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Abstract: This article is focused on secure relay beamformer design with a correlated channel model in the
relay-eavesdropper network. In this network, a single-antenna source-destination pair transmits secure information
with the help of an amplify-and-forward (AF) relay equipped with multiple antennas, and the legitimate and
eavesdropping channels are correlated. The relay cannot obtain the instantaneous channel state information (CSI) of
the eavesdropper, and has only the knowledge of correlation information between the legitimate and eavesdropping
channels. Depending on this information, we derive the conditional distribution of the eavesdropping channel. Two
beamformers at the relay are studied for the approximate ergodic secrecy rate: (1) the generalized match-and-
forward (GMF) beamformer to maximize the legitimate channel rate, and (2) the general-rank beamformer (GRBF).
In addition, one lower-bound-maximizing (LBM) beamformer at the relay is discussed for maximizing the lower
bound of the ergodic secrecy rate. We find that the GMF beamformer is the optimal rank-one beamformer, that
the GRBF is the iteratively optimal beamformer, and that the performance of the LBM beamformer for the ergodic
secrecy rate gets close to that of the GRBF for the approximate secrecy rate. It can also be observed that when
the relay has lower power or the channel gain of the second hop is low, the performance of the GMF beamformer
surpasses that of the GRBF. Numerical results are presented to illustrate the beamformers’ performance.
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1 Introduction

Security is an important aspect of a wireless
communication system due to the broadcast nature
of radio propagation. In the past, secure commu-
nication in wireless networks was typically guaran-
teed by using cryptographic algorithms implemented
at higher network layers. Recently, physical layer
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security has drawn much attention, because it can
protect wireless communications from eavesdropping
by exploiting the physical characteristics of wireless
channels.

Wyner (1975) proposed the wiretap channel
model, and proved that when the wiretap channel
is a degraded version of the main source-destination
channel, the source could send secret messages to
the destination without leaking any information to
the eavesdropper, by exploiting the physical prop-
erties of the channel. Leung-Yan-Cheong and Hell-
man (1978) and Csiszár and Korner (1978) gener-
alized Wyner’s approach to scenarios with Gaussian
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channels and broadcast channels, respectively.

However, physical layer security was not re-
ally attractive to researchers during the 1980s and
1990s. In a single-antenna system, the secrecy
rate is typically zero when the legitimate channel
is worse than the eavesdropping channel. To avoid
this limitation, in recent years, many studies have
been conducted by taking advantage of cooperative
communications (Dong et al., 2010; Krikidis, 2010;
Chen, 2011; Li et al., 2011; Lee, 2015; Wang et al.,
2015; Zhang M et al., 2016; Zhang R et al., 2016a;
2016b). Cooperative issues via spectrum sharing in
device-to-device networks were analyzed in a few re-
ports (Zhang R et al., 2016a; 2016b). Four coop-
erative schemes, decode-and-forward (DF), amplify-
and-forward (AF), compress-and-forward (CF), and
cooperative jamming (CJ), have been studied by Li
et al. (2011), Dong et al. (2010), Chen (2011), and
Lee (2015), respectively. Optimal relay weights have
been derived for maximizing the secrecy rate or mini-
mizing the power consumption of the relays. Krikidis
(2010) studied the opportunistic relay selection tech-
niques when an instantaneous knowledge or an aver-
age knowledge of the eavesdropper channels is known
to the relays. Wang et al. (2015) designed the op-
timal and suboptimal relay selection algorithms for
backscatter wireless communication systems under
the information security constraint.

Most of the previous works on relay wireless net-
works assumed that the legitimate channel and the
wiretap channel are independent. However, in prac-
tical scenarios, correlations between channels usually
exist (McKay and Collings, 2005; Tulino et al., 2005;
Cheng et al., 2012; Geraci et al., 2013; Ghose and
Bose, 2013; Ferdinand et al., 2014; Yin and Cheng,
2016), depending on antenna deployments, scatters
around the legitimate receiver and eavesdropper, and
so on. Tulino et al. (2005) studied the impact of
antenna correlation on the trade-offs among power,
bandwidth, and channel capacity. Using transmit
antenna selection (TAS), Ferdinand et al. (2014) in-
vestigated the secrecy performance of multiple-input
single-output (MISO) wiretap channels when the
eavesdropper channel is correlated with the main
one. The issue of transmit power minimization under
the correlated Rayleigh fading model was addressed
by Ghose and Bose (2013). Geraci et al. (2013) stud-
ied the precoding schemes for broadcast channels un-
der transmit side channel correlation.

In this study, for the first time, we have inves-
tigated the beamforming schemes to maximize the
secrecy capacity of a wireless dual-hop AF relay net-
work in which the legitimate channel is correlated
with the eavesdropper’s channel. We suppose that
the relay with multiple antennas cannot obtain the
instantaneous channel state information (CSI) of the
eavesdropper’s channel. The legitimate receiver es-
timates the correlation information between the two
channels and then feeds it back to the relay.

In our previous work (Yuan et al., 2016), only
the approximate ergodic secrecy rate was adopted as
the performance metric. The approximate ergodic
secrecy rate R̄ is not absolutely greater or smaller
than the ergodic secrecy rate Reg. In this study,
we derive another performance metric, i.e., the lower
bound of the ergodic secrecy rateRlb. Along with the
increase inRlb, the ergodic secrecy rate increases. By
comparing the performances using these two metrics,
it can be seen that both metrics are efficient and the
performance with Rlb is close to that with R̄. Actu-
ally, a positive and clear lower bound is more useful
in practical scenarios. In addition, in this article, we
present the analysis of computation complexity for
the two iterative optimization algorithms.

The main contributions of this study are sum-
marized as follows:

1. For the first time, a more practical scenario
of the dual relay network has been considered, in
which the legitimate channels of the second hop are
correlated with the eavesdropping channels. By ex-
ploiting the channel correlation matrix, we derive the
statistical distribution of the eavesdropping channels
based on the instantaneous legitimate channel states.

2. The analytical expression of the general-
ized match-and-forward (GMF) beamformer at the
relay is presented based on the maximal-ratio-
transmitting (MRT) strategy. It can be observed
that the GMF beamformer is of low computation
complexity, while it is the optimal rank-one beam-
former to guarantee the transmission security from
the transmitter to the legitimate receiver.

3. The approximate ergodic secrecy rate max-
imization problem is re-transformed into a semi-
definite programming (SDP) problem, and the gen-
eral rank beamformer (GRBF) is proposed to obtain
the iteratively optimal relay beamformer. The com-
putation complexity for the GRBF is presented and
compared with that of the GMF beamformer.
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4. The study also derives the iteratively opti-
mal beamformer for the lower bound of the ergodic
secrecy rate, to make a comparison with the beam-
formers mentioned herein in terms of the approxi-
mate secrecy rate.

Notations: We use upper-case and lower-case
boldface letters to denote matrices and vectors, re-
spectively. IM denotes the M ×M identity matrix,
(·)T and (·)H are the transpose and conjugate trans-
pose of matrices or vectors, respectively, (·)∗ is the
complex conjugate operator, E[·] is the statistical
expectation, and tr(·) denotes the trace of a matrix.
The Kronecker product is denoted as ⊗. vec(·) repre-
sents the column vectorizing operator which stacks
the columns of a matrix to a column vector, while
unvec (·) is the corresponding inverse-transforming
operator. λmin(·) and λmax(·) denote the minimum
and maximum eigenvalues of a matrix, respectively.

2 System model and problem formula-
tion

2.1 System model

We consider a four-node wireless communica-
tion system as shown in Fig. 1, which consists of a
source (Alice), a destination (Bob), a relay, and an
eavesdropper (Eve). The relay helps secure trans-
missions from Alice to Bob. There are no direct
channels from Alice to Bob and Eve. Eve aims to
eavesdrop on the signals from the relay to Bob. We
consider the following scenarios:
Scenario 1 The relay is equipped with M antennas
for secure and reliable transmissions to Bob, while
Alice, Bob, and Eve are all equipped with a single
antenna.
Scenario 2 Bob can assume that Eve might be
close to him for better eavesdropping and deduce a

Alice Relay

Bob

Eve

g

hb

he

Fig. 1 A dual-hop wireless relay network with a single
antenna eavesdropper

potential Eve’s channel, which might be correlated
with Bob’s channel.

Let hb denote the channel vector to Bob from
the relay. In addition, the channel vector to Eve from
the relay is denoted by he. According to Scenario 2,
hb and he could be correlated and this correlation
can be observed by Bob (the same assumption was
adopted in Choi (2016)). Note that if Eve is not close
to Bob, the two channel vectors are uncorrelated and
Bob is unable to know their correlations. Assuming
Rayleigh fading, hb and he can be modeled as jointly
circularly symmetric complex Gaussian (CSCG) ran-
dom vectors:

h = [hT
b hT

e ]
T ∼ CN

([
0

0

]
,

[
R11 R12

R21 R22

])
,

(1)
where R11 = E[hbh

H
b ], R12 = E[hbh

H
e ], R21 =

E[heh
H
b ], and R22 = E[heh

H
e ].

Because of the correlation between hb and he,
h can be represented using a CSCG random vector
h1 ∼ CN (

0, σ2I
)

as

h = R1/2h1, (2)

where R denotes the channel correlation matrix and
is Hermitian and positive definite, and σ2 is the vari-
ance for each correspondingly independent channel.
According to this discussion, it is easily obtained that

[
R11 R12

R21 R22

]
= σ2R.

At Bob’s position, with knowing its channel vec-
tor hb, the conditional distribution of he can be
found as follows (Barkat, 2005):

he|hb ∼ CN (
h̄e, R̄e

)
, (3)

where h̄e = R21R
−1
11 hb and R̄e = R22 −

R21R
−1
11 R12. The proof of Eq. (3) can be seen in

Appendix A.
According to Kim et al. (2009), the channel cor-

relation matrix can be divided into two parts, i.e.,
R = Rr⊗Rs, where Rr and Rs are 2×2 and M×M

Hermitian matrices, denoting the receive and trans-
mit correlation matrices, respectively.

We denote Rr =

[
1 ε

ε∗ 1

]
, where ε is the re-

ceive correlation coefficient between the receive an-
tennas (0 < ε ≤ 1). Thus, R11 = R22 = σ2Rs, and
R12 = RH

21 = εσ2Rs.
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2.2 Signal transmitting procedure

The transmitting procedure is divided into two
stages. In the first stage, Alice sends the source
signal s with distribution CN (0, 1) to the relay. The
received signal vector at the relay is given by

yr = gs+ n, (4)

where g is the channel vector from Alice to the relay,
and n is the background complex Gaussian noise
vector. In the second stage, the relay retransmits yr

via AF protocols. The beamforming matrix at the
relay for AF relaying is denoted by F . Then, the
received signals at Bob and Eve, denoted by yb and
ye, respectively, are given by

yb = hH
bF (gs+ n) + nb, (5)

ye = hH
e F (gs+ n) + ne, (6)

where nb and ne are the background complex Gaus-
sian noise variables at Bob and Eve, respectively.

The power consumed at the relay for transmit-
ting signals can be rewritten as

p(F ) = tr
(
FggHFH

)
+ tr

(
FFH

)
= tr

(
FĜFH

)

≤ pr,

(7)

where Ĝ = G + IM , G = ggH, and pr is the relay
power constraint in the second stage.
Remark 1 In this study, we assume that all
noise variances are one, i.e., n ∼ CN (0, I), nb ∼
CN (0, 1), and ne ∼ CN (0, 1). Generally, we as-
sume that n ∼ CN (

0, σ2I
)
, nb ∼ CN (0, σb), and

ne ∼ CN (0, σe), where σ, σb, and σe are the vari-
ances. We can easily normalize the noise variances
to one by the following transforms: yr → yr/σ,
yb → yb/σb, ye → ye/σe, g → g/σ, hb → σhb/σb,
and he → σhe/σe. Thus, the general case always fits
into our assumptions.

2.3 Problem formulation

In this article, we focus on the relay beamform-
ing problems. We first define several quantities prior
to presenting the optimization criteria. The signal-
to-noise ratio (SNR) at Bob, γb, as a function of F ,
is defined as

γb (F ) =
|hH

b Fg|2
1 + ‖hH

bF ‖2 , (8)

and the SNR at Eve, γe, as a function of he and F ,
is defined as

γe (F ,he) =
|hH

e Fg|2
1 + ‖hH

e F ‖2 . (9)

For fast fading channels, with γb (F ) and
γe (F ,he) in Eqs. (8) and (9), for a given hb, the
performance metric can be the ergodic secrecy rate:

Reg (F ) =
1

2

(
log2(1 + γb(F ))

− Ehe|hb
[log2(1 + γe(F ,he))]

)+
.

(10)

As the ergodic secrecy rate Reg, which is ex-
pressed in the integral form, is difficult for computa-
tion and optimization, we use the following approxi-
mation to simplify the optimization problem:

R̄ (F ) =
1

2
(log2(1 + γb(F ))− log2(1 + γ̄e(F )))

+
,

(11)

where the approximate average SNR at Eve is

γ̄e (F ) =
Ehe|hb

[|hH
e Fg|2]

1 + Ehe|hb
[‖hH

e F ‖2]

=
|h̄H

e Fg|2 + gHFHR̄eFg

1 +
∥∥h̄H

e F
∥∥2 + tr

(
FHR̄eF

)

=
gHFHĤeFg

1 + tr
(
FHĤeF

) ,
(12)

Ĥe = H̄e + R̄e, and H̄e = h̄eh̄
H
e .

Note that the same approximation method has
been adopted in Wang et al. (2013) and Kobayashi
and Caire (2007) to maximize the average secrecy
rate with imperfect CSI at the transmitter. The
beamforming matrix is used to maximize the secrecy
rate for a given hb.

In addition to the approximate ergodic secrecy
rate R̄ (F ), the other performance metric used is the
lower bound on the ergodic secrecy rate. If we can
maximize the lower bound, we can also increase the
result of Eq. (10). The following expression is the
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lower bound that we have derived:

Reg(F )
a≥ log2 e

2

(
ln(1+γb(F ))−Ehe|hb

[γe(F ,he)]
)

=
log2 e

2

(
ln(1 + γb(F ))−Ehe|hb

[ ∣∣hH
e Fg

∣∣2
1 + ‖hH

e F ‖2
])

b≥ log2 e

2

⎛
⎝ln(1 + γb(F ))−

Ehe|hb

[∣∣hH
e Fg

∣∣2]

1 + Ehe|hb

[
‖hH

e F ‖2
]
⎞
⎠

=
log2 e

2
(ln(1 + γb(F ))−γ̄e(F ))

Δ
= Rlb (F ) ,

(13)
where the derivation (a) is due to x > ln (1 + x) for
x > 0, and the derivation (b) depends on Jensen’s
inequality.

For convenience, we drop the operator (·)+ and
the constant coefficient 1/2. Mathematically, the
beamforming optimization problem for Eq. (11) can
be expressed as

max
F

log2(1 + γb(F )) − log2(1 + γ̄e(F ))

s.t. tr(FĜFH) ≤ pr.
(14)

In the same way, by dropping the term log2 e/2

in Eq. (13), the beamforming problem that maxi-
mizes the lower bound of Reg can be formulated as
follows:

max
F

ln(1 + γb(F ))−γ̄e(F )

s.t. tr(FĜFH) ≤ pr.
(15)

3 Relay beamformer design

In this section, we design the beamforming ma-
trices to obtain the maximal approximate ergodic
secrecy rate R̄.

According to Eq. (8), γb can be rewritten as

γb (F ) =
gHFHHbFg

1 + tr (FHHbF )

a
=

vec(F )
H
vec (HbFG)

1 + vec(F )
H
vec (HbF )

(16)

b
=

vec(F )
H (

GT ⊗Hb

)
vec (F )

1 + vec(F )
H
(IM ⊗Hb) vec (F )

,

where Hb = hbh
H
b . The derivations (a) and (b)

come from the theorems tr(AHB) = vec(A)Hvec(B)

and vec(ABC) = (CT ⊗A)vec(B), respectively
(Magnus and Neudecker, 1988).

Let w = vec(F ). Then

γb (w) =
wH

(
GT ⊗Hb

)
w

1 +wH (IM ⊗Hb)w
. (17)

In a similar way, γ̄e can be rewritten as

γ̄e (w) =
wH

(
GT ⊗ Ĥe

)
w

1 +wH
(
IM ⊗ Ĥe

)
w
, (18)

and the relay power constraint (7) can be rewritten
as

p (w) = wH
(
ĜT ⊗ IM

)
w ≤ pr. (19)

Let Hgb = GT ⊗Hb, Hib = IM ⊗Hb, Hge =

GT ⊗ Ĥe, Hie = IM ⊗ Ĥe, and Hgi = ĜT ⊗ IM .
After plugging Eqs. (17), (18), and (19) into problem
(14), the optimization problem can be rewritten as

max
w

log2

(
1+

wHHgbw

1+wHHibw

)
−log2

(
1+

wHHgew

1+wHHiew

)

s.t. wHHgiw ≤ pr.
(20)

Since w = vec(F ), when we obtain the optimal
w, we can obtain the optimal F by solving F =

unvec(w).

3.1 GMF beamformer design

The GMF beamformer is designed to use the
MRT strategy to make Bob obtain the largest chan-
nel capacity.

Using Eq. (5), we can see

yb = hH
bFgs+ hH

b Fn+ nb

=
(
gT ⊗ hH

b

)
ws+ hH

b Fn+ nb. (21)

According to the MRT strategy, we can derive that
the optimal w of the GMF beamformer is

w = μ2qgb, (22)

where qgb = g∗ ⊗ hb, and μ2 is a scale number that
ensures that w satisfies the power constraint.

After plugging Eq. (22) into problem (20),
the problem becomes a single variable optimization
problem. According to Appendix B, the optimal μ2

can be obtained as follows:

μ2 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, m ≥ h4
b,

√
x0, m < min

(
h4
b,

g2 + 1

p2r

)
,

√
x1, otherwise,

(23)
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where hb = ‖hb‖, g = ‖g‖, m = hH
b Ĥehb, x0 =

pr/(g
2h2

b(g
2 + 1)), and x1 =

√
1/((g2 + 1)g4h4

bm).
As F = unvec(w), the GMF beamformer can be

rewritten as FGMF = μ2hbg
H. Compared with the

MF beamformer in Wang et al. (2013), it is easily
obtained that the GMF beamformer is essentially
the MF beamformer proposed by Wang et al. (2013),
i.e., the optimal rank-one beamformer. The proof is
omitted here.

3.2 GRBF design

In this subsection, we do not impose any other
constraints to the beamforming matrices. By drop-
ping the log2 constraint, problem (20) can be formu-
lated as follows:

max
w

1+wH(Hgb +Hib)w

1 +wHHibw

1 +wHHiew

1+wH(Hie +Hge)w

s.t. wHHgiw ≤ pr.
(24)

We introduce a slacking variable τ which satis-
fies the following relationship:

τ =
1 +wHHiew

1 +wH (Hie +Hge)w
. (25)

By plugging Eq. (25) into Eq. (24), for each
given τ , problem (24) can be rewritten as follows:

max
w

τ
1 +wH (Hgb +Hib)w

1 +wHHibw

s.t. wHHgiw ≤ pr,

wH(τHge + (τ − 1)Hie)w = 1− τ.

(26)

To solve this problem, semi-definite relaxation
(SDR) is used. We define a matrix W that satisfies
W = wwH. By dropping the non-convex rank-one
constraint of W , problem (26) can be reformulated
as follows:

max
W

τ
1 + tr((Hgb +Hib)W )

1 + tr(HibW )

s.t. tr(HgiW ) ≤ pr,

tr((τHge + (τ − 1)Hie)W ) = 1− τ ,

W � 0.

(27)

Problem (27) is quasi-convex. To solve it, we
adopt the Charnes-Cooper transformation. We in-
troduce two variables Z � 0 and η > 0, and further
define that W = Z/η. Then problem (27) can be

rewritten as follows:

max
Z,η

τ (η + tr ((Hgb +Hib)Z))

s.t. tr (HgiZ) ≤ ηpr,

tr ((τHge + (τ − 1)Hie)Z) = η (1− τ ),

η + tr (HibZ) = 1,Z � 0, η > 0.

(28)

Problem (28) is an SDP problem that is convex,
and it can be solved by many convex optimization
tools, such as CVX.

We assume that the optimal result of problem
(28) is denoted by φ(τ), as it is calculated with a
given τ . To obtain the optimal solution of problem
(24), the single-variable optimization problem repre-
sented as

max
τ

φ(τ)

s.t. τlb ≤ τ ≤ τub
(29)

needs to be solved, where τlb and τub are the
lower and upper bounds, respectively. According to
Eq. (25), we can see that

τ =
1 +wHHiew

1 +wH (Hie +Hge)w

≥
wH

(
Hie+

Hgi

pr

)
w

wH

(
Hie +Hge +

Hgi

pr

)
w

≥ λmin

((
Hie +Hge +

Hgi

pr

)−1(
Hie+

Hgi

pr

))

Δ
= τlb, (30)

and

τ =
1 +wHHiew

1 +wH (Hie +Hge)w
≤ 1

Δ
= τub. (31)

From Eqs. (30) and (31), we can see that τ = τlb
denotes that Eve’s approximate wiretapping channel
capacity reaches the best, while τ = τub denotes that
Eve cannot obtain any information from the channel.

Problem (29) is a one-variable optimization
problem. Its optimal solution can be obtained by
the one-dimensional exhaustive search algorithm.

3.3 Lower-bound-maximizing beamformer
design

Next, we study the approximate ergodic secrecy
rate for the system. However, the approximate er-
godic secrecy rate is not strictly greater or smaller
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than the ergodic secrecy rate. In this subsection, we
discuss the lower bound of the ergodic secrecy rate,
and derive the iteratively optimal relay beamformer
for the system.

After plugging Eqs. (17), (18), and (19) into
problem (15), the optimization problem can be
rewritten as

max
w

ln

(
1 +

wHHgbw

1 +wHHibw

)
− wHHgew

1 +wHHiew

s.t. wHHgiw ≤ pr.
(32)

A slacking parameter τ is introduced which
satisfies

τ =
wHHgew

1 +wHHiew
. (33)

After substituting Eq. (33) into problem (32),
the optimization problem can be rewritten as

max
w

1 +wH (Hgb +Hib)w

1 +wHHibw

s.t. wH (Hge − τHie)w = τ ,

wHHgiw ≤ pr.

(34)

To solve this problem, the SDR approach is
used. We define a matrix W which satisfies W =

wwH. By dropping the non-convex rank-one con-
straint of W , problem (34) can be reformulated as

max
W

1 + tr ((Hgb +Hib)W )

1 + tr (HibW )

s.t. tr ((Hge − τHie)W ) = τ,

tr (HgiW ) ≤ pr,W � 0.

(35)

Problem (35) is a quasi-convex problem; to solve
this problem, we adopt the Charnes-Cooper trans-
formation. We introduce two variables Z � 0 and
η > 0, and further define W = Z/η. Then problem
(35) can be rewritten as

max
η,Z

η + tr ((Hgb +Hib)Z)

s.t. tr ((Hge − τHie)Z) = τη,

tr (HgiZ) ≤ ηpr,

η + tr (HibZ) = 1,

Z � 0, η > 0.

(36)

Problem (36) is an SDP problem and is convex.
It can also be solved by CVX tools.

We assume that the result of problem (36) is
denoted by φ (τ), as it is calculated with a given τ .

To obtain the solution of problem (32), the single-
variable optimization problem, represented as

max
τ

ln (φ (τ))− τ

s.t. τlb ≤ τ ≤ τub,
(37)

needs to be solved, where τlb and τub are the lower
and upper bounds, respectively. According to con-
straint (33), it can be observed that

τ =
wHHgew

1 +wHHiew

≤ wHHgew

wH

(
Hgi

pr
+Hie

)
w

≤ λmax

((
Hgi

pr
+Hie

)−1

Hge

)

Δ
= τub, (38)

and

τ =
wHHgew

1 +wHHiew
≥ 0

Δ
= τlb. (39)

Problem (37) is a one-variable optimization
problem. Its optimal solution can be obtained by
the one-dimensional exhaustive search algorithm.

Notations: Problems (27) and (34) are solved
by dropping the rank-one constraint of W . We as-
sume that (Z∗, η∗) is the optimal solution of problem
(28), and that W ∗ = Z∗/η∗. If W ∗ is of rank-one,
we can obtain the optimal w∗ via the eigenvalue de-
composition of W ∗. If the rank of W ∗ is larger than
one, we can extract an approximate solution w∗ by
the Gaussian randomization procedure (Luo et al.,
2010). The procedure for problem (34) is the same
as that for problem (27), so it is omitted for clarity
and simplicity.

According to Luo et al. (2010), the SDP prob-
lems represented in problems (28) and (36) can be
numerically tackled through interior-point methods
with the worst case complexity

O
(
max

(
4,M2 + 1

)4(
M2 + 1

)1/2
lg (1/δ)

)
, (40)

where δ > 0 is a given solution accuracy. Meanwhile,
the computation complexity of the GMF beam-
former is O (1), irrespective of the number of an-
tennas in the relay.
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4 Numerical results

In this section, simulation results are shown
to present the performance of the proposed relay
beamformers. The values for Reg in Eq. (10) for
the proposed relay beamformers are also given with
high precision numerical methods, and the results
of the MF beamformer (Wang et al., 2013) are pre-
sented for comparison. In the simulation, we set
g2 = ‖g‖2 = 10 dB.

Because the receive correlation matrix is more
complex for the situation in which Bob and Eve have
multiple antennas, we consider only that Bob and
Eve are both equipped with a single antenna for
simplicity. We assume that the receive correlation
matrix satisfies

Rr =

[
1 ε

ε∗ 1

]
,

where ε = 0 means that the receive channel states
of Bob and Eve are independent, and |ε| = 1 means
that the receive channel states of Bob and Eve are
completely correlated. The transmit correlation ma-
trix can be assumed as an M ×M identity matrix,
because the relative positions among the relay’s an-
tennas could be well designed to reduce their cor-
relations. For simulations, g and hb are generated
randomly for each run, and the average values of
1000 runs are presented.

Figs. 2 and 3 show the impact of the receive
correlation coefficient on the secrecy rate for differ-
ent numbers of antennas in the relay (M). As ob-
served, the performance of the GRBF surpasses that
of the GMF beamformer, while the performance of
the LBM beamformer gets close to that of the GRBF.
When the correlation between Bob’s and Eve’s chan-
nels, i.e., |ε|, increases, the secrecy rates deteriorate
for all the beamformers. Specifically, when |ε| = 0

(i.e., Bob’s and Eve’s channels are independent),
the secrecy rates for all the beamformers reach the
largest value; when |ε| = 1 (i.e., Bob’s and Eve’s
channels are fully correlated), the secrecy rates of all
the channels become zero. In this condition, extra
jammers are needed to guarantee the security of in-
formation transmission, which is another topic differ-
ent from that in this study. Along with the increase
in the correlation, it becomes harder to exploit the
difference between the channels to transmit secure
information. R̄ for the MF beamformer is coinci-
dent with R̄ for the GMF beamformer, proving that
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Fig. 2 Approximate ergodic secrecy rate R̄ and er-
godic secrecy rate Reg versus the receive correlation
coefficient between receiving antennas, |ε| (M = 2,
pr = 10 dB, and σ2 = 1)
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Fig. 3 Approximate ergodic secrecy rate R̄ and er-
godic secrecy rate Reg versus the receive correlation
coefficient between receiving antennas, |ε| (M = 4,
pr = 10 dB, and σ2 = 1)

the GMF beamformer is the optimal rank-one beam-
former. Reg for the LBM beamformer gets closer to
that obtained by the GRBF when M = 4 than it
does when M = 2.

Fig. 4 depicts the curves of system performance
versus the relay power pr. When pr increases, R̄ for
the GRBF increases fast, and R̄ for the GMF beam-
former increases at the beginning, but then the curve
becomes flat. When pr is in the lower region, the per-
formance of the GMF beamformer for Reg surpasses
that of the GRBF and the LBM beamformer. Ac-
cording to Eq. (23), we can see that when pr is low,
the performance of the GMF beamformer improves
with the increase of pr; when pr is in the high re-
gion, the performance of the GMF beamformer is
irrelevant to pr.
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Fig. 4 Approximate ergodic secrecy rate R̄ and er-
godic secrecy rate Reg versus the relay power, pr

(M = 2, |ε| = 0.5, and σ2 = 1)

In Fig. 5, we discuss the impact of the channel
gain of the second hop σ2 on the secrecy rate. The
terms σ2 and pr have the same impact on the per-
formance of the system, because they both affect the
signal strength at Bob’s and Eve’s locations. When
σ2 increases, the value of R̄ for the GRBF increases,
and the value of R̄ for the GMF beamformer remains
constant because pr is large enough.
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Fig. 5 Approximate ergodic secrecy rate R̄ and er-
godic secrecy rate Reg versus the channel gain of the
second hop, σ2 (M = 2, |ε| = 0.5, and pr = 10 dB)

Fig. 6 presents the curves of the secrecy rates
versus the number of antennas in the relay (M).
When M increases, the performance for both the
GMF beamformer and the GRBF is improved; how-
ever, the improvement rate becomes lower, because
we assume that the channel gain between Alice and
the relay g2 is constant. When M increases, the
average signal strength for each antenna degrades.

S
ec

re
cy

 ra
te

 (b
it/

(s
∙H

z)
)

0.1
2 3 4

Number of antennas in the relay
5 6

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

Reg for LBM beamformer
R for GMF beamformer
Reg for GMF beamformer
R for MF beamformer
R for GRBF
Reg for GRBF

Fig. 6 Approximate ergodic secrecy rate R̄ and er-
godic secrecy rate Reg versus the number of antennas
in the relay, M (σ2 = 1, |ε| = 0.5, and pr = 10 dB)

From all the results presented herein, we observe
that Reg always changes the same as R̄ for each kind
of beamformer. Reg for the LBM beamformer follows
the same change trend as Reg for the GRBF, and gets
closer to Reg while M increases.

5 Conclusions

In this study, a dual-hop wireless communica-
tion system was studied. In this system, the re-
lay is equipped with multiple antennas, and the le-
gitimate channel is correlated with the eavesdrop-
ping one. Three different beamformers at the relay
were studied: the GMF beamformer, the GRBF for
the approximate ergodic secrecy rate, and the LBM
beamformer for the lower bound of the ergodic se-
crecy rate. It could be found that: the performance
of the GRBF was the best, the performance of the
LBM beamformer was the second, and the GMF had
the lowest computation complexity. When the relay
had lower power or the channel of the second hop
was weak, the performance of the GMF beamformer
surpassed that of the other two beamformers. In
addition, the performance of the LBM beamformer
for the ergodic secrecy rate got close to that of the
GRBF for the approximate ergodic secrecy rate of
the system. It should be noted that the study con-
sidered only the simple situation in which the legiti-
mate receiver was equipped with a single antenna, as
was the eavesdropping receiver. In the future, more
research would be carried out on systems with more
complex correlated channels, for instance, cases of
multiple relays with multiple antennas.
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Appendix A: Derivation of the condi-
tional distribution of he

It is known that h = [hT
b hT

e ]
T is a CSCG ran-

dom vector. The probability density function (PDF)
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of h can be expressed as

f(h) =
1

π2M det

[
R11 R12

R21 R22

]

· exp
[[
hH
b ,h

H
e

] [ R11 R12

R21 R22

]−1 [
hb

he

]]
.

(A1)

hb is a CSCG random vector. The PDF of hb

can be expressed as

f(hb) =
1

πM detR11
exp

[
hH
bR

−1
11 hb

]
. (A2)

Because Rij (i = 1, 2; j = 1, 2) are full-rank ma-
trices, transformations in Eqs. (A3) and (A4) are
satisfied:

det

[
R11 R12

R21 R22

]
= det [R11] det

[
R̂11

]
, (A3)

[
R11 R12

R21 R22

]−1

=

[
(R11−R12R

−1
22 R21)

−1 −R̂−1
12

(R12−R11R
−1
21 R22)

−1
R̂−1

11

]
,

(A4)

where R̂11 = R22 −R21R
−1
11 R12 and R̂12 =

R21 −R22R
−1
12 R11.

According to the probability theory, the condi-
tional PDF can be rewritten as

f(he|hb) =
f(h)

f(hb)
=

1

πM det
(
R22 −R21R

−1
11 R12

)

· exp
[[
hH
b hH

e

][R11 R12

R21 R22

]−1[
hb

he

]
− hH

bR
−1
bbhb

]
.

(A5)
According to the properties of the Gaussian ran-

dom process, the statistical distribution of the con-
ditional probability he|hb is still a Gaussian random
process, i.e., y = he|hb ∼ CN (

h̄e, R̄e

)
. Then, the

PDF of y can be rewritten as

f(y) =
1

πM det R̄e
exp

[(
y − h̄e

)H
R̄−1

e

(
y − h̄e

)]
.

(A6)
By plugging Eq. (A4) into Eq. (A5) and com-

paring Eqs. (A5) and (A6), we can easily obtain
{
R̄e = R22 −R21R

−1
11 R12,

−(R̂11)
−1

h̄e =
(
R12 −R11R21

−1R22

)−1
hb.

That is,

h̄e = R21R
−1
11 hb, (A7)

R̄e = R22 −R21R
−1
11 R12. (A8)

The proof is completed.

Appendix B: Procedure for obtaining
the optimal µ2

Substituting Eq. (22) into Eq. (17), then we have

γb(μ2)

=
μ2
2(g

∗ ⊗ hb)
H((ggH)T ⊗ (hbh

H
b ))(g

∗ ⊗ hb)

1 + μ2
2(g

∗ ⊗ hb)H(IM ⊗ (hbhH
b ))(g

∗ ⊗ hb)

a
=

μ2
2

(
gTg∗gTg∗)⊗ (hH

b hbh
H
b hb

)
1 + μ2

2 (g
TIMg∗)⊗ (hH

b

(
hbhH

b

)
hb

)

=
μ2
2g

4h4
b

1 + μ2
2g

2h4
b

.

(B1)
The process (a) comes from the theorem (AB) ⊗
(CD) = (A⊗C) (B ⊗D).

Substituting Eq. (22) into Eq. (18), we obtain

γ̄e (μ2) =
μ2
2(g

∗ ⊗ hb)
H
((

ggH
)T ⊗ Ĥe

)
(g∗ ⊗ hb)

1 + μ2
2(g

∗ ⊗ hb)
H
(
IM ⊗ Ĥe

)
(g∗ ⊗ hb)

=
μ2
2g

4m

1 + μ2
2g

2m
, (B2)

where m = hH
b Ĥehb is a constant with respect to hb

and the covariance matrix of h.
Substituting Eq. (22) into Eq. (19), the power

constraint can be written as

p (μ2) = μ2
2(g

∗ ⊗ hb)
H
(
ĜT ⊗ IM

)
g∗ ⊗ hb

= μ2
2

(
gTg∗ + gTg∗gTg∗)⊗ (hH

bhb

)
= μ2

2g
2
(
1 + g2

)
h2
b

≤ pr. (B3)

Plugging Eqs. (B1), (B2), and (B3) into problem
(14), and letting x = μ2

2, the optimization problem
becomes

max
x

log2

(
1 +

g4h4
bx

1 + g2h4
bx

)
− log2

(
1 +

g4mx

1 + g2mx

)

s.t. g2
(
1 + g2

)
h2
bx ≤ pr.

(B4)
Let f(x) be the objective function of problem

(B4). The derivative of f(x) with respect to x is
shown in Eq. (B5):
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df(x)

dx
=

g4
(
m− h4

b

) ((
g2 + 1

)
g4h4

bmx2 − 1
)

(1 + (g2 + 1) g2mx) (1 + g2mx) (1 + (g2 + 1) g2h4
bx) (1 + g2h4

bx)
. (B5)

From problem (B4), the power constraint can
be written as

x ≤ pr
g2h2

b (g
2 + 1)

Δ
= x0.

Let Eq. (B5) be equal to zero. The positive root
can be obtained as

x1 =

√
1

(g2 + 1) g4h4
bm

. (B6)

According to the derivative theory, the results

of problem (B4) can be presented as follows:

fmax =

⎧⎪⎪⎨
⎪⎪⎩
0, m ≥ h4

b,

f(x0), m < min
(
h4
b, (g

2 + 1)/p2r
)
,

f(x1), otherwise,

(B7)
and the corresponding optimal μ2 is

μ2 =

⎧⎪⎪⎨
⎪⎪⎩
0, m ≥ h4

b,√
x0, m < min

(
h4
b, (g

2 + 1)/p2r
)
,

√
x1, otherwise.

(B8)
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