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Abstract: We propose a novel discriminative learning approach for Bayesian pattern classification, called ‘constrained maximum 
margin (CMM)’. We define the margin between two classes as the difference between the minimum decision value for positive 
samples and the maximum decision value for negative samples. The learning problem is to maximize the margin under the con-
straint that each training pattern is classified correctly. This nonlinear programming problem is solved using the sequential un-
constrained minimization technique. We applied the proposed CMM approach to learn Bayesian classifiers based on Gaussian 
mixture models, and conducted the experiments on 10 UCI datasets. The performance of our approach was compared with those of 
the expectation-maximization algorithm, the support vector machine, and other state-of-the-art approaches. The experimental 
results demonstrated the effectiveness of our approach. 
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1  Introduction 
 

It is crucial for Bayesian classifiers to learn 
representative class information from samples of 
different classes. Approaches to this problem can be 
divided into two categories: generative learning and 
discriminative learning. They are differentiated by 
their criteria for evaluation of learning results. In 
generative learning algorithms, such as classical 
maximum likelihood (ML) based algorithms, the first 
concern is how well the class membership probabili-
ties of the training data are estimated. The Bayesian 
classification theory tells us that the optimal  
discrimination between classes can be achieved  

indirectly in this way if the class distribution model of 
the training set is perfectly consistent with the real 
distribution of data. However, the training data is 
often insufficient or contains noise; therefore, the 
class distribution estimated by generative learning 
algorithms often deviates from real ones, leading to 
unsatisfactory classifiers. To solve this problem, dis-
criminative learning algorithms are introduced to 
consider the discrimination between classes directly 
in the training phase. They focus on the difference 
between classes instead of the distribution of the data 
within each class. 

The main discriminative learning criteria for the 
optimization of Bayesian classifiers include condi-
tional maximum likelihood (CML) (Nádas, 1983), 
maximum mutual information (MMI) (Povey and 
Woodland, 2002), minimum classification error 
(MCE) (Juang and Katagiri, 1992), and maximum 
margin (MM) (Pernkopf and Wohlmayr, 2010; 
Pernkopf et al., 2012). The common ground shared by 
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these criteria is that the difference between classes is 
expressed based on the joint probability distribution 
of the class and training data. Under some minor 
conditions, the MMI criterion is in fact identical to the 
CML criterion (Jiang, 2010). Both of them try to 
maximize the difference between the joint probability 
distribution of the class in the training set and the sum 
of all the joint probabilities. Alternatively, the MCE 
and MM criteria consider the difference between the 
joint probability of each training instance and its true 
class label and the joint probabilities of this data and 
the competitive class labels. In the MM based method, 
the difference is used to measure the margin between 
classes. The minimum margin over the training data is 
maximized as far as possible. In the MCE based 
method, the difference is considered to be the mis-
classification measure. The attempt is made to mini-
mize the smoothed empirical classification error rate 
over the training set. The MCE criterion is modified 
by introducing sub-string errors to obtain the mini-
mum phone error (MPE) and minimum word error 
(MWE) criteria for large vocabulary continuous 
speech recognition (Povey and Woodland, 2002). The 
classifier optimization problems based on the criteria 
above can be solved using the gradient descent algo-
rithm (Juang and Katagiri, 1992), conjugate gradient 
algorithm (Pernkopf et al., 2012), extended 
Baum-Welch (EBW) algorithm (Woodland and Povey, 
2002; Pernkopf and Wohlmayr, 2010), evolutionary 
strategy (Dong and Zhou, 2014), and heuristic search 
algorithm (Karabatak, 2015), among others. 

In this paper, we propose a novel approach to the 
discriminative learning of Bayesian pattern classifiers. 
In the proposed approach, we define the optimal bi-
nary classifier as the one that maximizes the separa-
tion between two classes under the constraints of 
correct classification of training data. This approach 
is called ‘constrained maximum margin (CMM)’. As 
mentioned above, the maximum separation between 
two classes for each sample is pursued by the previ-
ous discriminative learning approaches for Bayesian 
classification. Conversely, our learning criterion fo-
cuses on the separation between all the samples of a 
class and those of another class. Furthermore, in our 
approach, the constraints of correct classification of 
training data are considered, which are somewhat 
ignored in previous studies. Based on the de- 
fined learning criteria, we employ the sequential  

unconstrained minimization technique (Fiacco and 
Mc-Cormick, 1990) to find the optimal binary classi-
fiers. Finally, multi-class classification was per-
formed using the ‘Max Wins’ voting strategy on the 
classification results from all the binary classifiers. 
We applied the proposed CMM approach to learn 
Bayesian classifiers based on Gaussian mixture 
models (GMMs). The corresponding classification 
experiments were conducted on 10 datasets from the 
well-known UCI Machine Learning Repository 
(University of California, 2013). 

The performance of our approach was compared 
with that of classical generative and discriminative 
counterparts: expectation-maximization (EM) algo-
rithm (Dempster et al., 1977) and support vector 
machines (SVMs) (Vapnik, 2013). We also compared 
the performance of our approach with the best pre-
vious results to the best of our knowledge (Gorman 
and Sejnowski, 1988; Bredensteiner and Bennett, 
1999; Kwok, 1999; Jiang and Zhou, 2004; Webb et al., 
2005; Dvořák and Savický, 2007; Jiang et al., 2009, 
2012). Additionally, we ran the non-parametric Wil-
coxon signed-rank test to compare our approach with 
EM, SVM, and some other state-of-the-art Bayesian 
classifiers (Friedman et al., 1997; Webb et al., 2005; 
Jiang et al., 2009, 2012). The experimental results 
showed that the proposed CMM approach to  
discriminative learning of Bayesian classifiers is  
effective. 

 
 

2  The proposed approach 

2.1  Learning objective 

Given a feature vector x and a finite set of classes 
{ω1, ω2, …, ωn}, let P(ωi), p(x|ωi), and P(ωi|x) be the 
prior probability, class-conditional probability density 
function, and posterior probability, respectively. The 
Bayesian classification rule for minimization of the 
probability of the classification error is to classify x 
into class ω* with the maximum posterior probability: 
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we have  
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Thus, the completely equivalent and actually used 
decision rule is given by 
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Consider a binary classification problem. Let x̂  
be the feature vector of an arbitrary positive sample of 
a class, e.g., class ω1, and x  be the feature vector of 

an arbitrary negative sample of the class. x̂  is clas-
sified correctly if and only if 
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Similarly, we have 
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for x . 

According to constraints (7) and (8), we define 
the margin between two classes as 

 

1 1

2 2

1 1

2 2

ˆ( | ) ( | )
minlog maxlog

ˆ( | ) ( | )

ˆ( | ) ( | )
minlog maxlog .

ˆ( | ) ( | )

x x

p p
P P

p p

p p

p p

 


 
 
 

 

 

x x

x x

x x

x x

 (9) 

 
We replace the minimum and maximum opera-

tors by the differentiable softmin (Kim and Pfister, 
2011) and softmax (Pernkopf et al., 2012) functions, 
respectively. This means that 
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where h≥1. The approximation replacement by the 
soft function can be considered as using the limiting 
case of a general expression. Then the approximate 
margin is 
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The margin definition is crucial due to the par-

ticipation of all samples from both the positive and 
negative classes. Moreover, the sum for each class 
allows the margin to be defined on the class level, 
which is different from those defined on the sample 
level. The margin takes all the samples of a class as a 
whole and the separation would further be maximized 
on the class level. The learning objective is to max-
imize this approximate margin, i.e., max(γ′), which 
can be transformed into a minimization problem, 
min(−γ′). Furthermore, constraints (7) and (8) should 
be satisfied for separable cases. 

Let xi be the ith sample from the feature set, 
which can be either a positive or a negative sample. 
By introducing 
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the two constraints are unified as 
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During the experiments, we found that learning 

can be improved if a bound larger than 0 is exerted on 
the right-hand side of constraint (14). The explanation 
for this improvement is that this strategy leads to a 
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larger separation between the two classes. Addition-
ally, Px should satisfy Px>0, which is transformed to 
an unconstrained domain by 

 

exp( ).x xP P                         (15) 

 
According to the two considerations above, we 

modify constraint (14) as follows: 
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where ξ is a variable larger than 0. 

In the following descriptions, we let gi(Λ)= 
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denotes unknown parameters, including Px and those 
in two class-conditional probability density functions. 
Therefore, the final learning problem to be solved is 
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where N denotes the number of all the samples. 

2.2  Sequential unconstrained minimization 

The exterior point minimization method, a kind 
of sequential unconstrained minimization technique 
(SUMT) (Fiacco and McCormick, 1990), is applied to 
solve the nonlinear programming problem (17). In 
accordance with the exterior point minimization 
method, we define function 
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where M is a penalty factor larger than 0 and H is the 
set of subscripts that correspond with those samples 
that violate the constraints. This can be formulated as  
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where ξ has the same definition as described in con-
straint (16). 
 

Any unconstrained minimization method can be 
used to minimize F(Λ) for the specified value of M. 
The procedure is then repeated with an increased 
value of M. We detail this kind of exterior point 
minimization algorithm in Algorithm 1. 

 

Algorithm 1    Exterior point minimization algorithm 
for classifier optimization 
Input: training dataset, initial parameter Λ, and initial penalty 

factor M and its magnification coefficient β. 
Output: the optimal parameters. 

// Optimization: 
1  Use an unconstrained minimization method to solve the 

unconstrained minimization problem expressed in  
function (18); 

2  If  2
( )i

i

g  



H

(ε is an infinitesimal) or the number of 

iterations exceeds the preset maximum value, we stop 
the computation and take the output of current  
parameters as optimal; else, let M=βM, and then go to  
step 1. 

 

For the unconstrained minimization method re-
quired in step 1 of Algorithm 1, we used the gradient 
descent method. The following iterative equation was 
used to update the parameters in step 1: 
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where Λt and λt are the parameter set and the step size 
in the tth iteration of the gradient descent algorithm, 
respectively, and F(Λt) is the partial derivative of 
F(Λ) with respect to all the parameters in Λt. Let Ψ 
denote an arbitrary parameter in Λ, which can be a 
parameter in p(x|ω1) (denoted by Ψ1), a parameter in 

p(x|ω2) (denoted by Ψ2), or .xP  Then we have 
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In Eqs. (22)–(25), 
( | )ip 




x

 depends on p(x|ωi) 

and Ψ; thus, they have to be decided in the applica-
tions. Based on Eqs. (21)–(26), the gradient descent 
algorithm used in step 1 of Algorithm 1 is given in 
Algorithm 2.  

 

Algorithm 2    Gradient descent algorithm used in 
step 1 of Algorithm 1 
Input: training dataset; initial parameters. 
Output: updated parameters. 

// Optimization: 
1  repeat 
2      Compute the partial derivative of F(Λ) with respect to 

each parameter using Eq. (21); 
3      Compute step size λt using the improved 0.618 method 

(Forsythe et al., 1977);  
4      Update the parameters using Eq. (20); 
5  until convergence or the preset maximum number of  

iterations is reached. Let ε′ be an infinitesimal. The 
convergence condition is  
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2.3  Multi-class classification 

Based on the binary classifier learning method 
described above, the multi-class classification prob-
lem can be solved by one of two strategies: one- 
against-one (1v1) and one-against-others (1vO). In 
the 1v1 strategy, we establish a binary classifier for 
each pair of classes. For an input pattern, the recog-
nition result is determined by ‘Max Wins’ voting, in 
which all binary classifiers vote for each class and the 

winning class is the one with the maximum votes. In 
the 1vO strategy, we train a classifier for each class to 
discriminate between the samples of this class and 
those of all the other classes. An arbitrary input pat-
tern is then classified based on its correspondence to 
the maximum output of all classifiers. We compared 
these two strategies in experiments. The average re-
sults demonstrated the superiority of the 1v1 strategy 
over 1vO. 

 
 

3  Configuring the proposed approach for 
Gaussian mixture modeling based Bayesian 
classifiers 
 

Before the proposed approach to Bayesian clas-
sification is ready to use, two parts need to be adapted 
to the situation at hand. The first one is the modeling 
of the class-conditional probability density function, 
and the second is the method for determining the 
initial parameters of the classifiers. 

3.1  Gaussian mixture modeling 

In this study, the class-conditional probability 
density function is approximated using GMM, which 
is a general model for estimating an unknown proba-
bility density function. Under regular conditions, it 
may approximate any continuous functions having a 
finite number of discontinuities (Vlassis and Likas, 
1999). Let K be the number of Gaussian components 
in GMM, wk, μk, and Σk be the weight, mean, and 
covariance matrices of the kth Gaussian component, 

respectively, 
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The use of a GMM with full covariance matrices 

leads to a large number of parameters, presenting the 
risk of over-fitting. The covariance matrices are 
therefore often constrained to be spherical or diagonal 
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(Moerland, 1999). In this study, the diagonal covari-
ance matrices were employed and behaved well 

throughout the experiments, i.e.,  
1

,
m

k kj kj
 


   

where m is the dimension of feature vectors, and σkj 
the variance value of the jth attribute in the kth com-
ponent. Thus, i denotes the class label. Then the pa-
rameter set in our binary classifier based on GMM is 
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x k k kP w i k K          (29) 

 
Some parameters in Eq. (29) must satisfy certain 

constraints, which are transformed to an uncon-
strained domain for easier implementation in the 
learning stage. The constraints and transformation of 
parameters are listed in Table 1. A tiny variance value 
in the covariance matrices of GMM can lead to the 
computational instability of the class-conditional 
probability density function; thus, we imposed a pos-
itive minimum limit on the variance value, denoted as 
τ in Table 1. Consequently, the transformed parameter 
set is 

 

{ , , , }, 0,1, 1,2,..., ,i i i
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where 1{ } .i i m
k kj j      is to be updated in the 

learning stage, and then transformed inversely into Λ 
after the learning is completed. 

 
 
 
 
 
 
 
 
 

 
 

3.2  Initialization strategy 

An initial parameter set is needed to trigger the 
optimization process described in Section 2.2. We 
employed the commonly used clustering algorithm of 
k-means to complete this task. For each class, its 
samples were clustered into k groups by using the 
k-means algorithm. Each group corresponded with a 

component in GMM. The mean and variance of the 
component are those of the samples in the group. We 
calculated the ratio of the number of the samples in 
the group to the total number of all samples, and took 
this ratio as the weight. Thus, the training time com-
plexity of the proposed algorithm is O(cmTKN2logN), 
where T is the number of training iterations, N is the 
number of training examples, m is the number of 
attributes, K is the number of GMM components, and 
c is the number of classes. The time complexity of 
recognition is O(cmK).  
 
 

4  Experiments and discussion 

4.1  Experimental setup 

4.1.1  Datasets 

We evaluated the proposed CMM approach on 
the benchmark datasets for multivariate classification 
from the UCI Machine Learning Repository (Uni-
versity of California, 2013). Since the inputs into 
GMM should be real-value feature vectors, we used 
10 datasets from the repository for multivariate clas-
sification, containing only real attributes, to test our 
approach. For each dataset, the experiments were 
conducted by following either the instructions in the 
dataset description or experimental schemes detailed 
in previous work if the instruction was not available. 
In summary, we have two types of experimental 
scheme: (1) 10-fold cross-validation and (2) fixed 
training and test sets. Table 2 shows the 10 datasets 
and corresponding experimental schemes, where 
‘#samples’, ‘#training’, and ‘#test’ denote the num-
bers of all samples, training samples, and test samples, 
respectively. 

4.1.2  Algorithm parameters tuning 

The parameters in our CMM learning algorithm 
include h, ξ (in problem (17)), β, ε, initial M (Algo-
rithm 1), ε′ (Algorithm 2), τ (Table 1), and K for 
GMM modeling. 

The larger h, the more precise softmax or soft-
min computation. The value of 10 is enough for these 
experiments. As the separation between two classes 
should become larger and larger along with the itera-
tions in Algorithm 1, we initially set a small value (2.6 
in all the following experiments). After each iteration 
of Algorithm 1 is completed, if the constraints in 

Table 1  Constraints and transformation of parameters 
in the learning stage 

Original parameter 
and constraint 

Transformation of parameters 
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problem (17) have been satisfied, we scale up ξ by a 
factor of 10. 

 
 
 
 

 

 
 
 
 
 
 

 

 
 
 
 
 
 
 
 
 

The values of β, ε, ε′, and the initial value of M 
were empirically set to be 10, 0.0001, 0.001, and 1 in 
all the following experiments, respectively. 

We conducted the experiments on each dataset 
using different values of τ. The value increases from 
0.000 025 to 0.250 000, multiplied by 10 each time. 
The final value of τ corresponding to the best result 
for each dataset is given in Table 3. 

For K (the number of components in GMM), we 
tested the numbers from three to five, and determined 
the best one according to the experimental results. 
The final value of K corresponding to the best result 
for each dataset is given in Table 3. 

 
 
 
 
 

 
 

4.2  Experimental results 

4.2.1  Comparison between two strategies of multi- 
class classification 

We tested two strategies of multi-class classifi-
cation, 1v1 and 1vO, for each dataset. The  

corresponding recognition rates are shown in Table 4. 
According to Table 4, 1v1 performs better than 1vO. 
The performance of our CMM approach is the better 
one in the two strategies. 

 
 
 
 
 
 
 
 

 

 
 

 
 

 
 

 
 

4.2.2  Comparison with expectation maximization 
and support vector machine 

We compared the performance of our CMM 
approach with those of EM and SVM, respectively. 
They are classical representatives of generative 
learning and discriminative learning, respectively. 
The EM algorithm was implemented by the Open 
Source Computer Vision Library (OpenCV Team, 
2015). The number of components in GMM for EM 
learning was set to be the same as that used in CMM 
learning. We used the generative learning algorithm 
EM to estimate the parameters in GMM, and labeled 
samples by their likelihood ratio of GMM. The SVM 
method was implemented by the sequential minimal 
optimization (SMO) algorithm in WEKA (Hall et al., 
2009), a machining learning library in Java. Four 
kinds of kernel functions for SVM are provided in 
WEKA, including the poly kernel, normalized poly 
kernel, Pearson VII universal kernel/Pearson VII 
function based universal kernel (PUK), and radial 
basis function (RBF) kernel. We tested all four kernel 
functions and attempted to tune the corresponding 
parameters for each dataset. The resultant best 
recognition rates are reported in the following. 

The performance comparisons of CMM, EM, 
and SVM are shown in Tables 5–7, which correspond 
to the recognition rates on training sets, the  

Table 2  The UCI datasets used for multivariate classifi-
cation, containing only real attributes 

No. Dataset Experimental scheme 
1 Breast cancer Wisconsin 

(diagnostic) 
10-fold cross-validation; 

#samples=569 
2 Connectionist bench  

(sonar, mines vs. rocks)
Fixed; #training=104; 

#test=104 
3 Glass identification 10-fold cross-validation; 

#samples=214 
4 Image segmentation Fixed; #training=210; 

#test=2100 
5 Iris 10-fold cross-validation; 

#samples=150 
6 MAGIC gamma telescope 10-fold cross-validation; 

#samples=19 020 
7 Statlog (image  

segmentation) 
10-fold cross-validation; 

#samples=2310 
8 Waveform database  

generator (version 1) 
10-fold cross-validation; 

#samples=5000 
9 Waveform database  

generator (version 2) 
10-fold cross-validation; 

#samples=5000 
10 Wine 10-fold cross-validation; 

#samples=178 

 

Table 3  The best τ and K for each dataset 

Dataset τ K Dataset τ K
1 0.000 025 3 6 0.000 025 4
2 0.002 500 4 7 0.002 500 5
3 0.025 000 5 8 0.000 025 5
4 0.002 500 4 9 0.025 000 4
5 0.025 000 5 10 0.002 500 3

 

Table 4  Recognition rates from two strategies of multi-
class classification 

Dataset
Recognition rate (%) 

Training set Test set 
1v1 1vO 1v1 1vO 

1 95.90 95.90 98.46 98.46 
2 98.08 98.08 84.62 84.62 
3 82.71 83.49 47.06 52.60 
4 96.19 88.57 90.48 85.33 
5 98.30 94.30 97.33 94.00 
6 78.65 78.65 78.73 78.73 
7 90.84 80.85 90.13 80.39 
8 87.23 87.60 85.26 86.52 
9 87.73 87.99 85.52 86.44 
10 99.75 99.25 98.33 97.77 

Average 91.54 89.47 85.59 84.49 

1v1: one against one; 1vO: one against others 
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recognition rates on test sets, and the generalization 
ability, respectively. In Tables 5 and 6, IR_EM and 
IR_SVM demonstrate the increase in the recognition 
rates with CMM, compared with those of EM and 
SVM, respectively. In Table 7, IRG_EM and 
IRG_SVM also show CMM’s increase of the gener-
alization ability rates, compared with EM and SVM, 
respectively. 

The data in Tables 5 and 6 shows that our CMM 
approach brings better average recognition rates than 
EM and SVM. On the training sets, CMM performs 
better on six datasets compared with EM, and seven 
datasets compared with SVM. The average increase 
in recognition rates on the 10 training datasets deliv-
ered by CMM is 0.30% and 5.54%, compared with 
EM and SVM, respectively. On the test sets, CMM 
performs better on eight datasets compared with EM, 
and seven datasets compared with SVM. The average 
increase in the recognition rates on the 10 test datasets 
delivered by CMM are 5.70% and 13.56%, compared 
with EM and SVM, respectively. 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 
 
 

Table 7 shows the generalization ability of the 
three methods. As shown here, our CMM approach 
delivers better generalization performance on eight 
datasets, compared with EM, and half of the datasets, 
compared with SVM. The average increase in rates of 
generalization ability on the 10 datasets delivered by 
CMM are 5.29% and 6.06% above the EM and SVM, 
respectively. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

4.2.3  Comparison with the best previous results 

We collected the results from the previous work 
for each dataset as far as we could, and compared our 
results with the best of them. To make the compari-
sons as fair as possible, the experimental schemes for 
testing our CMM approach were the same as those for 
the corresponding best previous results. Our CMM 
approach delivers better recognition rates on six test 
sets. The details are given in Table 8, where ‘Refer-
ence’ indicates the citation of the relevant papers 
listed in the reference section, and ‘IR’ denotes the 
increase in rates associated with our CMM approach, 
compared with these best previous results. Note that 

Table 5  Recognition rates on training sets of datasets

Method 
dataset 

Recognition rate (%) 

EM SVM CMM IR_EM IR_SVM

1 95.02 97.93 95.90 0.93 ⎯2.07 

2 93.27 86.54 98.08 5.16 13.33 

3 81.05 58.51 83.49 3.01 42.69 

4 93.33 90.95 96.19 3.06 5.76 

5 98.45 96.52 98.30 ⎯0.15 1.84 

6 84.09 82.08 78.65 ⎯6.47 ⎯4.18 

7 92.61 93.27 90.84 ⎯1.91 ⎯2.61 

8 87.43 87.47 87.60 0.19 0.15 

9 88.77 87.84 87.99 ⎯0.88 0.17 

10 99.69 99.44 99.75 0.06 0.31 

Average 91.37 88.06 91.68 0.30 5.54 

EM: expectation-maximization; SVM: support vector machine; 
CMM: constrained maximum margin. IR_EM and IR_SVM 
demonstrate the increase in the recognition rates with CMM, 
compared with those of EM and SVM, respectively 

Table 6  Recognition rates on test sets of datasets 

Method
dataset

Recognition rate (%) 
EM SVM CMM IR_EM IR_SVM

1 95.08 98.20 98.46 3.55 0.26 
2 77.88 80.77 84.62 8.65 4.77 
3 36.82 24.52 52.60 42.86 114.52 
4 88.24 87.43 90.48 2.54 3.49 
5 96.00 96.67 97.33 1.39 0.68 
6 80.80 70.21 78.73 ⎯2.56 12.14 
7 91.21 92.47 90.13 ⎯1.18 ⎯2.53 
8 86.36 87.04 86.52 0.19 ⎯0.60 
9 86.08 86.48 86.44 0.42 ⎯0.05 

10 97.22 95.55 98.33 1.14 2.91 
Average 83.57 81.93 86.27 5.70 13.56 

EM: expectation-maximization; SVM: support vector machine; 
CMM: constrained maximum margin. IR_EM and IR_SVM 
demonstrate the increase in the recognition rates with CMM, 
compared with those of EM and SVM, respectively 

 

 

Table 7  Generalization ability on each dataset 

Method
dataset

Generalization ability (%) 
EM SVM CMM IRG_EM IRG_SVM

1 100.06 100.28 102.67 2.60 2.39 
2 83.50 93.33 86.28 3.33 ⎯7.56 
3 45.43 41.91 63.00 38.68 50.34 
4 94.55 96.13 94.06 ⎯0.51 ⎯2.15 
5 97.51 100.16 99.01 1.54 ⎯1.14 
6 96.09 85.54 100.10 4.18 17.03 
7 98.49 99.14 99.22 0.74 0.08 
8 98.78 99.51 98.77 ⎯0.01 ⎯0.74 
9 96.97 98.45 98.24 1.31 ⎯0.22 
10 97.52 96.09 98.58 1.08 2.59 

Average 90.89 91.05 93.99 5.29 6.06 

EM: expectation-maximization; SVM: support vector machine; 
CMM: constrained maximum margin. IRG_EM and IRG_SVM 
demonstrate the increase in the generalization ability rates with 
CMM, compared with those of EM and SVM, respectively 
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although we had tried our best to collect the best 
previous results, it is difficult to confirm that we have 
not omitted any good prior work. 

4.2.4  Statistical comparison of different classifiers 

To achieve a more comprehensive analysis of the 
results, we compared our proposed method with some 
other state-of-the-art Bayesian classifiers on the 10 
UCI datasets, including tree augmented naïve Bayes 
(TAN) (Friedman et al., 1997), averaged one- 
dependence estimation estimators (AODE) (Webb  
et al., 2005), hidden naïve Bayes (HNB) (Jiang et al., 
2009), and weighted AODE (WAODE) (Jiang et al., 
2012). We employed the existing implementations of 
TAN, AODE, HNB, and WAODE in the WEKA 
platform. To process the numeric input feature vectors, 
we used the testing technique proposed by Jiang et al. 
(2009). We chose the unsupervised discretized filter 
to preprocess the numeric attributes, which in the 
WEKA platform is the unsupervised 10-bin discreti-
zation. Combining the previous results of both EM 
and SVM, the recognition rates of the seven algo-
rithms are displayed in Table 9. These results 
demonstrate that on the 10 UCI datasets with numeric 
attributes, our proposed algorithm has a higher aver-
aged recognition rate, which outperforms other 
counterparts and tends to have a robust performance 
over different datasets. 

The non-parametric Wilcoxon test was further 
performed for the comparison of each pair of  

algorithms. By taking advantage of the KEEL data- 
mining tool (Alcalá-Fdez et al., 2009, 2011), the 
Wilcoxon signed-rank test ranks the differences in 
performances of two classifiers of each dataset, ig-
noring the signs, and compares the ranks for the pos-
itive and the negative differences (Demšar, 2006). 
The Wilcoxon test ranking results are presented in 
Table 10, where the sum of ranks for the datasets on 
which the algorithm in the row outperforms the algo-
rithm in the corresponding column is shown in each 
value below the diagonal (the sum of ranks for posi-
tive differences, denoted by R+), and each value above 
the diagonal reflects the sum of ranks for the datasets 
on which the algorithm in the column is worse than 
the algorithm in the corresponding row (the sum of 
ranks for the negative differences, denoted by R−). 
The decision rule of the Wilcoxon signed-rank test is 
to reject the null-hypothesis when the smaller of R+ 
and R− is equal to or less than the critical value (for a 
confidence level of α=0.05 and N=10 datasets, the 
critical value is 8). Although no element in Table 10 
was found to be less than or equal to the corre-
sponding critical value, the difference in performance 
of these algorithms is shown in Table 11. The pro-
posed CMM improves the performance of EM and 
SVM, and TAN is outperformed by both HNB and 
WAODE. The average recognition rate of CMM 
(86.36%) is also much higher than those of EM 
(83.57%) and SVM (81.93%). It is the highest among 
the compared algorithms. 

Table 8  Comparisons between recognition rates on test sets from the CMM approach and those of the best results 
from previous work 

Dataset Previous method Reference 
Recognition rate (%) 

IR 
Ours Best previous 

1 HNB Jiang et al. (2009) 98.46 95.78 2.80 

2 Neural-network Gorman and Sejnowski (1988) 84.62 90.40 ⎯6.39 

3 k-SVM Bredensteiner and Bennett (1999) 52.60 72.43 ⎯27.38 

4 SVM Kwok (1999) 90.48 90.20 0.31 

5 3NN Jiang and Zhou (2004) 97.33 95.67 1.74 

6 C5.0 Dvořák and Savický (2007) 78.73 86.77 ⎯9.27 

7 WAODE Jiang et al. (2012) 90.13 95.03 ⎯5.16 

8 HNB Jiang et al. (2009) 86.52 85.46 1.24 

9 AODE Webb et al. (2005) 86.44 84.87 1.85 

10 WAODE Jiang et al. (2012) 98.33 96.63 1.76 

IR denotes the increase in rates associated with the constrained maximum margin (CMM) approach, compared with the best results from 
previous work. HNB: hidden naïve Bayes; SVM: support vector machine; NN: nearest neighbor; AODE: aggregating one-dependence 
estimators; WAODE: weighted AODE 
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5  Conclusions 
 

In this paper, we have proposed a novel dis-
criminative learning approach to Bayesian pattern 
classification, called ‘constrained maximum margin 
(CMM)’. We focused on the most representative 
representation of pattern information and high 
recognition rates with a good generalization ability, 

compared with most of the previous research, which 
has concentrated mainly on the separation between 
samples from different classes. We capitalized on 
margin maximization of different patterns, and cor-
rected classification constraints for discriminative 
learning. The differences between CMM and the 
previous discriminative learning approaches to 
Bayesian classification are as follows: 

Table 9  Recognition rates on test sets: comparisons between CMM and TAN, AODE, HNB, WAODE, EM, and 
SVM 

Dataset 
Recognition rate (%) 

CMM TAN AODE HNB WAODE EM SVM 
1 98.46 95.43 95.25 95.78 95.08 95.08 98.20 
2 84.62 75.39 79.04 80.89 78.04 77.88 80.77 
3 52.60 58.64 61.13 59.33 59.58 36.82 24.52 
4 90.48 81.03 80.54 80.79 80.52 88.24 87.43 
5 97.33 94.07 94.47 93.93 95.87 96.00 96.67 
6 78.73 82.92 81.13 81.49 81.07 80.80 70.21 
7 90.13 93.91 92.94 94.72 95.03 91.21 92.47 
8 86.52 78.38 85.22 85.46 85.00 86.36 87.04 
9 86.44 79.10 84.87 84.31 84.00 86.08 86.48 

10 98.33 93.26 96.07 94.94 96.63 97.22 95.55 
Average 86.36 83.21 85.07 85.16 85.08 83.57 81.93 

CMM: constrained maximum margin; TAN: tree augmented naïve Bayes; AODE: aggregating one-dependence estimators; HNB: 
hidden naïve Bayes; WAODE: weighted AODE; EM: expectation maximization; SVM: support vector machine 

 

Table 10  Ranks computed by the Wilcoxon test 

Algorithm 
Sum of ranks for the datasets 

CMM TAN AODE HNB WAODE EM SVM 
CMM –   42.0 37.0 34.0 35.0 46.0 46.0 
TAN 13.0 –   13.0 9.0 9.0 19.0 20.0 

AODE 18.0 42.0 –   27.0 32.0 26.0 22.0 
HNB 21.0 46.0 28.0 –   33.5 28.0 25.0 

WAODE 20.0 46.0 23.0 21.5 –   21.0 26.0 
EM 9.0 36.0 29.0 27.0 24.0 –   29.0 

SVM 9.0 35.0 33.0 30.0 29.0 26.0 –   

Values above the diagonal indicate that the algorithm in the row outperforms the one in the column; values below the diagonal indicate 
the opposite. CMM: constrained maximum margin; TAN: tree augmented naïve Bayes; AODE: aggregating one-dependence estimators; 
HNB: hidden naïve Bayes; WAODE: weighted AODE; EM: expectation maximization; SVM: support vector machine 

 

Table 11  Summary of the Wilcoxon test 

Algorithm CMM TAN AODE HNB WAODE EM SVM 
CMM –       
TAN  –  ○ ○   

AODE   –     
HNB    –    

WAODE     –   
EM      –  

SVM       – 

 indicates that the method in the row improves the one in the column; ○ indicates that the method in the column improves the one of the 
row. Above the diagonal level of significance, α=0.90; below the diagonal level of significance, α=0.95. CMM: constrained maximum 
margin; TAN: tree augmented naïve Bayes; AODE: aggregating one-dependence estimators; HNB: hidden naïve Bayes; WAODE: 
weighted AODE; EM: expectation maximization; SVM: support vector machine 
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1. The margin between two classes is defined at 
the class level, instead of the sample level. Since we 
took all the samples of a class as a whole, the separa-
tion between all the samples of a class and those of 
another class would be maximized, while the separa-
tion between two classes is measured on each single 
sample in similar previous work. More statistical 
information will be involved during the learning for 
different patterns when the margin is defined at the 
class level. 

2. Except for the objective of MM between two 
classes, the constraints of correct classification of 
training data were considered further in our approach. 
The penalty factor and its magnification coefficient of 
the constraint item will boost the learning results by 
increasing the effect of misclassification samples 
during the optimization. Furthermore, this constraint 
optimization problem was solved by using the se-
quential unconstrained minimization technique. 

To evaluate the proposed CMM approach, we 
applied it to learning Bayesian classifiers based on 
GMMs and conducted experiments on 10 datasets, 
which were established for classification and con-
tained only real attributes from the well-known UCI 
Machine Learning Repository. In the experiments, the 
performance of our CMM approach was compared 
with those of EM, SVM, and some state-of-the-art 
Bayesian classifiers. Additionally, we performed the 
non-parametric Wilcoxon test on different classifiers. 
According to the average recognition rates and gen-
eralization ability measured on the datasets, the CMM 
approach performed better than EM and SVM. Note 
that CMM delivered results better than the best results 
from similar previous work on six of 10 datasets. The 
statistical comparison indicates that our CMM not 
only outperforms its counterparts in terms of the av-
erage recognition rate, but also improves the classi-
fication performance of EM and SVM. These ex-
perimental results show that our CMM approach is 
effective and promising. 
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