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Abstract: Reconstruction of a 12-lead electrocardiogram (ECG) from a serial 3-lead ECG has been researched in the past to 
satisfy the need for more wearing comfort and ambulatory situations. The accuracy and real-time performance of traditional 
methods need to be improved. In this study, we present a novel method based on convolutional neural networks (CNNs) for the 
synthesis of missing precordial leads. The results show that the proposed method receives better similarity and consumes less time 
using the PTB database. Particularly, the presented method shows outstanding performance in reconstructing the pathological 
ECG signal, which is crucial for cardiac diagnosis. Our CNN-based method is shown to be more accurate and time-saving for 
deployment in non-hospital situations to synthesize a standard 12-lead ECG from a reduced lead-set ECG recording. This is 
promising for real cardiac care. 
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1  Introduction 
 

Electrocardiogram (ECG) is one of the most 
important noninvasive diagnostic tools for heart dis-
ease and one of the most commonly performed car-
diology tests. In the traditional conventional 12-lead 
ECG, 10 electrodes are placed on limbs and on the 
surface of the chest (Tomašić and Trobec, 2014). 
However, with intelligent hardware, it is common that 

the number of measurement sites is smaller than eight 
(Nelwan and Meij, 2006), so the diagnostic utility of a 
conventional ECG system is often poor and imprac-
tical in homecare, self-care, ambulatory, and emer-
gency recording conditions. With the rapidly in-
creasing incidence of heart disease worldwide, more 
convenient and accurate ECG monitoring for 
pre-hospital care is required. As a result, it is of great 
value to design a simple, easy-to-use lead set system 
for accurate reconstruction of the 12-lead ECG (Kors 
and van Herpen, 2010). In addition, the development 
of intelligent hardware motivates the development of 
other new measuring systems (Drew et al., 1999). 

In the 1940s, systems which derive 12-lead ECG 
from reduced numbers of electrodes were developed 
(Kors and van Herpen, 2010). When the first system 
synthesized the 12-lead ECG from the orthogonal 
lead system introduced by Frank (1956), such derived 

Frontiers of Information Technology & Electronic Engineering 

www.jzus.zju.edu.cn; engineering.cae.cn; www.springerlink.com 

ISSN 2095-9184 (print); ISSN 2095-9230 (online) 

E-mail: jzus@zju.edu.cn 

 

‡ Corresponding author 
* Project supported by the National Natural Science Foundation of 
China (No. 6170204), the Fundamental Research Funds for the Central 
Universities, China (No. 2017RC27), and the BUPT Excellent Ph.D. 
Students Foundation 

 ORCID: Xiao-guang ZHOU, http://orcid.org/0000-0002-1829- 
927X 
© Zhejiang University and Springer-Verlag GmbH Germany, part of 
Springer Nature 2019 



Wang et al. / Front Inform Technol Electron Eng   2019 20(3):405-413 406

12-lead ECG made progress. Since then, many ECG 
reconstruction systems have been introduced and 
quality has been significantly improved.  

Multiple-regression techniques are the most 
common methods used to derive the reconstruction 
transforms. Scherer et al. (1990) investigated the 
synthesis from the subsets of 12-lead ECG I, II, and 
V2 by measurements on 12 patients. Nelwan (2005) 
proposed that the one precordial lead can be synthe-
sized from the others. The result showed that the 
personalized approach was more effective than a 
universal approach. They also used other lead meth-
ods for experiments (Nelwan et al., 2004) and showed 
that the subsets of 12-lead ECG were better than the 
EASI system for synthesizing the 12-lead ECG.  

Even though some lead theories (Horáček et al., 
2002) described the linear relationship between each 
lead, nonlinear methods have been considered to 
further enhance the reconstruction accuracy, and 
make up for the weakness of the traditional linear 
method, which may lead to noise and uncertainty of 
electrode placement (Duin, 2000). However, it is not 
certain that the relationship of each lead is definitely 
linear (Gulrajani, 1998; Modre et al., 2006). Atoui et 
al. (2004, 2010) applied artificial neural networks 
(ANNs) for analysis. In their work, they extracted a 
1 s duration representative cycle from every 10 s 
interval original signal, and determined the P, QRS, 
and T onsets and offsets of the representative cycle. 
As a result, the representative cycle signal in the in-
terval [P-onset−18 ms, T-offset+38 ms] was used for 
further experiments. Then they used leads I, II, and 
V2 and a set of 50 ANNs for the synthesis and ob-
tained better results than the method based on multi-
ple linear regression. 

However, the training process of the ANN- 
committees-based method is time-consuming and 
unable to perform a real-time transform, because of 
the large sample size (1000 samples per second). In 
addition, part of the diagnostic information is lost in 
the process of extracting a representative cycle, which 
in turn causes a decline in accuracy. The drawbacks of 
the ANN-committees-based method prompt us to find 
a new way to save time and keep details. 

The purpose of this study is to present a novel 
synthesis system based on CNNs. The CNNs are 
inspired by the cells in the primary visual cortex, and 

are hierarchical neural networks with alternation of 
convolutional layers and a subsampling layer (Hubel 
and Wiesel, 1959). The difference of each CNN is 
based on the realization of convolutional and sub-
sampling layers and the training method. Since CNN 
learns the feature from the training data directly, it can 
avoid loss of effective features and enhance accuracy. 
The weights are identical on the same feature map, so 
the CNNs can learn in parallel. Thus, compared to 
other neural networks, CNNs are easier to train since 
they have much fewer connections and parameters 
(Krizhevsky et al., 2012). With the above-mentioned 
advantages, CNNs are used in this study to reduce the 
time consumption and improve the accuracy. While 
better results are achieved, the elapsed time of the 
proposed method is only 7% of that of the ANN- 
committees-based method. 
 
 
2  ECG database 

2.1  PTB diagnostic ECG database 

The data used in this study are obtained from the 
PTB diagnostic ECG database (Bousseljot et al., 1995; 
Goldberger et al., 2000). The database contains 549 
records from 290 subjects (aged 17–87 years, mean 
57.2 years; 209 men, mean age 55.5 years, and 81 
women, mean age 61.6 years; ages were not recorded 
for 1 female and 14 male subjects). Each subject is 
represented by one to five records. Each record in-
cludes 15 simultaneously measured signals: the con-
ventional 12 leads (I, II, III, aVR, aVL, aVF, V1, V2, 
V3, V4, V5, V6) together with the three Frank lead 
ECGs (Vx, Vy, Vz). Each signal is digitized at 1000 
samples per second, with 16-bit resolution over a 
range of ±16.384 mV. Fig. 1 shows a set of 10 s ECG 
signal of record patient001. 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1  A 10 s set of record patient001 
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Most of these ECG records offer a detailed 
clinical summary, including age, gender, diagnosis, 
and, where applicable, data on medical history, med-
ication, and interventions. The clinical summary is 
not available for 22 subjects. Table 1 shows the di-
agnostic classes of the remaining 268 subjects. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

2.2  Study population 

Unlike Atoui et al. (2010) who used 10 s ECGs 
of the Cardiology Hospital of Lyon, we use all the 
heartbeat interval data of the PTB diagnostic ECG 
database, and each patient has two pairs of ECGs, 
each consisting of the following: 

1. A 3-lead ECG based on I, II, and V2 as the 
input database. 

2. Other 9-lead ECG of standard lead ECG as the 
target database. 

To evaluate the results, we divide the study 
population into two subsets, DS1 and DS2. Dataset 
DS1 consists of the 161 patients (116 male, 45 female; 
mean age±SD=58.55±14.25). Dataset DS2 consists of 
the remaining 129 patients (93 male, 36 female; mean 
age±SD=55.51±15.19). 
 
 
3  Data preprocessing 

3.1  Denoising of ECG signals 

We use the method based on discrete wavelet 
transform (DWT) and soft thresholding to denoise the 
ECG signal (Addison, 2005). For DWT, the 
Daubechies6 wavelet is used to decompose the ECG 
stream to eight levels, and only 3rd/4th/5th detail coef-

ficients are used to reconstruct the new signal for 
removing motion artifacts (Zhang et al., 2016; 2017a). 
To calibrate the baseline shift of ECG signals, we use 
the normalized least mean square (NLMS) algorithm 
to conduct adaptive noise filtering. The results show 
that this method can effectively correct the baseline 
shift and noise while maintaining the geometric 
characteristics of the ECG signal. Fig. 2 shows the 
comparison of the original signal and the denoised 
signal. 

 
 
 
 
 
 
 
 
 
 
 
 
 

3.2  Segmentation 

Many different algorithms have been investi-
gated for R-peak detection. Pan and Tompkins (1985) 
used filters and window integration to detect the 
R-wave. Zhang et al. (2016) proposed an auto-  
segmentation approach using an adaptive threshold. 
Since the V4-lead signal of this lead has the best 
geometric characteristics of the R wave, we use Pan 
and Tompkins’ method to detect the location of R 
waves in the V4-lead signal in the study, and the ef-
fect is shown in Fig. 3. Then we segment the other 
leads ECG signal by the [Ri−(Ri−Ri−1)/2, Ri+(Ri+1− 
Ri)/2] interval. Figs. 4 and 5 present the segment of 
the input 3-lead ECG and the target 12-lead ECG 
record used in the experiment, respectively. 
 
 
 
 
 
 
 
 
 

Table 1  The diagnostic classes in the PTB diagnostic 
ECG database 

Diagnostic class Number of subjects

Myocardial infarction 148 

Cardiomyopathy/Heart failure 18 

Bundle branch block 15 

Dysrhythmia 14 

Myocardial hypertrophy 7 

Valvular heart disease 6 

Myocarditis 4 

Miscellaneous diseases 4 

Healthy controls 52 

Fig. 3  The detection effect of R-wave position 
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Fig. 2  Comparison of the original ECG signal (a) and the 
denoised ECG signal based on DWT (b) 
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4  Synthesis based on convolutional neural 
networks 

4.1  Background and motivation 

A neural network is inspired by brain structures 
where layer-wise neurons are organized in a way that 
can represent high-level abstraction (Zhang et al., 
2017b) and considered as a powerful recognition 
method (Srivastava et al., 2014). The convolutional 
neural network, first introduced by LeCun et al. 
(1990), has maintained the most advanced perfor-
mance (Ciregan et al., 2012) and inspired recent re-
search (Serre et al., 2007; Lee et al., 2009). CNN 

consists of convolution layers and sub-sampling/ 
pooling layers, and finally uses a constant factor for 
computation (Palm, 2012). 

A convolution network has the following ad-
vantages in signal processing compared with a gen-
eral neural network: (1) The input image and network 
topology can be well matched; (2) Feature extraction 
and pattern classification are carried out simultane-
ously in training; (3) Sharing weights can reduce the 
training parameters of the network, making the neural 
network structure easier and more adaptable. 

Recently, CNNs have been used in medical im-
aging (Gacsádi and Szolgay, 2010; Shin et al., 2016). 
This led us to synthesize the 12-lead ECG based on 
the CNNs method. We try to evaluate the influence of 
our method on the improvement of similarity through 
experimental results. 

4.2  Proposed approach 

Since the ECG signal is a 1D data vector and the 
reconstruction process is time-independent, the first 
problem we face is turning the signal into a 2D matrix 
of data points. Considering 1D-ECG to 2D-ECG 
conversion, we refer to the gradient-based method on 
image/shape reconstruction (Ettl et al., 2008) and the 
traditional matrix reconstruction method based on 
slipping insertion (Lu et al., 2017). In this study, we 
compute the gradient of the input signal, and then 
repeat and arrange them as Fig. 6 (1 represents the #1 
original signal and 1’ represents the gradient of the #1 
signal). Overall, a total of 150 000 images are ob-
tained. We use 120 000 images as a training set to 
train the CNNs, and for validation, 30 000 images as a 
testing set to evaluate the proposed method. The aim 
of this transformation is not only to satisfy the input 
requirements, but also to obtain more details of the 
input signal. 
 

 
 
 
 
 
 
 

 
 
Fig. 7 is the structure schematic of the proposed 

method and the details of the CNNs are given in Fig. 8. 

Fig. 6  The structure of the input signal 

Fig. 5  The target ECG signal interval 
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Fig. 4  The input ECG signal interval 
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The convolutional and pooling layers compose each 
CNN stage. The aim of the convolutional layer is to 
represent more information from the previous layer, 
and the pooling layer is used to merge similar features 
in each stage (Zhang et al., 2017c). In this study, we 
use the back-propagation method (Bojarski et al., 
2016) to train the multi-layer CNN, which applies the 
chain rule for derivatives to compute the gradient of a 
predefined objective function relative to all the neu-
ron parameters (Zhang et al., 2017d). We set the 
learning rate as 0.1, the batch size as 100, and the 
number of training epochs as 1. 

As shown in Fig. 8a, our convolution has the first 
convolution layer C1 consisting of six feature maps, 
which are computed using overlapping 4×4 kernels 
on the input 9×9 signal data. The convolution opera-
tion can enhance the original signal feature and re-
duce the noise. At layer S2 (first subsampling layer) 
(Fig. 8b), there are six feature maps, each of size 3×3 
obtained by subsampling based on max-pooling using 
a 2×2 kernel on the output of the Cl layer. According 
to the principle of image local correlation, subsam-
pling of the image can reduce the amount of data 
processing while retaining useful information. Each 
unit in the feature map in layer S2 is connected to the 
2×2 neighborhood of the corresponding feature map 
in layer C1. A sigmoid function is used to compute the 
final output. So, the mapping from a layer to the next  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

layer can be seen as a convolution operation. The 
S-layer can be seen as a fuzzy filter, playing a sec-
ondary feature extraction role. The spatial resolution 
between the hidden layers decreases, and the number 
of planes contained in each layer increases. This can 
be used to detect more feature information. 

Similarly, at layer C3 (2nd convolution layer) 
(Fig. 8c), there are 12 feature maps which are com-
puted using overlapping 3×3 kernels on the output of 
layer S2. Then, we obtain 12 features at layer F 
computed from these 12 kernels of size 1×1 (Fig. 8d). 
Finally, we use a sigmoid function as the networks’ 
output instead of the traditional one. 

When training, the feature maps of C3 are con-
catenated into a feature vector, feeding into the fifth 
layer and the final layer, which consists of N output 
neurons corresponding to the point number of the 
ECG sample. We train the CNNs with stochastic 
gradient descent (SGD) on the full subset DS1. The 
batch size is set as 100 and the fixed learning rate is 
set as 1. We also initialize the weight using the sto-
chastic weight method and choose the one with the 
best similarity performance. 

4.3  Algorithms for comparison 

As mentioned in Section 1, we use two other 
methods for synthesis comparison. We introduce the 
two other techniques in turn. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 7  The structure schematic of the proposed method 
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4.3.1  Multiple-regression-based method 

The aim of the multiple-regression-based method 
is to compute a global transformation matrix that 
synthesizes the missing leads of the ECG signal by 

 

0 1 2 3I II V2.i i i i iV a a a a     

 
We consider the standard 12-lead ECG of dataset 

DS1 to calculate the generic multiple-regression 
transform matrix. For testing, we use dataset DS2 to 
calculate the similarity between the synthesized sig-
nal and the original signal. 

4.3.2  ANN-committees-based method 

We use the ANN-committees-based method 
proposed by Atoui et al. (2010) to synthesize the 
missing (III, aVR, aVL, aVF, V1, V3, V4, V5, V6) 
from the recorded (I, II, V2) ECG subset. This method 
uses an ensemble of 50 multi-layer feedforward 
ANNs to build up ANN committees for synthesis. 
These ANNs have 1 hidden layer and 15 neurons per 
hidden layer and are trained by means of a supervised 
back-propagation algorithm. A linear activation 
function is used for the output neurons, and a sigmoid 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

transfer function is used for the hidden layer. The final 
outputs of ANN committees are obtained by summing 
up the output of every single ANN and dividing them 
by 50.  

We use dataset DS1 for network training and 
adapt the cross-validation strategy (LeCun et al., 1990) 
to train each of the 50 ANNs of the committee. Then 
we use dataset DS2 to test the ANN committees and 
also to calculate the similarity between the synthe-
sized signal and the original signal. 
 
 
5  Results 

 
We apply the above methods to synthesize the 

missing (III, aVR, aVL, aVF, V1, V3, V4, V5, V6) 
from the recorded (I, II, V2) ECG subset. No matter 
which method is used, the correlation coefficient of 
leads III, aVR, aVL, aVF is 100% because of the 
linear relationship of limb leads (I, II, III, aVR, aVL, 
aVF). Following this, we conduct a correlation anal-
ysis between the output and the original ECG signal. 
We then calculate the lead-by-lead signal differences 
to assess the quality of the reconstruction of our 
method and the compared methods. The experiments 

Fig. 8  Actions at different layers of the CNN: (a) computation from the input signal to layer C1; (b) computation from 
layer C1 to layer S1; (c) computation from layer S1 to layer C2; (d) computation from layer C2 to output 
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were performed in the environment of macOS Sierra, 
Intel Core i5 2.9 GHz, and 16 GB memory. As shown 
in Table 2, the CNN-based method has better recon-
struction results than the ANN-committees-based 
method and multiple-regression-based method. Fig. 9 
is the line chart of the results. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
The results show that the proposed method per-

forms better in the reconstruction of leads V1, V4, V5, 
and V6. Note that the proposed method increases the 
similarity between the reconstructed signal and the 
original signal of the V4 lead by over 4%. As can be 
seen, the ANN-committees-method has worse per-
formance when the ECG is for patients with patho-
logical changes. Fig. 10 presents a comparison of the 
reconstructed signal of the V4-lead signal using the 
ANN-committees-based method and based on the 
original pathological changes. It is clear that the re-
constructed signal does not displace such meaningful 
pathological changes (The direction of R-wave in the 
reconstructed signal is contrary to that of the real 
signal, which may lead to misdiagnosis). Fig. 11 
shows that the signal reconstructed using the pro-
posed CNN-based method displaces an invert R wave 

as the original signal. The correlation coefficient is 
35.63% for the ANN-committees-based method and 
91.04% for the CNN-based method. Therefore, the 
proposed method has better performance in the  
reconstruction. 

We compare the time consumption of our 
method with that of ANN. As shown in Fig. 12, the 
elapsed time of our method is only 7% of that of the 
ANN-committees-based method, because the weight- 
sharing method can reduce the number of parameters. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 2  Correlation coefficient r between the original 
ECG signal and the reconstructed ECG signal obtained 
using the three methods 

Lead 
r (%) 

CNN 
ANN- 

committees 
Multiple- 
regression

III, aVR,  
aVL, aVF 

100.00 100.00 100.00 

V1 94.40   91.40 91.42 
V3 94.48   95.66 96.51 
V4 93.80   89.74 89.20 
V5 94.65   94.54 93.01 
V6 97.44   97.15 96.58 

Fig. 9  Line chart of similarity obtained using three 
methods 
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Fig. 12  Running time of the proposed CNN-based method
and the ANN-committees-based method 
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Fig. 11  Comparison of the original V4-lead signal and the 
reconstruction signal using the CNN-based method 

Fig. 10  Comparison of the original V4-lead signal and the 
reconstruction signal using the ANN-committees-based 
method 
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6  Conclusions and future work 
 

Twelve-lead ECG is one of the most important 
cardiac diagnostic tools. The need for synthesis of 
12-lead ECG from fewer leads increases dramatically 
as portable devices often provide limited electrodes. 
The reduction of running time during synthesis is 
important, considering the large amount of signal and 
the real time requests. In this paper, we investigate the 
convolutional neural networks method in detail, and 
apply it to the reconstruction of an ECG signal. 
Compared to linear regression and ANN, our method 
has not only better similarity between the recon-
structed and original ECGs, but also less time con-
sumption. We also believe that the generic synthesis 
method can be further modified using a higher- 
volume training database.  

In the future we will consider how to optimize 
the initial weight more efficiently and improve the 
topology of the network. We will continue to improve 
the effectiveness of the generic approach and provide 
better support for more patient types. 
 
References 
Addison PS, 2005. Wavelet transforms and the ECG: a review. 

Physiol Meas, 26(5):R155-R199.  
 https://doi.org/10.1088/0967-3334/26/5/R01 
Atoui H, Fayn J, Rubel P, 2004. A neural network approach for 

patient-specific 12-lead ECG synthesis in patient moni-
toring environments. Proc Computers in Cardiology, 
p.161-164. https://doi.org/10.1109/CIC.2004.1442896 

Atoui H, Fayn J, Rubel P, 2010. A novel neural-network model 
for deriving standard 12-lead ECGs from serial three-lead 
ECGs: application to self-care. IEEE Trans Inform 
Technol Biomed, 14(3):883-890.  

 https://doi.org/10.1109/TITB.2010.2047754 
Bojarski M, Del Testa D, Dworakowski D, et al., 2016. End to 

end learning for self-driving cars.  
 https://arxiv.org/abs/1604.07316 
Bousseljot R, Kreiseler D, Schnabel, A, 1995. Nutzung der 

EKG-Signaldatenbank CARDIODAT der PTB über das 
Internet. Biomedizinische Technik, Band 40, Ergän-
zungsband 1, S 317. 

Ciregan D, Meier U, Schmidhuber J, 2012. Multi-column deep 
neural networks for image classification. Proc IEEE Conf 
on Computer Vision and Pattern Recognition, p.3642- 
3649. https://doi.org/10.1109/CVPR.2012.6248110 

Drew BJ, Pelter MM, Wung SF, et al., 1999. Accuracy of the 
EASI 12-lead electrocardiogram compared to the stand-
ard 12-lead electrocardiogram for diagnosing multiple 
cardiac abnormalities. J Electrocardiol, 32(S1):38-47. 
https://doi.org/10.1016/S0022-0736(99)90033-X 

Duin RPW, 2000. Learned from neural networks. Proc 6th 
Annual Conf of the Advanced School for Computing and 
Imaging, p.9-13.  

Ettl S, Kaminski J, Knauer MC, et al., 2008. Shape recon-
struction from gradient data. Appl Opt, 47(12):2091-2097. 
https://doi.org/10.1364/AO.47.002091 

Frank E, 1956. An accurate, clinically practical system for 
spatial vectorcardiography. Circulation, 13(5):737-749. 
https://doi.org/10.1161/01.CIR.13.5.737 

Gacsádi A, Szolgay P, 2010. Variational computing based 
segmentation methods for medical imaging by using 
CNN. Proc 12th Int Workshop on Cellular Nanoscale 
Networks and Their Applications, p.1-6.  

 https://doi.org/10.1109/CNNA.2010.5430256 
Goldberger AL, Amaral LAN, Glass L, et al., 2000. Physio- 

Bank, PhysioToolkit, and PhysioNet: components of a 
new research resource for complex physiologic signals. 
Circulation, 101(23):e215-e220.  

 https://doi.org/10.1161/01.CIR.101.23.e215 
Gulrajani RM, 1998. The forward and inverse problems of 

electrocardiography. IEEE Eng Med Biol Mag, 17(5): 
84-101. https://doi.org/10.1109/51.715491 

Horácek BM, Warren JW, Feild DQ, et al., 2002. Statistical 
and deterministic approaches to designing transfor-
mations of electrocardiographic leads. J Electrocardiol, 
35(4):41-52. https://doi.org/10.1054/jelc.2002.37154 

Hubel DH, Wiesel TN, 1959. Receptive fields of single neu-
rones in the cat’s striate cortex. J Physiol, 148(3):574-591. 
https://doi.org/10.1113/jphysiol.1959.sp006308 

Kors JA, van Herpen G, 2010. Computer analysis of the elec-
trocardiogram. In: Macfarlane PW, van Oosterom A, 
Pahlm O, et al. (Eds.), Comprehensive Electrocardiology. 
Springer, London, p.1721-1765.  

 https://doi.org/10.1007/978-1-84882-046-3_37 
Krizhevsky A, Sutskever I, Hinton GE, 2012. ImageNet clas-

sification with deep convolutional neural networks. Proc 
25th Int Conf on Neural Information Processing Systems, 
p.1097-1105. 

LeCun Y, Boser B, Denker JS, et al., 1990. Handwritten digit 
recognition with a back-propagation network. In: 
Touretzky DS (Ed.), Advances in Neural Information 
Processing Systems. Morgan Kaufmann Publishers Inc., 
San Francisco, USA, p.396-404.  

Lee H, Grosse R, Ranganath R, et al., 2009. Convolutional 
deep belief networks for scalable unsupervised learning 
of hierarchical representations. Proc 26th Annual Int Conf 
on Machine Learning, p.609-616.  

 https://doi.org/10.1145/1553374.1553453 
Lu C, Wang ZY, Zhou B, 2017. Intelligent fault diagnosis of 

rolling bearing using hierarchical convolutional network 
based health state classification. Adv Eng Inform, 32: 
139-151. https://doi.org/10.1016/j.aei.2017.02.005 

Modre R, Seger M, Fischer G, et al., 2006. Cardiac anisotropy: 
is it negligible regarding noninvasive activation time 
imaging. IEEE Trans Biomed Eng, 53(4):569-580.  

 https://doi.org/10.1109/TBME.2006.870253 



Wang et al. / Front Inform Technol Electron Eng   2019 20(3):405-413 413

Nelwan SP, 2005. Evaluation of 12-Lead Electrocardiogram 
Reconstruction Methods for Patient Monitoring. PhD 
Thesis, Erasmus University Rotterdam, Rotterdam,  
Holland.  

Nelwan SP, Meij SH, 2006. Derived 12-lead ECG systems. J 
Electrocardiol, 39(1):29-30.  
https://doi.org/10.1016/j.jelectrocard.2005.06.013 

Nelwan SP, Kors JA, Meij SH, et al., 2004. Reconstruction of 
the 12-lead electrocardiogram from reduced lead sets. J 
Electrocardiol, 37(1):11-18.  

 https://doi.org/10.1016/j.jelectrocard.2003.10.004 
Palm RB, 2012. Prediction as a Candidate for Learning Deep 

Hierarchical Models of Data. MS Thesis, Technical 
University of Denmark, Lyngby, Denmark.  

Pan JP, Tompkins WJ, 1985. A real-time QRS detection algo-
rithm. IEEE Trans Biomed Eng, BME-32(3):230-236. 
https://doi.org/10.1109/TBME.1985.325532 

Scherer JA, Jenkins JM, Nicklas JM, 1990. Synthesis of the 
12-lead electrocardiogram from a 3-lead subset using  
patient-specific transformation vectors: an algorithmic 
approach to computerized signal synthesis. J Electrocar-
diol, 22(S1):128. 
https://doi.org/10.1016/S0022-0736(07)80112-9 

Serre T, Wolf L, Bileschi S, et al., 2007. Robust object recog-
nition with cortex-like mechanisms. IEEE Trans Patt 
Anal Mach Intell, 29(3):411-426.  

 https://doi.org/10.1109/TPAMI.2007.56 
Shin HC, Roth HR, Gao MC, et al., 2016. Deep convolutional 

neural networks for computer-aided detection: CNN ar-
chitectures, dataset characteristics and transfer learning. 
IEEE Trans Med Imag, 35(5):1285-1298.  

 https://doi.org/10.1109/TMI.2016.2528162 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Srivastava N, Hinton G, Krizhevsky A, et al., 2014. Dropout: a 
simple way to prevent neural networks from overfitting. J 
Mach Learn Res, 15(1):1929-1958.  

Tomašić I, Trobec R, 2014. Electrocardiographic systems with 
reduced numbers of leads—synthesis of the 12-lead ECG. 
IEEE Rev Biomed Eng, 7:126-142.  

 https://doi.org/10.1109/RBME.2013.2264282 
Zhang QX, Zhou D, Zeng X, 2016. A novel machine  

learning-enabled framework for instantaneous heart rate 
monitoring from motion-artifact-corrupted electrocardi-
ogram signals. Physiol Meas, 37(11):1945-1967.  

 https://doi.org/10.1088/0967-3334/37/11/1945 
Zhang QX, Zeng X, Hu WC, et al., 2017a. A machine learning- 

empowered system for long-term motion-tolerant weara-
ble monitoring of blood pressure and heart rate with 
ear-ECG/PPG. IEEE Access, 5:10547-10561.  

 https://doi.org/10.1109/ACCESS.2017.2707472 
Zhang QX, Zhou D, Zeng X, 2017b. HeartID: a multiresolu-

tion convolutional neural network for ECG-based bio-
metric human identification in smart health applications. 
IEEE Access, 5:11805-11816.  

 https://doi.org/10.1109/ACCESS.2017.2707460 
Zhang QX, Zhou D, Zeng X, 2017c. Machine learning- 

empowered biometric methods for biomedicine applica-
tions. AIMS Med Sci, 4(3):274-290.  

 https://doi.org/10.3934/medsci.2017.3.274 
Zhang QX, Zhou D, Zeng X, 2017d. A novel framework for 

motion-tolerant instantaneous heart rate estimation by 
phase-domain multiview dynamic time warping. IEEE 
Trans Biomed Eng, 64(11):2562-2574.  

 https://doi.org/10.1109/TBME.2016.2640309 
 


