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Abstract: Spectral clustering is one of the most popular and important clustering methods in pattern recognition,
machine learning, and data mining. However, its high computational complexity limits it in applications involving
truly large-scale datasets. For a clustering problem with n samples, it needs to compute the eigenvectors of the graph
Laplacian with O(n3) time complexity. To address this problem, we propose a novel method called anchor-based
spectral clustering (ASC) by employing anchor points of data. Specifically, m (m � n) anchor points are selected
from the dataset, which can basically maintain the intrinsic (manifold) structure of the original data. Then a
mapping matrix between the original data and the anchors is constructed. More importantly, it is proved that
this data-anchor mapping matrix essentially preserves the clustering structure of the data. Based on this mapping
matrix, it is easy to approximate the spectral embedding of the original data. The proposed method scales linearly
relative to the size of the data but with low degradation of the clustering performance. The proposed method, ASC,
is compared to the classical spectral clustering and two state-of-the-art accelerating methods, i.e., power iteration
clustering and landmark-based spectral clustering, on 10 real-world applications under three evaluation metrics.
Experimental results show that ASC is consistently faster than the classical spectral clustering with comparable
clustering performance, and at least comparable with or better than the state-of-the-art methods on both effectiveness
and efficiency.
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1 Introduction

Spectral clustering is one of the most popular
clustering algorithms in many related areas due to
its simplicity and high accuracy, such as machine
learning, image processing, and data mining, and has
solid theoretical support known as spectral theory.
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The main idea of spectral clustering is to model
the data points by a graph, whose vertices and edges
represent the data points and the similarity between
pairwise data points, respectively. The new repre-
sentation of data can be obtained using the eigen-
vectors of the graph Laplacian matrix. This new,
often low-dimensional and more separable, represen-
tation is known as spectral embedding of data. Run-
ning K-means on the low-dimensional representation
usually leads to clustering results better than that in
the original space. Details about spectral clustering
can be found in several papers and tutorials (Shi and
Malik, 2000; Ng et al., 2002; von Luxburg, 2007; Jia
et al., 2014). Fig. 1 shows the classical two-moon ex-
ample and the two-dimensional (2D) spectral embed-
ding of the original data points. It can be seen that
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Fig. 1 Two-moon dataset (a) and its 2D spectral embedding U (eigenvectors of W ) (d); anchor set (b) and its
2D spectral embedding Ua (eigenvectors of Wa) (e); recovered spectral clustering of the whole dataset (c) and
clustering result of PUa (f). Markers of different shapes stand for different clusters

spectral embedding preserves the intrinsic structure
of the data and causes data belonging to the same
cluster to be as close as possible.

The spectral clustering method is easy to imple-
ment and outperforms traditional clustering meth-
ods in many applications. Hence, it has been widely
studied for many problems. For example, Xiao et al.
(2016) used the spectral clustering method to par-
tition a large network into several small software-
defined networking (SDN) domains to solve the SDN
deployment problem in wide area networks or large-
scale networks. Li et al. (2016) proposed a spectral
clustering method to address the high dimensionality
and sparsity of the annotating data, and solved the
tag clustering problems in social tagging systems.

The following describes some recent research
in spectral clustering. Yang et al. (2011) used a
nonnegative constraint to relax the elements of the
cluster indicator matrix for spectral clustering. Liu
et al. (2013) proposed an efficient clustering algo-
rithm for large-scale graph data, whose key idea was
to compress the original graph into a sparse bipar-
tite graph by repeatedly generating a small num-
ber of super nodes connected to the regular nodes.
Spectral clustering was then performed on the bi-
partite graph instead. Xia et al. (2014) proposed a

multi-view spectral clustering method based on low-
rank and sparse decomposition. Tian et al. (2014)
employed deep learning in graph clustering, which
learned a non-linear embedding of the original graph
by a stacked autoencoder, and then ran the K-means
algorithm on the embedding to obtain clustering re-
sults. Chang et al. (2015) proposed a novel convex
formulation of spectral shrunk clustering, which con-
tributed to more precise structural information for
clustering based on the low-dimensional space.

Many other studies tried to learn the graph
Laplacian matrix instead of the predefined graph
Laplacian matrix using the Gaussian function. Yang
et al. (2010) proposed to learn a new Laplacian ma-
trix by exploiting both manifold structure and local
discriminant information. Yang et al. (2012) pro-
posed to learn a robust Laplacian matrix for data
ranking.

However, the main problem in spectral cluster-
ing is the computational complexity. It needs to com-
pute the smallest k eigenvectors of the graph Lapla-
cian, which has O(n3) time complexity. This limits
the spectral clustering method in applications involv-
ing truly large-scale datasets. Many techniques have
been proposed to deal with this bottleneck, which
can be divided into three basic categories.
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The first category is based on the approximation
to the eigenvectors. Fowlkes et al. (2004) adopted
the classical Nyström method to efficiently compute
the numerical solution of the eigenfunction problem,
whereas Boutsidis et al. (2015) used an iterative al-
gorithm called the power method to approximate the
eigenvectors.

The second category is based on sub-sampling
a small subset of the original dataset, often called
anchors or landmarks. The idea is to reduce the
size of the problem based on sampling techniques.
The main problem in this category is how to select
the subset. Yan et al. (2009) provided a general
framework for fast approximate spectral clustering.
They developed two concrete instances based on lo-
cal K-means clustering and random projection trees,
respectively. Wang et al. (2009) examined and pro-
posed three schemes for approximate spectral clus-
tering, and made an empirical comparison of those
schemes in combination with four sampling strate-
gies. Chen and Cai (2011) proposed a novel ap-
proach for large-scale spectral clustering based on
landmarks. A novel algorithm called FURS was pro-
posed in Mall et al. (2013a), which greedily selects
nodes with high-degree centrality from a given graph.
Mall et al. (2013b) selected a smaller subgraph that
could preserve the overall graph structure to con-
struct the large kernel matrix, and used the kernel
spectral clustering method to detect the community
in big data networks. Li et al. (2015) used the land-
marks to develop a constrained spectral clustering
algorithm, which is scalable to handle moderate and
large datasets. Zhang et al. (2016) proposed an in-
cremental sampling method to select landmarks one
by one.

The third category is related to parallelization.
Song et al. (2008) and Chen et al. (2011) parallelized
both memory and computation on distributed com-
puters. The size of data in their experiments reached
hundreds of thousands or even millions. Mall et al.
(2014) proposed a distributed environment to con-
vert big data into a nearest-neighbor graph.

In this study, we propose a novel spectral clus-
tering algorithm called anchor-based spectral clus-
tering (ASC), which is motivated by anchor-based
machine learning methods (Liu et al., 2010). It fo-
cuses on how to approximate the clustering result
of the original data based on the eigenvectors of the
similarity matrix constructed with the anchor points.

Specifically, m (m � n) anchor points are selected
from the dataset, which can approximately retain the
intrinsic (manifold) structure of the original data.
Then a mapping matrix from data to the anchor
points is constructed. Using this mapping matrix, it
is easy and efficient to approximate the spectral em-
bedding of the original data. The proposed method
scales linearly with the size of data with low perfor-
mance degradation. Experimental results show that
the proposed method performs significantly better
than classical spectral clustering in terms of runtime,
and achieves better or at least comparable perfor-
mance compared to the state-of-the-art methods.

Note that our proposed method belongs to the
second category mentioned above, but it is different
from the previous methods in the second category.
Fig. 2 illustrates the flow diagram of the proposed
ASC algorithm. It can be seen from Fig. 2 that the
proposed method does not focus on how to form a
similarity matrix from anchors whose eigenvectors
can be easily computed. In contrast, it recovers
the clustering structure of the original data using
the data-anchor mapping matrix. Because its com-
putational complexity is linear with respect to the
amount of data, n, the ASC algorithm is much more
efficient than the original spectral clustering algo-
rithm (Ng et al., 2002). The contributions of this
paper are summarized as follows:

1. We propose an anchor-based spectral clus-
tering algorithm, which is much more efficient than
the original spectral clustering algorithm in Ng et al.
(2002).

2. We build a linear relationship between the
spectral embedding of the original data and that of
the anchors.

3. We prove that the data-anchor mapping ma-
trix preserves the clustering structure.

2 Background

In this section, we briefly review the spectral
clustering algorithm, the methods to deal with the
time complexity bottleneck of spectral clustering,
and the anchor graph.

2.1 Spectral clustering

Given a dataset X = [x1,x2, . . . ,xn]
T ∈ R

n×d

grouped into K clusters, Ng et al. (2002) proposed
the following algorithm named spectral clustering:
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Fig. 2 Framework of the proposed anchor-based spectral clustering algorithm: (a) two-moon dataset; (b)
anchor set; (c) recovered spectral clustering of the whole dataset; (d) k clusters of U

Step 1: Construct the similarity matrix W ∈
R

n×n defined by a Gaussian kernel function as Wij =

exp(−‖xi − xj‖2/2σ2) (i �= j), Wii = 0, and σ is
given by the user.

Step 2: Construct the diagonal degree matrix
D ∈ R

n×n as Dii =
∑

iWij , and then normalize
W as W̃ = D−1/2WD−1/2. Here, L = D −W is
the graph Laplacian matrix and L̃ = I − W̃ is the
normalized graph Laplacian matrix.

Step 3: Find eigenvectors corresponding to the
largest k eigenvalues of W̃ (eigenvectors correspond-
ing to the largest k eigenvalues of W̃ are the same as
that corresponding to the smallest k eigenvalues of
L̃) and assign them as columns to form the matrix
Y , and then normalize each of Y ’s rows to have unit
length Ỹij = Yij/(

∑
j Y

2
ij)

1/2.
Step 4: Apply K-means on the rows of Ỹ into

K clusters and use this clustering result to cluster
the original data accordingly.

Following the work of Ng et al. (2002), we use
the same value for the number of selected eigenvec-
tors of W̃ and that of the clusters to be grouped in
this study, i.e., K = k. Furthermore, we adopt Ng,
Jordan, and Weiss’s spectral clustering algorithm as
our baseline and name it SC_NJW.

2.2 Acceleration for spectral clustering

In this subsection, we introduce two representa-
tive methods, power iteration clustering (PIC) and
landmark-based spectral clustering (LSC), from two

different categories, which are used for comparison
in the experiments.

Based on the power method, Lin and Cohen
(2010) presented an algorithm to accelerate the
eigenvalue decomposition and named the new algo-
rithm power iteration clustering (PIC). They used
the power method to iteratively obtain the approxi-
mate eigenvectors as the left singular vectors of the
matrix B′ = (W̃W̃T)pW̃S = W̃ (2p+1)S, where
S ∈ R

n×k is a matrix with independent and iden-
tically distributed random Gaussian initialization
and p is a positive integer. Boutsidis et al. (2015)
proved that solving the K-means clustering prob-
lem on the approximate eigenvectors obtained via
the power method gave an additive-error approxi-
mation to solving the K-means problem on the true
eigenvectors.

Chen and Cai (2011) used a different way to
reduce the size of the problem and proposed a
method called landmark-based spectral clustering
(LSC). They selected m (m � n) representative
data points as landmarks and represented the orig-
inal data points as the linear sparse combinations
of these landmarks, of which the weights can be de-
noted as Z ∈ R

m×n. Then the normalization of Z
was computed, i.e., Ẑ = D−1/2Z, where D is the
degree matrix of Z. Finally, singular value decom-
position was applied on Ẑ as Ẑ = VlΣV T

r , where
Σ is a diagonal matrix with the singular values on
the diagonal and Vl and Vr are the left and right
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singular vector matrices, respectively. It can be
proved that Vr is the eigenvector matrix of the simi-
larity matrix W = ẐTẐ. Hence, spectral clustering
on Vr is equivalent to that on the original data.

In our experiments, we use the classical spec-
tral clustering proposed in Ng et al. (2002) as the
baseline, and compare our algorithm with the two
methods mentioned above, i.e., PIC and LSC. PIC
belongs to the first category, which tries to approxi-
mate the eigenvectors rapidly. Our algorithm, ASC,
and the compared algorithm, LSC (belonging to the
second category), use a small subset of the data.
However, their ideas are quite different. LSC con-
structs a similarity matrix based on anchors, whose
eigenvectors can be easily computed. However, our
algorithm obtains the clustering result of the origi-
nal data from anchors using a data-anchor mapping
matrix, which preserves the clustering structure.

2.3 Anchor graph

The idea of anchor graph is from Delalleau et al.
(2005) and Zhu and Lafferty (2005). They worked
with large-scale data and made the label prediction
function be a weighted average of the labels on a
subset of anchor (landmark) samples. As such, the
label prediction function f can be represented by a
subset A = [a1,a2, . . . ,am]T, in which each aj ∈ R

d

is an anchor point:

f(xi) =

m∑

j=1

Zijf(aj), (1)

where Zij is the data-adaptive weight. If we de-
fine two vectors f = [f(x1), f(x2), . . . , f(xn)]

T and
fa = [f(a1), f(a2), . . . , f(am)]T, then Eq. (1) can be
rewritten as

f = Zfa, Z ∈ R
n×m, m � n. (2)

This formula reduces the solution space of unknown
labels from larger f to smaller fa. The problem here
is how to choose the anchor points. Liu et al. (2010)
suggested using K-means clustering centers as an-
chors instead of randomly sampled points because
K-means clustering centers have a stronger repre-
sentation power to adequately cover the full dataset.

Another problem here is how to design the ma-
trix Z. Liu et al. (2010) proposed a method called
local anchor embedding (LAE) to reconstruct any
data point xi as a convex combination of its closest

anchors, while Chen and Cai (2011) used a prede-
fined method to compute Z.

Using matrix Z, the adjacency matrix can be
designed as W = ZΛ−1ZT, in which the diagonal
matrixΛ ∈ R

m×m is defined as Λkk =
∑n

i=1 Zik (Liu
et al., 2010). This is where the name anchor graph
comes from because a graph can be fully represented
by its adjacency matrix.

3 Anchor-based spectral clustering

In this section, we first introduce the notations
used in the remainder of this paper. Then we de-
scribe the key steps of the proposed ASC algorithm
in detail, including selecting anchors, local anchor
embedding, and approximate clustering. Finally, we
theoretically analyze the ASC algorithm and prove
its correctness.

3.1 Notations

Given a set of data points denoted as X =

[x1,x2, . . . ,xn]
T ∈ R

n×d, the similarity matrix W

can be computed by the Gaussian kernel as Wij =

exp(−‖xi − xj‖2/2σ2) (i �= j) and Wii = 0, where
σ is a parameter to be tuned. W̃ denotes the nor-
malization of W as W̃ = D−1/2WD−1/2, where
D is the diagonal degree matrix, i.e., Dii =

∑
iWij .

A = [a1,a2, . . . ,am]T ∈ R
m×d stands for the anchor

set and Wa is the corresponding similarity matrix
computed by the Gaussian kernel on the anchors.
W̃a denotes the normalization of Wa. We use X

and A to represent the data matrix and anchor ma-
trix with one sample in a row, which are easy to
distinguish from the context.

The eigenvalue decompositions of W̃ and W̃a

are W̃ = UΣUT and W̃a = UaΣaU
T
a , respectively.

Our goal is to obtain a similar clustering result from
eigenvectors Ua of W̃a without computing W̃ or its
eigenvalue decomposition.

Table 1 summarizes these notations.

Table 1 Notations

Symbol Description

X Data matrix with a data point in each row
W Similarity matrix of X
U Eigenvector matrix of W
A Anchor matrix with an anchor point in each row
Wa Similarity matrix of A
Ua Eigenvector matrix of Wa
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3.2 Selecting anchors

How to effectively select the anchors is critical
in representing the intrinsic structure of the whole
dataset. Random sampling is a simple and common
method (Fowlkes et al., 2004), but the representa-
tional ability of the randomly selected anchors is not
satisfactory with respect to the clustering tasks. Yan
et al. (2009) and Chen and Cai (2011) used K-means
centers with a larger K. In this study, we use a
probabilistic sampling method, which was employed
in the initialization step of K-means++ (Arthur and
Vassilvitskii, 2007). Let dist(a,X) denote the short-
est distance from anchor point a to dataset X. The
anchors can be selected as follows:

Step 1: Choose initial data point a uniformly at
random from X, and set A = {a}.

Step 2: Choose the next data point a ∈ X with

the probability p(a) =
[dist(a,A)]2

∑
a′∈X [dist(a′,A)]2

and add

it to A.
Step 3: Repeat the above two steps until a total

of m anchor points have been chosen.
Here, A stands for the anchor set. We can set

every anchor as a row to form an anchor matrix, and
denote it as A. Thus, we use A to denote the anchor
set and the anchor matrix in the rest of this paper.

3.3 Local anchor embedding

The data-anchor mapping problem can be for-
mulated as follows:

min
P∈Rn×m

J(P ) =
1

2
‖X − PA‖2

s.t. Pij ≥ 0, Pi1 = 1, ∀ i, ∀ j,
(3)

where X ∈ R
n×d stands for the data matrix in which

every row is a data sample, A ∈ R
m×d is the an-

chor matrix in which every row is an anchor, and
P ∈ R

n×m is the data-anchor mapping matrix to
be learned. Any standard quadratic programming
solver can be used to solve Eq. (3), but to achieve
faster optimization, we adopt the local anchor em-
bedding method described in Liu et al. (2010). The
concrete algorithm is briefly described as follows:

For every data point xi:
Step 1: Find s nearest neighbors of xi in the

anchor set and save the index set as 〈i〉.
Step 2: Define the objective function g(p) =

‖xi − Ai,〈i〉pi‖2/2 and its gradient ∇g(p) =

AT
i,〈i〉Ai,〈i〉p−AT

i,〈i〉xi.

Step 3: Repeat until convergence; i.e., update
p
(t+1)
i = ΠS(p

(t)
i − ηt∇g(p

(t)
i )), where the symbol

ΠS denotes the simplex projection operator which is
formulated as ΠS(p) = argminp′∈S ‖p′ − p‖.

Step 4: Set Pi,〈i〉 = pT
i and Pi,〈̄i〉 = 0 for the

remaining entries of P .
We notice that matrix P captures the data-

anchor relationship, and use this matrix P to recover
the clustering structure from anchors.

3.4 Approximate clustering

So far we have obtained the anchor matrix A

and data-anchor mapping matrix P . Applying spec-
tral clustering on A, we can obtain the clustering
result denoted by label vector fa ∈ R

m×1. Then us-
ing Eq. (1), we can obtain the approximate spectral
clustering result for the original data as f = Pfa.
f ∈ R

n×1 is a label vector that contains float labels,
and we need to round them to the nearest integers.

Note that as the low-dimensional embedding of
X, the eigenvectors U〈k〉 ∈ R

n×k corresponding to
the k largest eigenvalues of W̃ completely retain
the clustering structure of the original data X. In-
tuitively, the clustering structure can be recovered
by PUa〈k〉 where the eigenvectors Ua〈k〉 are corre-
sponding to the k largest eigenvalues of W̃a as the
low-dimensional embedding of A. We show a two-
moon example to demonstrate our findings in Fig. 1.
Figs. 1a and 1d are the two-moon dataset and its
spectral embedding respectively, Figs. 1b and 1e are
the anchor set and its spectral embedding respec-
tively, and Figs. 1c and 1f are the approximate clus-
tering recovered from PUa and the clustering result
of PUa respectively. Hereinafter, we use U and Ua

instead of U〈k〉 and Ua〈k〉 for short.
We can see that Ua completely preserves the

clustering structure as U except for a few magnitude
differences, and PUa preserves the same clustering
structure as U . Inspired by these observations, we
use PUa to obtain the approximate clustering of the
original dataset. We formulate this as

Kmeans(U) � Kmeans(PUa), (4)

where U ∈ R
n×k is the eigenvector matrix corre-

sponding to the k largest eigenvalues of W̃ and
Ua ∈ R

m×k is the eigenvector matrix correspond-
ing to the k largest eigenvalues of W̃a. Kmeans(·)
stands for the clustering result obtained by K-means.
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The symbol “�” denotes the relationship of approxi-
mate equivalence. Eq. (4) is the main finding of this
study, which shows that K-means clustering on PUa

is equivalent to K-means clustering on U .

3.5 Computational complexity analysis

Supposing that we have n data points with di-
mensionality d and use m anchors, we need O(mnd)

to select anchors, O(m3) to do eigenvalue decom-
position on Wa, O(smn + s2Tn) to compute the
mapping matrix P , and O(tmnd) to do K-means.
Algorithm 1 summarizes our method and Table 2
shows the computational complexity. Note that s

is the number of nearest anchors in LAE, T is the
number of iterations in LAE, and t is the number of
iterations in K-means (n � m � s).

Algorithm 1 Anchor-based spectral clustering
Input: data points {xi}ni=1 ∈ R

d, clustering number k.
Output: k clusters.
1: Select m anchors to form anchor matrix A

2: Compute the similarity matrix Wa, and its eigen-
value decomposition UaΣaU

T
a

3: Solve problem (3) by LAE to obtain matrix P

4: Run K-means on PUa to obtain k clusters

Table 2 Time complexity analysis of the anchor-based
spectral clustering method

Selecting Eigenvalue Computing
K-means

anchors decomposition matrix P

O(mnd) O(m3) O(smn+ s2Tn) O(tmnd)

3.6 Algorithm analysis

Here, we give an analysis of the correctness of
the proposed method, which uses data-anchor map-
ping matrix P to recover the spectral clustering of
the original dataset from anchor set A.

The eigen-decomposition of the normalized sim-
ilarity matrix W̃a of anchor set A is W̃a = UaΣaU

T
a .

We find that PUa can preserve the same clustering
structure as U , where Ua is the eigenvector matrix
corresponding to the k largest eigenvalues of W̃a;
U is the eigenvector matrix corresponding to the k

largest eigenvalues of W̃ , which is the normalized
similarity matrix of the dataset X.

The data matrix X can be represented by the
anchor matrix A and data-anchor mapping matrix

P , and it can be formulated as

X � PA, (5)

where X ∈ R
n×d, A ∈ R

m×d, and P ∈ R
n×m.

Based on spectral clustering, we obtain the following
relationships:

cluster(X) � cluster(U) � Kmeans(U), (6)

cluster(A) � cluster(Ua) � Kmeans(Ua), (7)

where cluster(·) is a mapping function to represent
the true clustering structure.

From Eq. (2), we assume that the clustering
function can be seen as a weighed average of the
labels on a subset of anchors. It can be formulated as

cluster(X) � P cluster(A). (8)

From Eqs. (5) and (8), we can obtain

cluster(X) � cluster(PA) � P cluster(A). (9)

Then we obtain the important property of ma-
trix P from Eq. (9) that P can preserve the cluster-
ing structure. This means that

cluster(PA) � P cluster(A), (10)

where A is a sub-matrix of X, and A corresponds to
an anchor set that can retain the intrinsic (manifold)
structure of the original dataset.

Then from Eqs. (6), (7), (9), and (10), we can
obtain

cluster(X) � cluster(U) � P cluster(Ua)

� cluster(PUa). (11)

As a result, we can use the clustering result of
PUa to obtain the clustering of the original dataset.

4 Experiments

In this section, we report the experimental set-
tings and results.

4.1 Datasets

We use 10 real-world datasets from the
UCI Machine Learning Repository (http://archive.
ics.uci.edu/ml/) to evaluate the proposed method.
These datasets are from different application do-
mains, including medicine, biology, meteorology,
physics, image processing, and handwritten charac-
ter recognition. Table 3 summarizes the properties
of these 10 datasets.
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Table 3 Ten datasets used in the experiments

Dataset
Number of

Dimensionality
Number of

data points classes

Protein 116 20 6
Thyroid 215 5 3
Ionosphere 351 34 2
Dermatology 366 34 6
Balance 625 4 3
Yeast 1489 8 10
Segmentation 2310 19 7
Waveform21 5000 21 3
Satimage 6435 36 6
Letter 20 000 16 26

4.2 Quality metrics of clustering

There are two categories of quality metrics in
clustering. One category is external quality metrics,
which need to know the true labels of the dataset.
However, clustering is an unsupervised learning task,
and in many real-world applications the true labels
are unknown and difficult to obtain. Therefore, the
other category of quality metrics called internal qual-
ity metrics is more suitable.

We evaluate the clustering results using one kind
of external quality metric, i.e., purity, and one kind of
internal quality metric, i.e., the Davis-Bouldin index
(Davies and Bouldin, 1979). We list these quality
metrics below. Details about these metrics can be
found in the above-mentioned reference.

Purity is the simplest and most commonly used
metric to measure clustering performance:

Purity(Ω,C) =
1

n

∑

k

max
j

|ωi ∩ cj |, (12)

where Ω is the obtained cluster set, C is the true
cluster set, and n is the number of data points. A
bad clustering has a purity value close to 0, and a
good clustering has a purity value close to 1.

The Davis-Bouldin index is based on a ratio of
within- and between-cluster distances, defined as

DB(C) =
1

k

k∑

i=1

max
j �=i

{Di,j}, (13)

where Di,j is the within-to-between cluster distance
ratio for the ith and jth clusters:

Di,j =
d̄i + d̄j
di,j

, (14)

where d̄i is the average distance between each point
in the ith cluster and the center of the ith cluster, d̄j

is the average distance between each point in the jth

cluster and the center of the jth cluster, and di,j is
the Euclidean distance between the centers of the ith

and jth clusters. The optimal clustering solution has
the smallest Davies-Bouldin index value.

4.3 Experimental settings

We run the experiments under the same envi-
ronment: Intel� Xeon� CPU E5506 @ 2.13 GHz,
72 GB memory, Windows Server 2012 64-bit operat-
ing system, and Matlab version 7.12.0.

We compare our ASC algorithm with two
state-of-the-art algorithms called PIC and LSC
from two different categories, and use the clas-
sical spectral clustering algorithm (Ng et al.,
2002) as a baseline, SC_NJW for short. PIC
(Lin and Cohen, 2010) uses the power method
to approximate the eigenvectors. LSC (Chen and
Cai, 2011) uses a sampling method to do that.
The two algorithms are representative of the two
categories (introduced in Section 2.2). The codes
of PIC (http://www.cs.cmu.edu/~frank/) and LSC
( http://www.cad.zju.edu.cn/home/dengcai/Data/
Clustering.html) can be downloaded from the
authors’ web pages. We use the same number of
anchors in LSC and ASC for fair comparison. The
original PIC method uses cosine similarity to avoid
parameter selection. In our experiments, we use the
Gaussian kernel function to compute the similarity
in both PIC and ASC, whose parameter σ is chosen
by 10-fold cross validation on the validation set. All
three algorithms involve K-means, which depends
on initialization. So, for every dataset we run each
method 20 times and report the average results.

For further analysis, we use the Friedman test
and Wilcoxon signed-rank test to verify if the
differences between the four methods are signifi-
cant (Demšar, 2006). The Wilcoxon signed-rank test
is used for comparison of two methods over multiple
datasets, and the Friedman test is used for compar-
ison of more methods over multiple datasets. De-
tailed information about these significant difference
tests can be found in Demšar (2006).

4.4 Experimental results

Tables 4–6 show the experimental results. Bold
numbers in these tables represent the best results in
LSC, PIC, and ASC, excluding the baseline.
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Table 4 shows the average values of purity
(larger values are better). Note that the following
statistical test results do not include the dataset “let-
ter”. We could not obtain the result on that dataset
by SC_NJW because the runtime was too long and
there was no sufficient memory. The last row of Ta-
ble 4 is the mean rank (smaller values are better).
Based on the Friedman test, the performance differ-
ences of the four methods are significant at the 5%
level. Furthermore, the performance difference be-
tween ASC and PIC is significant, and ASC is com-
parable to the baseline and LSC. Then we perform
pairwise Wilcoxon signed-rank tests between pairs of
the four methods. Based on the Wilcoxon test, ASC
is comparable to SC_NJW and LSC, and performs
significantly better than PIC at the 5% level.

Table 4 Average purity of 10 datasets

Dataset
Average purity

SC_NJW
(baseline)

LSC PIC ASC

Protein 0.6466 0.4582 0.4418 0.5095
Thyroid 0.9721 0.8047 0.8672 0.9419
Ionosphere 0.7236 0.7014 0.6410 0.7236
Dermatology 0.8661 0.8699 0.7258 0.8552
Balance 0.7376 0.6545 0.5894 0.6796
Yeast 0.5480 0.5343 0.4041 0.4686
Segmentation 0.7407 0.7016 0.5497 0.6855
Waveform21 0.5184 0.5826 0.5620 0.5928
Satimage 0.7243 0.7338 0.6781 0.7352
Letter – 0.3570 0.1230 0.4126

Mean rank 1.6667 2.4444 3.7778 2.1111

The best results are highlighted in boldface

Table 5 shows the average values of the Davis-
Bouldin index (smaller values are better). The
last row is the mean rank (larger values are bet-
ter). Based on the Friedman test, the proposed ASC
method is comparable to the other three methods.

Table 6 shows the average runtime values
(smaller values are better). The last row is the mean
rank (larger values are better). Based on the Fried-
man test, the performance differences of the four
methods are significant at the 5% level. Further-
more, the performance difference between SC_NJW
and PIC is significant, and the performance differ-
ence between SC_NJW and ASC is significant. Note
that a larger mean rank here means a shorter run-
time. From the mean rank, we find that the run-
time of SC_NJW is the largest. Then we perform

Table 5 Average Davis-Bouldin index of 10 datasets

Dataset
Average Davis-Bouldin index

SC_NJW
(baseline)

LSC PIC ASC

Protein 2.4215 2.9778 3.0313 2.9632
Thyroid 0.9900 2.3980 0.8295 1.0715
Ionosphere 2.3494 1.5495 1.3282 2.9879
Dermatology 1.5283 1.6269 2.4315 1.5755
Balance 1.7529 1.7431 2.4860 1.8484
Yeast 1.5257 1.6693 3.4283 1.6022
Segmentation 1.3125 1.3534 1.8304 1.1296
Waveform21 1.4905 1.4816 2.1689 1.9026
Satimage 1.3534 1.0545 1.6821 0.9803
Letter – 2.0089 7.1854 1.8434

Mean rank 3.1111 2.5556 1.6667 2.6667

The best results are highlighted in boldface

Table 6 Average runtime of 10 datasets

Dataset
Average runtime (s)

SC_NJW
(baseline)

LSC PIC ASC

Protein 0.0772 0.0218 0.0402 0.0291
Thyroid 0.2530 0.0365 0.0526 0.0284
Ionosphere 0.4657 0.0900 0.0195 0.0379
Dermatology 0.5783 0.0951 0.1950 0.0580
Balance 2.2365 0.1750 0.1364 0.0742
Yeast 21.7880 1.2232 0.5232 0.3882
Segmentation 67.4973 0.9031 0.5142 0.6364
Waveform21 546.9019 2.6208 0.2073 2.2664
Satimage 1181.9291 3.9559 5.3411 3.4922
Letter – 32.4293 9.8302 51.3016

Mean rank 1.0000 2.5556 2.8889 3.5556

The best results are highlighted in boldface

Friedman tests on the other three methods and find
that ASC is comparable to PIC and LSC, and per-
forms significantly better than SC_NJW.

Note that LSC uses an accelerated version of
K-means, which was written by its authors; for ASC
and PIC, we use the K-means function of Matlab to
implement them.

4.5 Parameter sensitivity

There are several parameters in our algorithm.
The first is the length scale parameter σ used in the
Gaussian kernel function to compute the similarity
matrix. The simplest method to choose this param-
eter, suggested by Ng et al. (2002), is repeatedly
running the algorithm several times for a number of
values of σ and choosing one with the best perfor-
mance. In our experiments, we choose the values of
σ from set {0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5, 10}.
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The second parameter is the number of anchor
points, m. We try to find the relationship between
the number of anchor points and the performance
on four datasets, including balance, ionosphere, der-
matology, and yeast. For every dataset, we run our
algorithm 10 times with the number of anchor points
from 10% to 100% of the original data. Fig. 3 shows
the average accuracy. We can see that our algo-
rithm is not sensitive to the number of anchor points.
Hence, we fix m at 10% of the original data.

The third parameter is the number of the near-
est neighbors s used to optimize the mapping matrix
P . Similarly, we try to find the relationship between
the parameter s and the performance on the same
four datasets as above. For every dataset, we run
our algorithm 10 times with s from 1 to 10. Fig. 4
shows the average accuracy. We can see that our
algorithm is not sensitive to the number of nearest
neighbors. Therefore, we fix this number at 3 in our
experiments.

4.6 Predefined versus learned graph Lapla-
cian matrix

The proposed method adopts the traditional
way to use a predefined graph Laplacian matrix by
the Gaussian function. However, this leads to a sen-
sitive model with respect to the parameter settings.
Some studies tried to learn an adaptive graph Lapla-
cian from data. For example, the LDMGI method
(Yang et al., 2010) learns a new graph Laplacian

matrix by exploiting both manifold structure and lo-
cal discriminant information. The main difference
between the two methods is how to obtain the graph
Laplacian matrix. Table 7 shows the comparison be-
tween the proposed method and the LDMGI method.
According to Yang et al. (2010), the regulariza-
tion parameter of LDMGI is chosen from the set
{10−8, 10−6, 10−4, 10−2, 100, 102, 104, 106, 108}. The
σ of ASC is chosen from the same set mentioned
above. We do a paired t-test to check whether the
difference between the two sets of results is significant
at the 5% significance level. The returned value of
the paired t-test is 0, indicating that the paired t-test
does not reject the null hypothesis at the 5% signif-
icance level. That is, the proposed method achieves
comparable results to the LDMGI method.

Table 7 Purity comparison between the LDMGI and
ASC methods

Dataset
Purity

LDMGI ASC

Protein 0.5560 0.5095
Ionosphere 0.7467 0.7236

Waveform21 0.5016 0.5928
Satimage 0.7315 0.7352

5 Conclusions and future work

We have focused on the problem of time
complexity bottleneck of the spectral clustering
method and have proposed an anchor-based spectral
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Fig. 3 Relationship between the number of anchors and the performance of ASC evaluated on four datasets:
(a) balance; (b) ionosphere; (c) dermatology; (d) yeast
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clustering method to obtain the approximate cluster-
ing. We first selected a small subset of the original
dataset as anchors; the rest of the data points can
be represented by the linear combination of these
anchor points. The data-anchor mapping matrix
(i.e., the linear combination coefficient matrix) P

not only captures the relationship between the data
and anchors, but also projects the clustering of an-
chor points to the original data points. We compared
the proposed method, ASC, to two state-of-the-art
methods, PIC and LSC, on 10 real-world applica-
tions using three evaluation metrics. Experimental
results showed that the proposed method performed
significantly better than classical spectral clustering
in terms of runtime, and achieved better or at least
comparable performance (i.e., purity and runtime),
compared to the state-of-the-art methods.

However, there is still some work to be done in
the future. Why matrix P can project the cluster-
ing from anchors to data still needs more theoretical
analysis and exploration, and the most important
problem in our algorithm is how to find the anchors
efficiently and rapidly. We will explore more accu-
rate and efficient ways to find the anchors.

Another problem to be explored in the future
is how to select informative eigenvectors as the low-
dimensional embedding of data. Analysis in Xiang
and Gong (2008) showed that not every eigenvector
of the similarity matrix was informative and rele-
vant to clustering, and eigenvector selection was crit-
ical because using uninformative eigenvectors could
lead to poor clustering results. In our problem set-
tings, selecting informative eigenvectors of the an-
chors’ similarity matrix can help improve the clus-
tering accuracy.

Furthermore, we used the predefined weight
matrix by the Gaussian function in the proposed
method, and the width parameter of the Gaussian
function was carefully chosen by cross validation,
which needed extra computational time and made
the model more sensitive to the parameter settings.
Luo et al. (2017) characterized the intrinsic geom-
etry structure of each neighborhood through a re-
construction nonnegative weight graph. If the local
structure information can be embedded into the pro-
posed method, that is, learning the adaptive weight
matrix via data points, the advantages are two-fold:
one is to avoid Gaussian function parameter tuning
and the other is to obtain a better performance.
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