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Abstract: A powerful platform of digital brain is proposed using crowd wisdom for brain research, based on the computational 
artificial intelligence model of synthesis reasoning and multi-source analogical generating. The design of the platform aims to 
make it a comprehensive brain database, a brain phantom generator, a brain knowledge base, and an intelligent assistant for re-
search on neurological and psychiatric diseases and brain development. Using big data, crowd wisdom, and high performance 
computers may significantly enhance the capability of the platform. Preliminary achievements along this track are reported. 
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1  Introduction 
 

Human brain is the most advanced instrument in 
the world, and has been largely responsible for the 
development of civilization. An extremely large 
number of studies on the brain have been conducted, 
covering multiple aspects and perspectives. The 
studies include, but are not limited to, those in biology, 
biochemistry, biophysics, genetics, physiology in the 
domain of basic sciences, psychology, psychiatry, 
cognition in social studies and medical research, and 
those in artificial intelligence, human-brain interfac-
ing in the domains of computer science and bioengi-
neering, aiming to simulate human intelligence using 
the machine. There have been hundreds of thousands 
of publications on the brain, with thousands more 
each year. New findings and knowledge on the brain 

are being accumulated, becoming progressively more 
complex, and thereby more difficult to manage and 
learn. 

Compared to the knowledge in other basic sci-
ences, such as mathematics, physics, biology, and 
chemistry, knowledge on human brains is still very 
sparse. The mechanism of how brain works largely 
remains a mystery, as it appears to be a black box to 
humans. Conventional and traditional approaches 
typically indirectly study the brain, for example, be-
havioral studies, which observe the behavior of hu-
man brains to infer how brain works, or neurosurgery, 
which may correlate functions with specific brain 
regions from patients of traumatic brain injury. Re-
cent advances in science and technology have pro-
vided novel means for investigating brain mechanism 
more directly. Brain imaging, such as functional 
magnetic resonance imaging (fMRI) (Baars and Gage, 
2010; Brown et al., 2014), may directly observe ac-
tivities in brain regions by detecting blood-oxygen- 
level dependent (BOLD) signals in tissue by relating 
the signals to a task that is being performed, while the 
task can be a cognitive, psychological, or motor one. 
For example, the hippocampus will show activation 
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when a person is executing a memory and spatial 
learning task; the visual cortex is active in fMRI when 
a person is watching a video, and the M1 motor cortex 
will light up in fMRI when a person is tapping fingers. 
Optogenetics now allows the visualization of the 
transmission of a neuron firing on a scale of milli-
seconds and the recording of its transmission path-
ways in the neural system. However, these advances 
are not adequate to understand and address the most 
basic question concerning how exactly a human brain 
works when thinking and how exactly it could have 
self-cognition. 

With the vast existing body of research and 
continuing development, as mentioned above, no one 
can know even a small fraction, say 10%, of the work. 
Thus, there is a significant risk that a researcher will 
be unaware of relevant past findings such that in some 
cases, people may unnecessarily repeat work, which 
is a waste of resources. Therefore, it would be desir-
able to have a method that can automatically collect, 
preserve, sort, manage, and use the knowledge of all 
the brain research. It would be even desirable if new 
knowledge may be generated based on what is already 
known. 

Synthesis reasoning (SR) (Pan, 1996), also 
known as multi-source analogical generating (MSAG) 
(Xu, 1995; Xu and Pan, 1995), is a computational 
model originally developed for intelligent computer- 
aided design (iCAD), which aims to simulate the 
creative power of human designers using computer 
programs or the machine. Conventional CAD systems 
are passive tools for implementation of designs or 
solutions that human beings have already created. For 
example, Microsoft Word is a powerful editing soft-
ware tool, but it cannot compose an article for you; 
Adobe Photoshop is useful in producing nice and 
beautiful visual effects, but a human artist has to first 
design the creation. SR and MSAG have provided a 
way for upgrading a CAD system to be an intelligent 
helper for human designers, thereby making it an 
iCAD system. For example, an iCAD system of 
newspaper page layout (Xu, 1998) may automatically 
generate a handful of draft solutions as needed for the 
current list of news and photographs to be published 
on the same page for today’s newspaper. It generates 
in just one click the solutions that meet specific rules 
and requirements of the layout of a unique style, 
based on published cases that are thought to have met 

the particular requirements. Therefore, human editors 
may just need to select one or two from them and then 
slightly adjust the draft layout for finalization, and 
sign to publish. In this way, it is no longer necessary 
to manually count the number of characters and plan 
an area for each news coverage on the same page for 
all the news coverages to fit nicely onto the same page, 
which typically takes several hours of manual labor. 
As another example, following a limited number of 
requirements regarding factors such as color schema, 
pattern type, and layout pattern, an iCAD system for 
carpet or cloth pattern design (Pan, 1997) may also 
automatically retrieve the respective elements meet-
ing the individual aspects of requirements from an 
art-material database and generate right away hun-
dreds of new designs for a human designer to refer to. 
In these instances, the iCAD systems may not ulti-
mately replace a human designer, but they really work 
as an intelligent assistant, greatly relieving the load of 
human labor. 

Artificial intelligence (AI), initiated in the 1950s, 
forcefully revived recently after having experienced 
three ‘winters’ in 1970s and 1980s, respectively, due 
to technical difficulties that cannot be overcome. 
Attributed to the significant development of Internet- 
related technology and its popular use nowadays, and 
also the significant improvement of computational 
power of contemporary computers that has never 
been achieved, big data management and deep 
learning are now possible. Therefore, the current 
wave of AI relies heavily on the use of crowd wisdom 
(Michelucci and Dickinson, 2016) and the knowledge 
graph (Nickel et al., 2016), which cannot live without 
the soil of the Internet and the extremely powerful 
computers. Google search engine, Google adver-
tisements, Google maps & navigation, Amazon’s 
virtual assistant (Echo/Alexa), IBM Watson, and Ap-
ple Siri are typical examples. SR/MSAG, an AI 
computational model that is capable of employing 
crowd wisdom and big data, and combining different 
types of knowledge, is particularly suitable for 
knowledge computation and production. 

In this work, we propose to use SR/MSAG to 
build a powerful platform of the digital brain using 
crowd wisdom for brain research. The design of the 
platform aims to make it a powerful brain database, a 
brain phantom generator, a brain knowledge base, and 
an intelligent research and diagnosis assistant for 
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neurological and psychiatric disease study and brain 
development. We report the preliminary progress that 
we have achieved thus far along this track. 

 
 

2  Method 
 
SR/MSAG is a computational theory originally 

developed for iCAD. Its computational framework 
gives computer programs a great degree of creativity 
(computational intelligence). iCAD systems employ 
it for automated design of innovative products, sim-
ulating what a human designer can do. A synonym for 
synthesis reasoning (Pan, 1996, 1997), MSAG was 
developed from analogical reasoning (AR). MSAG 
works in a way just as a mother and a father that can 
give birth to new babies. The babies inherit various 
characteristics from the same set of features from the 
same parents, and therefore they are alike; however, 
they are also distinctive individuals, due to their in-
heritance of different subsets of the features. The 
resemblance to the parents assures that they are of the 
same species, whereas the difference from the parents 
and their siblings guarantees that they are completely 
new. The theoretical assumption behind MSAG is that 
any invention is ultimately a discovery—the object 
being invented actually already exists (however, often 
intangibly instead of physically), but was not con-
ceptually perceived easily. It was not perceived be-
cause it is in a very high dimensional space of features 
that is usually beyond the direct cognitive ability and 
imagination of human beings. In this view, new things 
are not exactly new but simply are not recognized 
because of lack of cognitive ability. Therefore, in-
venting new things could be largely equivalent to 
exploring something based on certain rules in a very 
high dimensional space that the real world has already 
constructed for us. This concept basically has pointed 
the way to how a computer program may possibly 
possess the power of creativity. 

Taking the parents-children example, we know 
that a father and a mother are potentially able to 
produce many individual children. While the parents 
are absolutely two different individuals, each child 
resembles the parent to a certain degree but is cer-
tainly not exactly the same (which founds the prop-
erty ‘new’); also, the children are alike but different 
from each other. The children of the same parents are 

the concrete instances resulting from permuting nu-
merous genes that are paired. The extremely large 
number of genes coins the feature of variety within 
the very high dimensional space of genes, and the 
correspondence of genes (paring) across the parents 
guarantees that the product is perfectly organized and 
structured in a consistent way as do the parents. Now 
consider that the parents are replaced by (more than 
two) items that are not biological, and that their genes 
are analogous to various features; thus, the multiple 
parents form a hyper-field and span a high dimen-
sional feature space, with each dimension represent-
ing one particular feature (Xu, 1995; Xu and Pan, 
1995). Any point within the hyper-field of this space 
spanned by these parents is potentially their child, 
with its distance from a parent defining the resem-
blance to that particular parent (thinking of the mag-
netic force that a piece of iron may receive if three or 
more magnets are distributed in its vicinity, jointly 
forming a magnetic field). The child will resemble 
each parent to different degrees in different feature 
aspects, depending on the parent source of each fea-
ture and the associated distance to the parent, with the 
distance defining the resemblance. To illustrate the 
idea, if we take human facial sketches as the ‘parents’, 
we can produce new cartoon characters (Fig. 1), in 
which the features refer to the shapes and locations of 
the facial features (Rhodes et al., 1987; Fan, 2013; 
Fan et al., 2014).  
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

S1 S2

S3 Result

Hair style

Eyebrow (L)

Eyebrow (R)

Eye (L)

Eye (R)

Nose

Mouth

Face contour

 
Fig. 1  A multi-source analogical generating (MSAG)  
application 
Three sources S1, S2, and S3 are used and the lower-right is 
the generated result, which mixes different features with dif-
ferent weights from S1–S3. The scroll bars define the simi-
larity weights to the sources (in the current snapshot, to S3). 
Notably, this allows the generation of numerous results in the 
continuous hyper-space spanned by S1, S2, and S3 
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All human brains are generally similar. For 
example, each has two hemispheres, and consists of 
white matter (WM), grey matter (GM), and four brain 
ventricles, and cortical folding spreads throughout the 
brain surface and each hemisphere has several lobes 
with a number of major gyri and sulci. Also, MR T1- 
relaxation time of newborns is always longer in WM 
than in GM, and shorter in WM of adults than in GM, 
without exception. Brain functioning areas generally 
locate in similar regions in the brain; e.g., the hippo-
campus is related to spatial learning and memory 
(Lynch, 1979; Packard and White, 1991; Squire, 1992; 
Shapiro and Eichenbaum, 1999; Maguire, 2001), 
Broca’s area is responsible for speech and language 
processing (Amunts et al., 1999; Hagoort, 2005; 
Baars and Gage, 2010), and the visual cortex locates 
at the occipital lobe (Belliveau et al., 1991; DeYoe et 
al., 1996; Bradley et al., 2003). Nevertheless, no two 
brains are exactly the same, either morphologically, 
structurally, functionally, biologically, psychologi-
cally, or histologically. Even with those subjects ac-
quired on the same MRI scanner using the same ac-
quisition parameters, significant inter-subject vari-
ances can be observed in the images (van Hecke et al., 
2009). Taking multiple brains as the parents (base 
brains) in MSAG, and classifying them along differ-
ent axes of many features (e.g., age, gender, shape, 
size, structure, voxel intensity, and T1/T2 relaxation 
times), we can construct a hyper-space of brains. In 
this space, every point is potentially a new human 
brain (Fig. 2), which resembles the base brains, but 
also differs from the base brains in every feature as-
pect. Therefore, applying MSAG to neuroimaging 
will allow the production of countless new brain im-
ages.  

MRI data: We used MR imaging data in this 
work. We acquired T1-weighted (T1w), T2-weighted 
(T2w), T1/T2 relaxation, and diffusion-weighted/ 
diffusion tensor imaging (DWI/DTI) data. Although 
many MRI datasets and databases can be downloaded 
online (Arnold et al., 2001; Aubert-Broche et al., 
2006; Evans, 2006; Jack et al., 2008; Hagmann et al., 
2010; Sporns, 2011; Toga et al., 2012; van Essen et al., 
2013), such as the National Database for Autism Re-
search (NDAR, www.ndar.nih.gov), the ABCD study 
(abcdstudy.org), and the BRAINnet database (www. 
brainnet.net), none of them provides a comprehensive 
set of all the data modalities that we need in this 

project. Because combining imaging data of different 
MR modalities from different sources requires extra 
work to calibrate the signals, bias control will be hard 
to justify. Therefore, we acquired five complete sets 
of highly consistent and good quality imaging data 
from real subjects to prototype construction of a solid 
database to build our model. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Data processing: All images were de-identified 
to protect privacy as required by HIPPA. The imaging 
data were visually inspected to exclude those con-
taining obvious artifacts due to motion, thermal, or 
other artifacts and noise. Next, we quantitatively 
examined the data using a tool developed in-house to 
exclude those containing invisible motion or distor-
tion that exceeds 1.5 degrees of rotation or 1 mm of 
translation (Xu et al., 2003, 2008; Liu W et al., 2012b; 
Liu X, 2013; Wen et al., 2013). Subsequently, we 
isolated non-brain tissue for each brain, including 
scalp, cerebellum, and brain stem. We first used the 
brain extraction tool (BET) (Fagiolo et al., 2008) 
provided by the FMRIB Software Library (FSL) to 
roughly segment the brain. Then a research assistant 
trained in human brain anatomy performed a careful 
and detailed manual editing using our 3D image  
editing tool VolEdit to correct in three orthogonal 

New 
brain

B1

B2
B3

B4

B5
W1=20%

W2=15%

W3=25%

W4=5%

W5=35%

 

Fig. 2  The proposed platform using MSAG to generate 
new brains, which currently employs five base brains with 
scalp 
The brains are distributed on a plane, composing a five-source 
generation field. Any location on this plane is potentially an 
MSAG result. In the current example, the new brain in the 
middle has weights of 0.2, 0.15, 0.25, 0.05, and 0.35, repre-
senting the similarity of this new brain to the five base brains. 
The locations of all the five bases and that of the new brain can 
be freely moved, resulting in different weighting factors and 
consequently different new brains 
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views voxel by voxel the residuals and connecting 
dura that were not successfully removed by BET. 

DWI/DTI data require additional preprocessing 
steps, which correct them for eddy-current induced 
distortion (Haselgrove and Moore, 1996; Bastin, 1999, 
2001; Bastin and Armitage, 2000; Zhuang et al., 2006; 
Liu W et al., 2012a), so that the raw DWI data ac-
quired along different gradient directions were co- 
registered with the baseline images. This ensures that 
corresponding voxels across all the DWI volumes for 
the same subject are measuring exactly the same tis-
sue location, and further processing of the DWI data 
such as tensor reconstruction, diffusion anisotropy 
index (DAI) calculation, and fiber tracking will be 
accurate. 

Knowledge extraction: To make it a qualified 
base brain, each raw dataset was preprocessed, and 
necessary knowledge of the brain in every aspect in 
terms of morphology, intensity, and information about 
tissue properties and imaging parameters was col-
lected and recorded: (1) We first performed a 
K-means fuzzy segmentation (Kanungo et al., 2002; 
Ng et al., 2006) on each brain using its T1w data to 
identify five structural components, i.e., WM, GM, 
ventricle cerebrospinal fluid (vCSF), cortical CSF 
(cCSF), and background (BG). Standard smoothing 
operations were performed to remove noise and small 
holes in each component to generate reasonable tissue 
classifications. A brain mask containing five seg-
mented regions was thus defined for each participant 
brain for future use in this study. (2) We recorded the 
border of the five components, as well as those of the 
removed non-brain tissues. (3) We also slightly reg-
ulated the voxel intensity so that the value ranges of 
all the brain voxels were separated into four bins 
(WM, GM, CSF, and BG), with a delimiter interval 
(DI) at the boundary of the neighboring value ranges 
of different tissue components, using an equation 
similar to that developed in the preliminary work 
(Bansal et al., 2013): Iv×(−DI(x−Ab)/Ar+W), where Iv 
is the measured voxel intensity, DI a small value de-
fining the delimiter interval, x the current age, Ab=20 
the base age for the deducing, Ar the ceiling age for 
simulation, and W=81% (GM) or 69% (WM) the 
water content percentage at the base age (Neeb et al., 
2006; Bansal et al., 2013). This minor regulation of 
the voxel intensity range helped prevent tissues in the 
generated data from being segmented into the wrong 

categories but will not change the intrinsic relaxation 
properties. (4) We estimated T1, T2 times for each 
voxel in each base brain, using the technique de-
scribed in our preliminary studies (Liu F et al., 2006, 
2008, 2010; Bansal et al., 2013). (5) We recorded all 
demographic information that was collectable, such 
as age, sex, race, handedness, and educational back-
ground as it is known that these variables contribute 
to brain variability (Hsu et al., 2008; Huster et al., 
2009; van Hecke et al., 2009). Such information was 
useful for defining the ethnicity and background of a 
brain and its datasets to be prescribed and deduced. 
Consequently, we had set up for each base brain a 
very high dimensional space of features, and thus the 
base brains spanned a very high dimensional space for 
deducing new brain images. Every point in this hyper- 
space potentially corresponds to a new brain, defined 
by all the computable features associated to the base 
brains that had been constructed thus far. Now, the 
only remaining piece was the correspondence of the 
features across the base brains, which decided how 
the extracted features were to be matched for rea-
soning (just like pairing allele genes from individual 
parents), and this is key to reasoning within MSAG 
for deducing realistic new brain data. 

Spatial normalization: To set up the corre-
spondence between all the base brains to match the 
corresponding features, we spatially normalized all 
the imaging data to the MNI_152_T1_1mm template. 
A local transformation DL normalized all the base 
brains (after preprocessing) first to their local tem-
plate within each base brain using a 3D normalization 
(Davatzikos et al., 2001; Shen and Davatzikos, 2002, 
2003; Bansal et al., 2012), followed by another step of 
3D spatial normalization (DG) that maps all the local 
template brains to the final template (Shen and Da-
vatzikos, 2004; Shen et al., 2005; Schreibmann et al., 
2008; Lorenzi et al., 2010; Bansal et al., 2012; Hao 
et al., 2013). (1) DL: for each base brain, we selected 
its high-resolution T1w as the local brain template 
and normalized all the data of other modalities to this 
local template using a cross-modality method that 
maximizes mutual information (Davatzikos, 1996a, 
1996b, 1997; Shen and Davatzikos, 2002, 2003; 
Bansal et al., 2005; van Hecke et al., 2009; Hao et al., 
2013). (2) DG: in this step, we set up spatial corre-
spondence from all the local T1w templates to the 
final MNI_152_T1_1mm template. Combining DL 
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and DG, we normalized all the MRI data to the tem-
plate space. Thus, the voxel correspondence between 
any two brains or two images was defined. After the 
images were co-registered to the template MNI_152 
space which had already been carefully defined with 
124 regions (Bohland et al., 2009), the tissue type 
classification of each voxel in the base brains was 
defined. 

Brain correspondence: With the spatial corre-
spondences set up for every voxel in every base brain 
in the MSAG reasoning space, knowledge and fea-
tures across the base brains were properly linked and 
matched. These matched brains were ready to be used 
just like the ‘allele genes’ for generating new brains 
that would also bear all these features. In particular, it 
would define in the new brain its WM, GM, CSF, 
their boundaries, nonbrain tissues, voxel properties, 
and associated demographic information. 

Deducing new brains: New brains were to be 
generated following the MSAG schema in the space 
spanned by the base brains. Every aspect of the new 
brains was generated as a weighted sum of the cor-
responding aspect of the base brains. Once all the 
aspects of a new brain were generated, a new brain 
was defined. Suppose we use N base brains. The ith 
feature aspect Fi of the new brain can be computed as 
Fi=∑k=1,2,…,NWi

KFi
K, where Wi

K is the weighting factor 
of the ith feature of the kth base brain, and Fi

K is the 
corresponding ith feature of the kth base brain. Wi

K is 
decided by the relative distance of the new brain in the 
MSAG space from the kth base brain (the closer, the 
larger), normalized by the sum of distances from the 
new brain to all the base brains employed for this 
deduction (Fig. 2). 

In this process, several factors can be adjusted to 
control the MSAG reasoning behavior: (1) The base 
brains can be selected with criteria, so that particular 
requirements can be met. For example, select only 
female base brains to generate a female brain, or se-
lect male Caucasian base brains at 30 s to simulate 
data of such a particular population, or use base brains 
of young Black and Caucasian participants with a 
college degree as parents to simulate their hybrid 
offspring already grown to approximately the same 
age range. (2) The base brains adopted are distributed 
at will to form a favorable MSAG field (Fig. 2). Once 
the distribution is determined, an MSAG field is set 
up and any point within the field represents a potential 

MSAG result of a new brain. (3) The closer the loca-
tion of the new brain to a base brain, the higher the 
similarity between this new brain and that particular 
base brain. (4) Different features can use differing 
weight settings. In other words, the setting in Fig. 2 
does not have to apply to all features, but each feature 
may configure its own version of weighting. (5) The 
number of base brains can vary, as long as it is more 
than two. Certainly, the more that enter into the 
MSAG process, the more versatile the results can be. 
(6) Brain MRI data of different imaging modalities 
(T1w, T2w, T1/T2-maps) can be ordered at the de-
termined location, as if an MR scanner scanned the 
same person’s brain for the different MRI modalities. 
(7) The inclusion of features can be adjusted as 
needed, and only the selected features will be con-
trolled for deducing results. For example, if only sex 
and age are of interest, the deduced data will show 
variances reflecting only sex and age, but with all 
other features averaged in default demonstrating a 
statistical pattern as will be shown in a brain atlas. 
New brains can thus be prescribed as needed. 

 
 

3  Experiments 
 
To validate the proposed idea and demonstrate 

its feasibility, we conducted three preliminary  
experiments. 

In the first experiment, we used five healthy 
adults’ brains as the base brains. The five brains differ 
from each other significantly in morphometry (Fig. 3), 
i.e., shape, GM/WM distribution, cortex thickness, 
location and size of major gyri/sulci, and ventricles. 
By adjusting the relative positions and distance be-
tween the expected result and the base brains in the 
space spanned by the base brains (Fig. 2) for each 
individual aspect, the model can generate various new 
brains with new attributes inherited and blended from 
the base brains, respectively, according to the relative 
spatial setting in the MSAG space. For example, we 
can choose to generate a new image that simulates the 
general shape of base 2 at 95% similarity and the rest 
5% from base 1, with boundary of WM and GM from 
the average of all the five bases, voxel intensity of 
WM from base 4, voxel intensity of GM from base 1 
at 30% and 70% from base 5, and ventricles from base 
5 only. We may see that the brains generated appear 
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extremely realistic. We tested identification of the 
authenticity of these brains generated by using several 
brain anatomists who were blind to this study. None 
of them can correctly tell the artificial ones from the 
real ones, and some of them believed that all the im-
ages were real-world imaging data. 

In the second experiment, we added one feature, 
cortical thickness, to this model. Based on our past 
studies in method development (Bansal et al., 2007) 
and those studying cortical thickness changes in 
healthy individuals (Sowell et al., 2007), children of 
Tourette’s syndrome (Sowell et al., 2008), attention 
deficit/hyperactivity disorder (ADHD) (Bansal et al., 
2007), high-risk familial depression (Peterson et al.,  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

2009; Dubin et al., 2012), and chronic neuropsychi-
atric illness (Bansal et al., 2012), we simulated indi-
vidual cortical thickness profiles for the five base 
brains, and tested deducing results based on them 
under various conditions. Traditional statistical anal-
ysis for studying cortical thickness will provide only 
one final set of results under a given condition, for 
example, the statistical pattern of group average. In 
contrast, our model can provide dynamic views of the 
results, freely and selectively use parts of the samples 
that are of interest for intuitive examination of possi-
ble results, and thus evaluate the difference among 
different subsets of the population (Fig. 4).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Thinner Thicker

 
 

Fig. 4  Deducing cortical thickness 
The upper row shows the pattern of the five base brains, and the bottom row shows several simulations based on the base brains 
using different control settings 

B1 B2 B3 B4 B5

G1 G2 G3 G4 G5
 

 

Fig. 3  Preliminary examples of generating realistic new brains using MSAG 
The current generation involves only shape and intensity to demonstrate the feasibility of our design. The first row shows five 
different base brains, and the second row shows the generated brains, either with or without scalp, which look very realistic. The 
new brains vary in size, shape, and structures, as they blend features from the base brains with different weights. For example, 
G1 used the shapes of B1 and B2, but adopted different combinations of weights of structures and voxel intensities from all the 
five base brains; G2–G5 are additional instances of using various weights. Adding more variables such as imaging parameters 
will allow more delicate and complex controls over the results, and will generate more drastically different results 



Xu et al. / Front Inform Technol Electron Eng   2018 19(1):78-90 85 

For example, we can selectively see the statisti-
cal pattern from individuals 1, 3, and 5 of the same 
age (e.g., 32), or inspect the pattern of female, black 
subjects who hold a bachelor’s degree, by conducting 
MSAG based on only subjects who hold these attrib-
utes. When the system has an adequate number of 
samples as the base brains, this work can be used to 
check dynamically the possible evolution course of 
the pattern from one age to the other, and simultane-
ously from healthy to diseased people that are hybrid 
of more than one race, although possibly none of the 
base brains was actually of more than one race. Sim-
ilarly, our model can artificially deduce a prescribed 
virtual brain, for example, defined as female, aged 
35.5, genetically 5-HTTLPR_rs25531AA who is 
developing post-stroke depression (Mak et al., 2013). 
The model can thus help investigators actually visu-
alize and examine various possibilities, while no such 
person actually exists in the real world. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

In the third experiment, we deduced MR images 
in different imaging conditions. The full details of this 
piece of work have been reported separately else-
where (Jiang et al., 2017). In this experiment, we first 
acquired MRI data Img1 under one imaging setting 
defined by a set of imaging parameters Set1. We then 
used knowledge of physical properties (in particular, 
the T1/T2-relaxation times) that we have collected 
from standard samples of the base brains, and used 
them to deduce, for each voxel in Img1, a new value in 
a virtual image Img2 that is supposed to be collected 
under a different imaging setting defined by another 
set of imaging parameters Set2. We also collected the 
actual dataset Img2a in reality from the same person 
using the parameters defined by Set2. We then com-
pared Img2 with Img2a to inspect the effectiveness of 
our method (Fig. 5). The results showed that the de-
duction was successful, and that the deduced results 
were highly correlated with the actual scan (Fig. 6). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(a) (b) (c) (d)

Scan Scan
 

 

Fig. 5  Deducing T1w data using knowledge extracted from only four sample brains 
(a) An actual scan Img2a of subject J using imaging setting Set2 (TR/TE/TI=9000/10/900 ms). (b) and (c) are J’s artificially 
deduced images Img2 at the same imaging setting of Set2: (b) was smoothed with a 1-voxel (0.72 mm) kernel, and (c) was not 
smoothed. (d) is the actual scan acquired under imaging setting Set1 (TR/TE/TI=9000/10/1500 ms), which was the initial 
image from which (b) and (c) were deduced. It can be seen that the deduced versions (b) and (c) are almost identical to (a) 
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Fig. 6  Correlation r between the scanned and deduced data 

(a) Figs. 5a and 5c: r=0.7544, y=−87.765+1.04x; if background voxels are included, r=0.9943, y=−3.264+1.00x. (b) Figs. 5a and 
5b: r=0.7371, y=−428.75+1.20x; if background included, r=0.9967, y=−1.945+1.00x. Both are highly linearly correlated and 
matched, with minimum intercepts. The data shown here contained 218 voxels randomly picked from one image slice 
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4  Conclusions and discussion 
 

We proposed an AI platform of digital brain for 
brain research, which can use crowd wisdom to inte-
grate various types of knowledge on the brain. We 
first introduced the theory behind the design, then 
illustrated the idea and a blueprint, and finally 
demonstrated our preliminary progress. The first two 
examples showed how the platform will work based 
on sample datasets—the base brains span a reasoning 
space, and each point in the space is potentially a 
virtual and new human brain to be generated, defined 
by the variables along each feature axis in the rea-
soning space. At each such point, which corresponds 
to a virtual brain, the third example actually expanded 
it to a second level of detail, in which all the imaging 
parameters constitute another reasoning universe for 
reasoning new MRI data for this particular virtual 
brain. By setting the values of a number of different 
imaging parameters, the proposed work may generate 
imaging data under different imaging conditions, as if 
the same virtual person were scanned multiple times 
on a real scanner using different imaging settings. 

Using the small universe thus expanded by the 
third experiment, we demonstrated the complexity of 
our proposed platform, which may nest different lev-
els of a reasoning universe. Within only this small 
reasoning universe, a duplication of our proposed 
method of computational intelligence may also de-
velop advanced and unique abilities: (1) It provides a 
function comparable to the software tool of Adobe 
Photoshop to fix MRI data, certainly, following the 
principles of MR imaging and MRI physics but not 
optics. This is useful if a patient was scanned using a 
set of imaging parameters that were not individually 
optimized and, therefore, the image contrast of the 
acquired data was not optimal. (2) It also provides a 
virtual software MR scanner, and a whole set of im-
aging data can be prescribed and then generated 
without going to an actual scanner, which is usually 
expensive in both time and money. As the method 
may deduce the physical property of the tissue at each 
voxel using prior knowledge that has been built using 
the base brains, the virtual scanner may generate data 
of other imaging modalities. For example, in the 
current case, as we have knowledge of T1/T2 relaxa-
tion times for various tissues collected from base 
brains, T1w data can be used to deduce T2w data, 

which typically can be acquired only by physically 
scanning real human subjects using a real MRI 
scanner. 

The proposed platform is actually a digital brain 
database. Feeding into the system brain data including 
all associated data, such as imaging data, genetic data, 
demographic data, and EEG data, it automatically 
becomes a brain library. Setting values of interest to 
the feature variables that span the reasoning space, 
various information regarding human brains may be 
retrieved and automatically calculated. For example, 
input age=30–39, race=Asian, disease=schizophrenia, 
and sex=male; all brain data meeting these require-
ments will be presented. Moreover, if we set the 
weights equally to all the retrieved datasets, the 
MSAG framework will automatically generate an 
average brain image based on all the retrieved da-
tasets, providing a statistical atlas of all Asian male 
schizophrenia patients in their 30s. 

The proposed platform is also a digital brain 
phantom. Based on the computational AI model of 
MSAG/SR, the platform can use a limited number of 
sample base brains to deduce numerous new brains, 
just as parents may give birth to as many newborns (if 
age is not an issue). The features extracted from the 
brains span the reasoning space. The more the fea-
tures, the higher the dimensionality of the reasoning 
space, and the more powerful the platform is in de-
ducing new imaging data (phantoms). The deduced 
image can be very useful for testing new methodolo-
gies because affecting variables can now be fully 
controlled. Thus, the effectiveness of new image an-
alytic methods can be well validated. 

The platform is open in its nature, as its kernel, 
the computational MSAR method, is scalable. New 
axes that define new features can be added any time 
into the reasoning space, and new brain datasets can 
also be added any time to expand the bases for rea-
soning (just like more parents join to provide genes). 
Also, the more the brains representing different pop-
ulations are added, the more powerful the platform is. 
For example, if the data contain brains of all ages of 
healthy people and also those with different diseases, 
the system will allow deducing either brain devel-
opment of normal healthy people, or brain evolution 
from the healthy to the diseased, or vice versa. In 
particular, it can deduce brains of mixed disease 
conditions, which may be possibly not available in 
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reality. This gives scientists an ability to predict pos-
sibilities of certain diseases in the future, and they do 
not have to wait until such things actually happen 20 
years later. The deduced results may not be exactly 
true, but the bottom line is that it provides something 
tangible that the scientists may play with and study. 
As another example, to communicate with colleagues 
or explain to a patient the possible route of disease 
evolution, a physician may prescribe the five-year- 
later version of a current diseased brain. The physi-
cian may present it now visually and vividly, instead 
of orally describing the situation, to a patient or a 
colleague, which may very possibly be misunder-
stood because the audience could imagine something 
that is totally different from what is orally described, 
due to variations or degree of the required profes-
sional knowledge. 

The platform is indeed a knowledge system for 
brain and neuroscience. If many brain studies use the 
system, and all findings are fed into the system, the 
platform will be able to merge knowledge, and to 
solve conflicts in findings if findings from similar 
studies disagree with or contradict each other. For 
example, one study may find major depressive dis-
order (MDD) leads to a smaller hippocampus, 
whereas the other may have found that the hippo-
campus of MDD statistically becomes larger. With 
data from both sides available in the same platform, 
the system may now examine where such conflicts 
come from and thereby solve them by a joint and 
cross analysis. 

The current report presented our preliminary 
progress in this project. In this work, we used only 
five subject brains to demonstrate the feasibility of the 
proposed idea. The next step is to expand the number 
of samples, making it more powerful. Obviously, the 
size of the sample data and the number of users are 
important factors to the success of this platform. Big 
data will provide a comprehensive coverage to sup-
port all the feature axes with adequate samples, which 
are the source of the needed knowledge to run the 
system. It also forms the basis on which potential 
users may thereby make effective inquiries, conse-
quently allowing the system to deduce new data pre-
scribed by the users. On the other hand, intensive use 
of the system from various users across different 
disciplines is desirable, as this will provide crowd 
wisdom to the system. A large number of users will 
provide feedbacks of new findings associated with the 

brain data in the system, and their behaviors in using 
the system will thereby provide new domain 
knowledge and information on linking the data enti-
ties in the system. The latter basically forms the edges 
in a knowledge graph, which will enhance the rea-
soning and deducing abilities of our platform. To 
attract more users to use the system, a set of software 
tools for analyzing neuroimaging data is needed, so 
that data and findings can be uniformly processed 
using the same data interfaces and formats, and sub-
sequently the related data can be easily employed in 
the system to implement the goals as discussed earlier. 
The tools can use those we have developed in-house 
(Xu et al., 2003, 2008; Plessen et al., 2006; Liu F et al., 
2006, 2008, 2010; Liu W et al., 2012a, b; Bansal et al., 
2013; Hao et al., 2013; Liu X et al., 2013; Wen et al., 
2013), or those freely available online, such as 
SPM12, FSL, and FreeSurfer. However, using the 
latter would need a set of interfaces for converting the 
data formats for mutual-compatibility. 
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