluster. There is a clear split and bound between the 
two clusters in the two-dimensional space. Using 
multiple topical contexts, the polysemous words are 
trained for multiple embeddings, which avoids the 
problem that the polysemous words share common 
word embeddings. 

4.4  Evaluation and discussion 

The CBOW and skip-gram models in Word2Vec 
aim to obtain the word embeddings based on the sta-
tistical model. Using deep learning with a three-layer 
neural network, the words in the context are con-
verted to low-dimensional embeddings in the model 
cyberspace. The operation of the word is also con-
verted to that of embedding. According to the hy-
pothesis that words in similar contexts should have 
similar meaning, the skip-gram model advocates 
predicting the embedding of contexts through the 
current words. However, it neglects the syntactic 
relevance between context words and current words. 

Table 4  The examples of polysemous and nearest words

Word Tagging Topic Nearest words 

Apple 

apple1 

 
e-products 
 

powerpc, amstrad, hp, xeon 

apple2 

 
fruits 
 

mamey, avocade, raspberries, 
brassicas, remoulade 

Cell 

cell1 

 
e-products 
 

fax, apple1, phone, back- 
office, controller 

cell2 

 

 

biology 
 
 

hepatocyte, translocates, 
hepatocytes, leukocytes, 
fibroblasts 

Left 

left1 

 
direction 
 

bottom, right, hand, top, 
outerdoors 

left2 

 
party 
 

wing, democracy, coalition, 
venstre, fsln 

left3 

 
depart 
 

star1, cage, airplane, minutes, 
NUMBER 

Star 

star1 

 
entertain-
ment 

movie, hollywood, 
arneric, brando, lelo 

star2 

 
ranking 
 

NUMBER, company, 
apartment, hotel, marinetta

star3 

 
galaxy 
 

starburst, glint, galaxy, neula, 
sagittarius 

The polysemy is tagged by its context topics using the cluster algo-
rithm. The number of senses can be calculated using Algorithm 2 
(e.g., word ‘apple’ has two senses and ‘star’ has three senses). We 
give a name for each tagged polysemy according to the nearest 
words. The nearest words given here  are part of those in the 
experiment 



Ye and Zhao / Front Inform Technol Electron Eng   2018 19(4):524-535 532

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The words have a strong association with neighboring 
words in the syntactic structures. In this study, the 
dependency-based syntactic context is proposed, 
which can easily find the relationship between them. 
The syntactic contexts have some benefits that, they 
can filter out uncorrelated words and retain associated 
syntactic dependencies. 

The skip-gram model is based on local contexts. 
The local contexts of the original method are context 
words, whereas the local contexts of our approach are 
based on dependencies between current words and 
context words. The embeddings generated by our 
approach are termed SWE. The GloVe approach and 
the approach proposed by Huang et al. (2012) are 
statistical models based on global information. We 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

apply different methods to obtain the five nearest 
words of words king and Tsinghua. The results are 
shown in Table 5. 

In Table 5, we use six different approaches to 
capture neighboring words as listed in the first col-
umn. The skip-gram model is the original method. 
The CBOW model is another method proposed in the 
Word2Vec model. CBOW predicts the embedding of 
the current word by context words, while the 
skip-gram predicts the embeddings of context words 
by the current word. To verify the impact of global 
information, the term frequency-inverse document 
frequency (TF-IDF) value is calculated and then 
added to each dimension in SWE embeddings, which 
can add global statistical information to embeddings. 

Fig. 3  The neighboring words and 2D visualization: (a) results of polysemy tagging and 2D visualization for apple; 
(b) results of polysemy tagging and 2D visualization for cell; (c) results of polysemy tagging and 2D visualization for 
left; (d) results of polysemy tagging and 2D visualization for star 
Polysemy has multiple senses; therefore, it exists in multiple communities. Different communities show a same clustering 
phenomenon. The x-axis and y-axis represent the length of the embedding in the 2D space. References to color refer to the 
online version of this figure 



Ye and Zhao / Front Inform Technol Electron Eng   2018 19(4):524-535 533

In Table 5, for the word king, each method can 
obtain the words prince, queen, and other near words. 
The only difference is the uncommon words, such as 
tzar and constantine. These uncommon words are also 
relevant to the word king. Different approaches show 
different neighboring words. The difference is that 
different methods give different weights for neigh-
boring words when the model is trained. For the cur-
rent word Tsinghua, its neighboring words are fudan, 
heriot-watt, makerere, thammasat, and so on. As these 
words have similar structures in syntactic dependen-
cies, all the neighboring words are the names of uni-
versities. To measure the differences of the tested 
algorithms, we evaluated different models in various 
word similarity tasks. First, we calculated the simi-
larity between word pairs using cosine similarity. 
Then we compared the results with human-assigned 
similarity.  The absolute value of the Hellinger dis-
tance was used to measure the distances between 
them. The performances of different algorithms are 
shown in Table 6. 

Table 6 shows the absolute values of the 
Hellinger distance between human-assigned similar-
ity and calculated similarity. Smaller distance indi-
cates that the calculation results are closer to human- 
assigned similarity. In other words, the results are 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

more accurate. As shown in Table 6, the performance 
of the SWE method is better than that of the other 
methods. To evaluate the influence of global param-
eters on local contexts, TF-IDF values were calcu-
lated for each word in the corpus. Then the TF-IDF 
weights were added to each dimension in word em-
beddings. The SWE+TF-IDF method works better 
than the skip-gram and CBOW models. However, it 
performs slightly worse than SWE, which denotes 
that the global TF-IDF works negatively on the 
overall result. Compared with other word embedding 
methods, SWE has a favorable effect on word em-
bedding. We compare our embedding with those of 
other existing approaches in Table 7. 

As shown in Table 7, compared with other 
methods, the improved rate of the SWE method is 
more prominent in the WS dataset. It roughly in-
creases the performance by at least 25%. For the RG 
dataset, the performance of GloVe is the poorest. The 
performances of other methods are almost the same. 
For the datasets of RG, RW, and SCWS, the perfor-
mances of SWE and Huang et al. (2012)’s model are 
basically the same. For all datasets, the performance 
of the model proposed by Huang et al. (2012) is su-
perior to that of GloVe. Compared with the skip-gram, 
CBOW, Huang et al. (2012)’s model, and GloVe, the 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 5  Related words of target words 

Algorithm King Tsinghua 

Skip-gram prince, emperor, throne, sultan belfer, whidden, makerere, islamia 

CBOW prince, constantine, sancho, throne aligarh, louvain, brandeis, georgetown 

Huang et al. (2012) lord, prince, emperor, queen broxbourne, uia, liberman, krewe 

GloVe queen, prince, monarch, kingdom qinghua, fudan, peking, renmin 

SWE queen, monarch, tzar, prince fudan, heriot-watt, makerere, thammasat 

SWE+TF-IDF norodom, queen, bhumibol, monarch heriot-watt, carnegie-mellon, osmania, waseda 

SWE embedding is generated by the optimized dependency-based context and tagged polysemous words 

Table 6  The performance of different algorithms on five datasets 

Algorithm 
Absolute value of the Hellinger distance  

RG RW SCWS SimLex WS 

Skip-gram 3.996 32.986 24.453 16.677 10.692 

CBOW 4.092 32.831 25.000 16.601 11.069 

Huang et al. (2012) 4.161 21.487 18.710 21.290 11.394 

GloVe 5.087 34.735 21.654 14.665 10.249 

SWE 3.769 19.993 17.435 14.417   7.687 

SWE+TF-IDF 3.919 24.930 21.806 17.641   9.901 

RG: Rubenstein and Goodenough; RW: rare word; SCWS: sentential context word similarity; SimLex: SimLex-999; WS: word simi-
larity-353 



Ye and Zhao / Front Inform Technol Electron Eng   2018 19(4):524-535 534

 
 
 
 
 
 
 
 
 

 
 

performance is better by 21% on average and 18% at 
least, which suggests that SWE embedding is more 
accurate and closer to human assessments. Why is the 
SWE model superior to other methods in our exper-
iment? The reason is that dependency-based syntactic 
contexts play an important role in denoising, which 
can filter out uncorrelated context words. Besides, the 
optimized strategies proposed for dependencies in our 
model play an important role. We can conclude that 
similar structure is better than similar context in sim-
ilarity tasks. 
 
 
5  Conclusions 
 

We have proposed a kind of generalization ap-
proach of word embedding based on the skip-gram. 
The linear bag-of-words contexts are replaced with 
dependency-based syntactic contexts. To generate 
multiple embeddings for polysemous words, the LDA 
algorithm is first used to capture the sense number of 
polysemous words. Then polysemous words are 
tagged into multiple words using a clustering algo-
rithm based on context topics. The word embeddings 
tend to the contextual structure similarity of sentences 
in the original language model. To solve the problem, 
syntactic contexts of the current word are first gained 
by the dependency parser. The syntactic contexts are 
then optimized as follows: (1) Symbols ‘+’ and ‘−’ are 
used to denote directions of syntactic dependencies; 
(2) Dependency skip is adopted to capture the indirect 
relations. A stopword in a sentence usually plays a 
complementary role without a practical meaning. 
Thus, stopwords and their dependencies on other 
words are removed in contexts. This procedure could 
reduce the noisy data in contexts. Therefore, SWE 
embedding is closer to syntactic structure similarity.  

 
 
 
 
 
 
 
 
 

 
 
The performance of our model is better than those of 
existing popular approaches by about 20% in simi-
larity tasks. In the future, we would like to explore 
incremental learning and denoising. 

 
References 
Baroni M, Lenci A, 2010. Distributional memory: a general 

framework for corpus-based semantics. Comput Ling, 
36(4):673-721. https://doi.org/10.1162/coli_a_00016 

Bengio Y, Ducharme R, Vincent P, et al., 2003. A neural 
probabilistic language model. J Mach Learn Res, 3(6): 
1137-1155. https://doi.org/10.1007/3-540-33486-6_6 

Bullinaria JA, Levy JP, 2007. Extracting semantic representa-
tions from word co-occurrence statistics: a computational 
study. Behav Res Methods, 39(3):510-526. 
https://doi.org/10.3758/BF03193020 

Finkelstein L, Gabrilovich E, Matias Y, et al., 2002. Placing 
search in context: the concept revisited. ACM Trans In-
form Syst, 20(1):116-131. 
https://doi.org/10.1145/503104.503110 

Firth JR, 1957. A synopsis of linguistic theory. Stud Ling Anal, 
41(4):1-32. 

Goldberg Y, Nivre J, 2012. A dynamic oracle for arc-eager 
dependency parsing. Proc Coling, p.959-976.  

Goldberg Y, Nivre J, 2014. Training deterministic parsers with 
non-deterministic oracles. Trans Assoc Comput Ling, 
p.403-414. 

Harris ZS, 1981. Distributional structure. Word, 10(2-3):146- 
162. https://doi.org/10.1007/978-94-017-6059-1_36 

Hill F, Reichart R, Korhonen A, 2015. SimLex-999: evaluating 
semantic models with (genuine) similarity estimation. 
Comput Ling, 41(2):665-695.  
https://doi.org/10.1162/COLI_a_00237 

Hinton GE, 1986. Learning distributed representations of 
concepts. Proc 8th Annual Conf of the Cognitive Science 
Society, p.1-12. 

Huang EH, Socher R, Manning CD, et al., 2012. Improving 
word representations via global context and multiple 
word prototypes.  Proc 50th Annual Meeting of Associa-
tion for Computational Linguistics, p.873-882. 

Krishna K, Murty MN, 1999. Genetic K-means algorithm. 
IEEE Trans Syst Man Cybern Part B, 29(3):433-439. 

Table 7  The improved rate of the SWE approach on five datasets 

Algorithm 
Improved rate 

Average 
RG RW SCWS SimLex WS 

SWE-Skip-gram 0.06 0.39 0.29 0.14 0.28 0.23 

SWE-CBOW 0.08 0.39 0.30 0.13 0.31 0.24 

SWE-Huang  0.09 0.07 0.07 0.32 0.33 0.18 

SWE-GloVe 0.26 0.42 0.19 0.02 0.25 0.23 

Different datasets are designed by different linguists. Each dataset is used to verify a different aspect of the algorithm. Each algorithm is 
used to find some aspects considered as important factors. RG: Rubenstein and Goodenough; RW: rare word; SCWS: sentential context 
word similarity; SimLex: SimLex-999; WS: word similarity-353 



Ye and Zhao / Front Inform Technol Electron Eng   2018 19(4):524-535 535

https://doi.org/10.1109/3477.764879 
Lebret R, Collobert R, 2014. Word embeddings through 

Hellinger PCA. Proc 14th Conf on European Chapter of 
the Association for Computational Linguistics, p.482- 
490. 

Lebret R, Collobert R, 2015. Rehabilitation of count-based 
models for word vector representations. Int Conf on In-
telligent Text Processing and Computational Linguistics, 
p.417-429. 
https://doi.org/10.1007/978-3-319-18111-0_31 

Levy O, Goldberg Y, 2014. Dependency-based word embed-
dings. Proc 52nd Annual Meeting of Association for 
Computational Linguistics, p.302-308. 

  https://doi.org/10.3115/v1/P14-2050 
Liu Y, Liu ZY, Chua TS, et al., 2015. Topical word embed-

dings. Proc 29th AAAI Conf on Artificial Intelligence, 
p.2418-2424.  

Luong MT, Socher R, Manning CD, 2013. Better word rep-
resentations with recursive neural networks for mor-
phology.  Proc 17th Conf on Computational Natural Lan-
guage Learning, p.104-113.  

Mikolov T, Sutskever I, Chen K, et al., 2013. Distributed 
representations of words and phrases and their composi-
tionality. Int Conf on Neural Information Processing 
Systems, p.3111-3119. 

Mnih A, Hinton GE, 2008. A scalable hierarchical distributed 
language model. Proc 21st Int Conf on Neural Information 
Processing System, p.1081-1088.  

Nguyen KA, Walde SSI, Vu NT, 2016. Neural-based noise 
filtering from word embeddings. Proc 26th Int Conf on 
Computational Linguistics, p.2699-2707.  

Pennington J, Socher R, Manning CD, 2014. Glove: global 
vectors for word representation. Proc Conf on Empirical 
Methods in Natural Language Processing, p.1532-1543. 

Ren YF, Wang RM, Ji DH, 2016. A topic-enhanced word 
embedding for Twitter sentiment classification. Inform 
Sci, 369:188-198. 
https://doi.org/10.1016/j.ins.2016.06.040 

Ritter A, Mausam,  Etzioni O, 2010. A latent Dirichlet alloca-
tion method for selectional preferences. Proc 48th Annual 
Meeting of Association for Computational Linguistics, 
p.424-434.  

Rubenstein H, Goodenough JB, 1965. Contextual correlates of 
synonymy. Commun ACM, 8(10):627-633. 
https://doi.org/10.1145/365628.365657 

Tian F, Dai HJ, Bian J, et al., 2014. A probabilistic model for 
learning multi-prototype word embeddings. Proc 25th Int 
Conf on Computational Linguistics, p.151-160. 

Turney PD, Pantel P, 2010. From frequency to meaning: vector 
space models of semantics. J Artif Intell Res, 37(1):141- 
188. https://doi.org/10.1613/jair.2934 

Wang P, Xu B, Xu JM, et al., 2016. Semantic expansion using 
word embedding clustering and convolutional neural 
network for improving short text classification. Neuro-
computing, 174(B):806-814. 

 https://doi.org/10.1016/j.neucom.2015.09.096 
Xu W, Rudnicky AI, 2000. Can artificial neural networks learn 

language models? Proc 6th Int Conf on Spoken Language 
Processing, p.202-205. 

Zhai M, Tan J, Choi DJ, 2016. Intrinsic and extrinsic evalua-
tions of word embeddings. Proc 30th AAAI Conf on Ar-
tificial Intelligence, p.4282-4283. 

 


