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Abstract: The security threats to software-defined networks (SDNs) have become a significant problem, generally
because of the open framework of SDNs. Among all the threats, distributed denial-of-service (DDoS) attacks can
have a devastating impact on the network. We propose a method to discover DDoS attack behaviors in SDNs using
a feature-pattern graph model. The feature-pattern graph model presented employs network patterns as nodes and
similarity as weighted links; it can demonstrate not only the traffic header information but also the relationships
among all the network patterns. The similarity between nodes is modeled by metric learning and the Mahalanobis
distance. The proposed method can discover DDoS attacks using a graph-based neighborhood classification method;
it is capable of automatically finding unknown attacks and is scalable by inserting new nodes to the graph model
via local or global updates. Experiments on two datasets prove the feasibility of the proposed method for attack
behavior discovery and graph update tasks, and demonstrate that the graph-based method to discover DDoS attack
behaviors substantially outperforms the methods compared herein.

Key words: Software-defined network; Distributed denial-of-service (DDoS); Behavior discovery; Distance metric
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1 Introduction

A software-defined network (SDN) provides a
newly structured network with decoupled data, con-
trol, and application planes. The data plane consists
of OpenFlow switches and other network equipment
such as a switch, which receives commands from the
controller and treats them as the programmed rules.
The controller in the control plane can command
the forwarding actions of switches through program-
ming, which simplifies the network management.
The application plane provides application program-
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ming interfaces (APIs) for the network management
applications. With this open, centralized, and pro-
grammable architecture, SDNs afford developers a
convenient way to experiment and deploy new ideas.

However, SDNs have many vulnerabilities
(Scott-Hayward et al., 2013). Attackers can launch
denial-of-service attacks in the communication be-
tween the controller and switch to paralyze the net-
work. Once an SDN switch is compromised by an
attacker, the flow table can be easily modified. Mali-
cious applications and unauthorized application ac-
cess may appear on the application plane. Among
the well-known vulnerabilities of SDNs, distributed
denial-of-service (DDoS) attacks can have a devas-
tating impact on the whole network, so more atten-
tion is required when building the network security
mechanism for an SDN.
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Creating a security mechanism against DDoS
attacks on an SDN presents several challenges. First,
the traditional statistics- and signature-based tech-
niques need to be updated and adapted to DDoS
attacks in an SDN environment. Since the size of
ternary content-addressable memory (TCAM) that
stores the flow rules is limited, the challenge rests in
how to collaboratively use TCAM and reduce the us-
age rate when the mechanism is deployed in an SDN.
Second, because the traffic in SDNs is dynamic and
attack approaches are complex nowadays, it is dif-
ficult to use the attack detection technology with
only the traffic header information to discover differ-
ent types of attacks. Third, there are an increasing
number of unknown attacks that SDNs cannot pre-
vent; thus, it is challenging to automatically detect
the unknown attacks.

Considering these challenges, we propose a dis-
covery method for DDoS attack behaviors in SDNs
using a feature-pattern graph (FPG) model. The
proposed model is scalable to updates and can be ex-
tended to other attack scenarios. We use the DDoS
attack dataset in the traditional network and simu-
late attack traffic in an SDN environment as signa-
tures to build an FPG for known attacks. The non-
flow data in the traditional network are transferred
into the flow types which fit the SDN environment.
To cope with the limited TCAM problem, we directly
monitor and collect the packets and parse them into
the flow table format instead of picking the flow ta-
ble data from TCAM. Metric learning and the Ma-
halanobis distance are used to model the similarity
of the different nodes in FPG. With each node rep-
resenting a network pattern and the weighted edges
indicating the feature-based similarity of nodes, the
FPG model can demonstrate the node relationships
properly. A graph-based attack detection method
is proposed, which uses not only the traffic header
based features, but also the relational context of net-
work patterns. The FPG model is also scalable to
updates for the unknown attacks which are not in the
predefined graph. Our contributions can be summa-
rized as follows:

1. We propose a method for modeling an FPG
with link weight learning. The nodes represent var-
ious network patterns and the links between nodes
denote the similarity. The graph model is scalable to
updates and can be used in other attack scenarios.

2. We propose a DDoS detection method based

on the FPG.
3. A graph update model with both local and

global updates is proposed to extend FPG and help
with the detection of new attacks.

4. We demonstrate that our DDoS detection
method performs better than the compared methods
and also show the effectiveness of the graph update
model with two datasets.

2 Related work

2.1 SDNs

The switch and controller are two essential parts
of an SDN. The network switches in the data plane
act as the forwarding devices, and the controller
in the control plane implements the functionality
and control logic. The OpenFlow protocol (Scott-
Hayward et al., 2013) is the most widely deployed
protocol in SDNs, and it defines the communica-
tion approach between an SDN controller and the
switches. The flow table proposed in the OpenFlow
protocol is the foundation for querying and forward-
ing a package. The structure of the flow table in
the OpenFlow protocol consists of six parts: match
fields, priority, counters, instructions, timeouts, and
cookies. When a data packet arrives, the packet
header is compared with the match fields, and if
there is a match, the switch will update the coun-
ters and execute the actions; otherwise, the packet
is sent to the controller through the secure channel.
The match fields contain the source and destination
addresses of the Ethernet, source and destination IP
addresses, source and destination TCP/UDP ports,
etc. The priority defines the order of matching flow
items. Counters count the relevant information such
as packet count and byte count. Instructions define
the actions such as forward, drop, or modify. Time-
outs define the longest time during which a flow ex-
ists and the longest time during which a flow exists
in a flow table if no packet matches the flow. Numer-
ous open-source SDN controllers, such as Floodlight,
OpenDaylight, POX, and Ryu (Kreutz et al., 2015),
can be deployed in SDNs.

2.2 Security threats in SDNs

SDNs have attracted considerable attention
from the attackers because of the open framework.
We use the taxonomy in Fan et al. (2019) to illustrate
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the security threats in SDNs.
1. Application plane security
The application plane consists mainly of differ-

ent types of applications, some of which will play an
essential part in creating the flow rules. Attacking
these applications can cause significant damage to
the SDN. Attackers can inject malicious code into
the applications, rewrite the code or use a fake iden-
tity, and access the SDN illegally.

2. Protocol security
The protocols in SDN refer mainly to the south-

bound and northbound interface protocols. Open-
Flow is a typical protocol for the southbound inter-
face; although it is widely used in SDN frameworks,
it still has some vulnerabilities (Klöti et al., 2013).
For example, the communication between the switch
and controller has no identification or access control.
Although OpenFlow can establish a security chan-
nel with secure sockets layer/transport layer security
(SSL/TLS) to encrypt the data, it is still an option
rather than being mandatory. When the switch is
establishing a connection with the OpenFlow pro-
tocol, both the switch and controller have to send
the OF_HELLO message to each other. The at-
tacker can cut off the connection by intercepting the
message.

3. Control plane security
Because the controller is the most significant

part in an SDN, an attacker who can successfully
hack into the controller will have full control over
the entire network. The vulnerabilities on the appli-
cation plane or controller itself can be used by the
attackers to control the controller illegally. In ad-
dition, the attacker can launch a flooding attack by
using the vulnerabilities of the switch or OpenFlow
protocol, and by using the compromised switch (An-
tikainen et al., 2014) to send a large number of pack-
ets to the controller. The attacker can send packets
that do not match the flow table, so the switch will
send the packets to the controller; as a result, too
many packets will lead to DoS/DDoS attacks and
disable the controller.

4. Data plane security
The switch is the crucial part of the data plane,

as it can parse and forward packets, learn the me-
dia access control (MAC) address table, learn the
address resolution protocol (ARP) request, etc. Dif-
ferent kinds of attacks can occur on this plane, like
the DoS/DDoS attack. An attacker can use the fa-

cilities on the data plane to send a number of new
and unknown flows targeting the controller. He/She
can also potentially overload the switch memory, i.e.,
TCAM, thus making it difficult for the switch to in-
stall flow rules for normal use.

Among all the threats on the different planes in
an SDN, the DDoS attack is the most threatening
one since it can be launched on various planes and
can have a devastating impact on the whole SDN en-
vironment. Therefore, we concentrate mainly on the
security mechanism on DDoS attacks in this study.

2.3 Discovery of DDoS attack behaviors in
SDNs

DDoS attacks aim at bringing down target ser-
vices by distributed multiple sources, and have been
critical threats in cloud security. The distinctive
features of SDNs offer new opportunities to detect
and mitigate DDoS attacks. Yan et al. (2016) dis-
cussed the potential DDoS vulnerabilities on differ-
ent planes of the SDN platform, provided a survey
of defense mechanisms against DDoS attacks using
SDNs, and also discussed the open issues in dealing
with DDoS attacks in SDNs.

The popular methods in DDoS attack detec-
tion can generally be divided into four categories
(Bawany et al., 2017), i.e., entropy, machine learn-
ing, traffic analysis, and intrusion detection system/
intrusion prevention system (IDS/IPS) based meth-
ods. Table 1 depicts related research for each
category.

Entropy is used to measure the randomness of
an SDN environment; when a DDoS attack occurs,
the randomness is reduced, leading to a lower value of
entropy. Entropy-based methods calculate entropy
and then detect the DDoS attack by filtering the en-
tropy smaller than a threshold. Giotis et al. (2014)
defined four flow-related traffic features to calculate
entropy: source IP address (srcIP), destination IP
address (dstIP), source port (srcPort), and destina-
tion port (dstPort). When a DDoS attack occurs,
the entropies on dstIP and dstPort show a signifi-
cant decrease. Based on this phenomenon, entropy-
based calculations are periodically conducted on the
NOX controller to implement the anomaly detec-
tion algorithm. Wang R et al. (2015) proposed
an entropy-based lightweight DDoS flooding attack
detection model running in the OpenFlow switch.
The information entropy of an edge switch was
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Table 1 Global view of methods for DDoS attack detection in SDNs

Method Research Description

Entropy Giotis et al. (2014) DDoS detection by entropy on dstIP and dstPort
Wang R et al. (2015) DDoS detection by entropy of edge switches

Machine learning Braga et al. (2010); SOM-based normal or attack classification with predefined
Xu and Liu (2016) flow features

Niyaz et al. (2017) SAE-based deep learning approach for classifying different
kinds of DDoS attacks

Traffic analysis Yu et al. (2012) Traffic similarity based botnet attack detection
Wang B et al. (2015); Traffic pattern graph based DoS/DDoS inference

AlEroud and Alsmadi (2017)
IDS/IPS based Chung et al. (2013); Use Snort to classify traffic and raise anomaly alerts

AlEroud and Alsmadi (2017)
Aziz and Okamura (2017) Leverage Suricata to detect the SMTP flood attack traffic

dstIP: destination IP address; dstPort: destination port; SOM: self-organizing map; SAE: stacked auto encoder; SMTP:
Simple Mail Transfer Protocol

calculated, where each probability was estimated by
the frequency of each IP address. When the differ-
ence in value between average entropy and real-time
entropy was larger than a threshold value, DDoS
alert was triggered. The entropy-based methods
have a relatively low computation load and few limi-
tations; however, when the values of the features are
continuous, relevant information about the feature
distribution can be lost, which will lead entropy-
based methods to be prone to errors in some sce-
narios (Fiadino et al., 2015).

Machine learning based methods have been
widely used in DDoS attack detection in both tra-
ditional networks and SDNs. This kind of method
treats attack detection as a classification problem,
by learning the feature patterns to classify a newly
coming flow as an attack or benign flow. Braga et al.
(2010) introduced a lightweight method for DDoS
attack detection based on traffic flow features. A
six-tuple of features was proposed as the most likely
six features to influence the decision of whether there
was a DDoS attack in the SDN. A self-organizing
map (SOM) was used to classify the network traffic.
The six features include average of packets per flow,
average of bytes per flow, average of duration per
flow, percentage of pair-flows, growth of single-flows,
and growth of different ports. Niyaz et al. (2017)
developed a deep learning based multi-vector DDoS
detection system. They used the stacked auto en-
coder (SAE) to classify the flows into types such
as a Transmission Control Protocol (TCP), User
Datagram Protocol (UDP), Internet Control Mes-
sage Protocol (ICMP) DDoS attack, or benign flow
with 68 extracted features. Xu and Liu (2016) pro-

posed DDoS attack defense methods for victim de-
tection and post-detection, leveraging the SDN’s flow
monitoring capability. For each detection mission,
four features were selected and the SOM was used to
classify the data by the similarity of the statistical
features. Although machine learning based meth-
ods are widely used with a great success, their per-
formance typically depends on the training datasets
and selection of features.

In traffic pattern based attack detection an as-
sumption is made that there is a significant differ-
ence between the patterns in attack traffic and be-
nign traffic. Yu et al. (2012) used traffic similarity to
detect attacks from botnets, and they hypothesized
that attack traffic from a botnet has a high similarity
which is approximately equal to one, and the benign
patterns coming from different users thus have a low
similarity close to zero. Wang B et al. (2015) built
a relational graph with known traffic patterns and
their labels, in which the maximum spanning tree
was used to select features and maximum a posterior
query was applied to detect an attack. This method
is effective, inexpensive, and has low overhead. AlEr-
oud and Alsmadi (2017) proposed a Markov-based
graph model with DoS attack pattern as nodes and
their relationships as edges, in which the traffic fea-
tures were used to describe the nodes. The traffic
feature based similarity was used to find the nearest
nodes as the traffic class. However, both Wang B
et al. (2015) and AlEroud and Alsmadi (2017) con-
sidered only the features that can be extracted di-
rectly from a packet or flow content, which may not
be sufficient in most circumstances.

IDS/IPS based methods refer to those attack
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detection methods relying on popular open-source
network intrusion detection systems (IDSs) or intru-
sion prevention systems (IPSs), like Snort (Roesch,
1999) or Suricata (Albin and Rowe, 2012). The
mirroring-based network intrusion detection agent in
NICE (Chung et al., 2013) used Snort to sniff the mir-
roring port on each virtual bridge in Open vSwitch,
and sent alerts when suspicious or anomalous traffic
was detected. A scenario attack graph and an alert
correlation graph were constructed to analyze the
vulnerabilities, alerts, and traffic to select a proper
countermeasure. To reduce the false alerts raised by
Snort, NICE provided an approach to match if the
alert was related to a vulnerability. AlEroud and
Alsmadi (2017) employed Snort to label suspicious
or benign types of flows. Aziz and Okamura (2017)
leveraged Suricata to detect the Simple Mail Transfer
Protocol (SMTP) flood attack traffic and proposed
FlowIDS as a supplement to collect the anomaly traf-
fic omitted by Suricata. This method can help with
the labeling of traffic, but relies highly on third-party
tools which may cause an error propagation problem.

In this study, we combine the entropy and traf-
fic pattern analysis based methods and leverage the
merits of each method in the design of our security
mechanism. We consider not only the directly ex-
tracted features but also the latent features in con-
trast with Wang B et al. (2015) and AlEroud and
Alsmadi (2017).

3 Proposed model

Fig. 1 shows the procedures in the proposed au-
tomated feature-pattern graph based DDoS attack
detection mechanism for SDNs.

Since AlEroud and Alsmadi (2017) have proved
the feasibility of using the existing attack signature
to identify attacks on SDNs, the proposed model
takes the advantage of this assumption and jointly
uses the attack signatures extracted from traditional
datasets and the data from the SDN environment to
build the attack signatures in SDN.

A feature-pattern graph is built with the attack
signatures and is also used to identify whether an
incoming flow is malicious. The patterns are the
network status such as TCP DDoS attack or be-
nign, and the features are those who can properly
describe the status of network patterns, like fraction
of TCP flows. The number 1© lines in Fig. 1 are

SDN network
data

Traditional
dataset

OpenFlow switch

Controller

Flow
creator

Data
labeling

Traffic monitor

Traffic collector

Graph
model

Graph
based attack
detection

Counter
measure
selection

Graph
update

Fig. 1 Procedures in the proposed model

the procedures of graph model generation. The tra-
ditional datasets and data in an SDN environment
are required as the input for this part. We directly
monitor and collect the traffic packets in the SDN en-
vironment and parse them into the flow format. The
packet data in a traditional network are transferred
into the flow type by the flow creator. If the data are
not classified, we need to label the data into different
types to build the graph model. Number 2© lines are
the attack detection processes. The real-time traf-
fic packets are monitored, collected, and parsed into
flow tables and then fed into the graph-based attack
detection model. If the newly coming flow is ma-
licious, a countermeasure is selected to prevent the
SDN from a further attack. When a traffic cannot
be detected by graph-based attack detection, but the
traffic tends to be malicious, the old graph needs to
be updated and used for attack detection of subse-
quent flows (number 3© lines).

3.1 Creation of attack signatures in an SDN

To create attack signatures in an SDN, i.e., cre-
ating flows for the packets that are not in the flow
format, we first need to install the flow rules based
on the packet data from the SDN or traditional net-
work, and then label the flow-based data into dif-
ferent patterns. Since TCP, UDP, and ICMP are
the three most widely used protocols in network
communication and DDoS attacks, we typically con-
sider these three protocols in our study. A flow in
TCP/UDP/ICMP is a group of packets having the
same header fields. For TCP flows, the header fields
contain protocol, source and destination MAC ad-
dresses, source and destination IP addresses, dura-
tion time, source and destination ports, flag, and
packet size. For UDP flows, the header fields are
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similar to TCP flows except that UDP flows have
no flag. The ICMP flows do not have source and
destination ports but ICMP type and code.

Algorithm 1 shows the procedures for creating
the attack signatures in an SDN. “packets” is a list of
packets that need to be processed, “header_fields”
is the list of header fields that is predefined man-
ually for each protocol. “flows” is a hashmap with
“flow_id” (an auto increasing number from 0) as
the key and list of packets’ indices as the value.
“flowfields” is also a hashmap, where the key is
“flow_id” and the value is the list of values of header
fields. For each packet in the “packets” list, we ex-
tract the header fields and check if the field is already
in the existing flow list. If so, update the correspond-
ing list in “flows;” if not, create a new “flow_id” and
add the extracted fields in “flowfields.” After travers-
ing all the packets, the packets are classified by the
flows and stored in “flows,” and the fields of each
flow are stored in “flowfields.” The flow rules will
be installed to the switch according to the fields in
“flowfields.” “label_flow(flows)” is a function to label
the flows as different patterns if the data are not clas-
sified. The patterns of flows depend on the pattern of
corresponding packets; for example, if the majority
of packets in a flow are TCP flooding attack, then
the flow is labeled as a TCP flooding attack.

3.2 Feature-pattern graph based DDoS attack
detection

After the creation of DDoS attack signatures
in the SDN, we propose our attack detection mod-

Algorithm 1 Procedures for creating attack signa-
tures in an SDN
1: Input: packets and header_fields
2: Initialize flows = ∅

3: Initialize flowfields = ∅

4: for each packet in packets do
5: Extract header fields and store them in field_list
6: if field_list in flowfields.values() then
7: Obtain flow_id from flowfields

8: Insert index of packet into flows[flow_id]
9: else

10: Insert field_list into flowfields

11: flows[new flow_id]=[index of packet]
12: end if
13: end for
14: Install flow rules for flows in flowfields

15: label_flow(flows)

ule, which is built on neighborhood classification in
a feature-pattern graph model. The module is di-
vided into two sub-modules, i.e., graph creation and
detection engine.

3.2.1 Feature-pattern graph

Each node in our proposed graph model repre-
sents a type of DDoS attack or benign, i.e., network
patterns. The DDoS attack patterns can be divided
into three types on the basis of the protocol type, i.e.,
ICMP, UDP, and TCP. Patterns can also be classi-
fied by experience or according to the IDS alerts.
The links among the nodes are weighted, where the
weight represents the similarity between two network
patterns.

The DDoS feature-pattern graph in an SDN
is denoted as FPG = {V,E,F }, where V =

{V1, V2, . . . , Vn} is the set of nodes. Each node Vi rep-
resents a network pattern, and n is the total number
of network patterns. Each node is specified by fea-
tures, which are denoted as F = {F1,F2, . . . ,Fn}.
Fi (i = 1, 2, . . . , n) is a feature matrix of node Vi

with dimension l × k, where l is the number of sam-
ples whose pattern is Vi and k the number of different
features. E is the set of links, where eij is the link
weight between nodes Vi and Vj .

3.2.2 Link weight learning

The link weight between two nodes in an FPG
represents the feature-based similarity. The Pear-
son correlation is a widely used method in similar-
ity measurement in intrusion detection systems (Wu
et al., 2009; AlEroud and Alsmadi, 2017); however,
the Pearson correlation may not be suitable for all
the datasets. We use the Mahalanobis distance and
distance metric learning (Shen et al., 2010) to learn
the proper distance formula given a set of DDoS at-
tack signatures in an SDN.

The Mahalanobis distance between two feature
vectors is denoted by

dist2mah(xi,xj) = (xi − xj)
TM(xi − xj)

= ‖xi − xj‖2M , (1)

where xi and xj are two feature samples, and M is a
symmetric positive semi-definite d×dmatrix which is
positive semi-definite and can be factorized as PTP .
M is called the metric matrix, and metric learning
is to learn matrix M to improve the performance of
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neighbor classification for DDoS attacks.
Neighborhood component analysis is a

probabilistic-based metric learning, proposed
by Goldberger et al. (2004). For each DDoS training
sample xi, the probability of other samples being a
neighbor of xi can be calculated by

pij =
exp(−‖xi − xj‖2M )

∑
m exp(−‖xi − xm‖2M )

. (2)

The longer the distance between xi and xj , the
lower the probability of xi being the neighbor of xj .
The probability of xi being correctly classified by
other samples is denoted by

pi =
∑

j∈Ωi

pij , (3)

where Ωi is the set of all samples that have the same
network pattern as xi.

The accuracy of all samples is computed by

l∑

i=1

pi =

l∑

i=1

∑

j∈Ωi

pij . (4)

To obtain matrix M , the optimization goal is
denoted as

min
p

1−
l∑

i=1

∑

j∈Ωi

exp(− ∥
∥PTxi − PTxj

∥
∥2

2
)

∑
m exp(−‖PTxi − PTxm‖22)

.

(5)
The stochastic gradient descent can be used to

obtain matrix M .
After learning the metric matrix M , the sim-

ilarity of two attack patterns can be calculated by
Eq. (1), where xi and xj are two k-dimensional
feature-based vectors of two attack patterns Vi and
Vj , denoted as F ′

i and F ′
j respectively. The method

for calculating F ′
i and F ′

j is as follows. Taking F ′
i as

an example, for attack pattern Vi the feature matrix
can be denoted as

Fi =

⎡

⎢
⎢
⎢
⎢
⎣

f
(i)
11 f

(i)
12 . . . f

(i)
1k

f
(i)
21 f

(i)
22 . . . f

(i)
2k

...
...

...
f
(i)
l1 f

(i)
l2 . . . f

(i)
lk

⎤

⎥
⎥
⎥
⎥
⎦
, (6)

where each row represents a sample and each column
is a particular feature, l is the number of samples,
and k is the number of features.

The k-dimensional feature-based vector of at-
tack pattern Vi can be represented as

F ′
i =

[
f
(i)′
1 f

(i)′
2 . . . f

(i)′

k

]
, (7)

where the kth element f
(i)′

k is the Shannon entropy
of the kth feature on all samples that are classified
as pattern Vi, i.e., the kth column of matrix Fi in
Eq. (6).

3.2.3 Graph model update

In reality, the actual attack pattern may not
follow the pattern distribution as in the signature
dataset, which means that the FPG needs to be up-
dated with new patterns. An FPG can be updated
manually, to the effect that the administrator can
manually insert new nodes in the FPG. Another type
is to update the pattern nodes automatically, which
can be divided into local and global update.

When a new node Vnew is discovered, local up-
date is to insert the new node Vnew into the ex-
isting graph. First, we calculate the similarity be-
tween Vnew and other existing nodes, and then find
the γ nearest nodes whose distances are significantly
smaller than others. If γ is larger than one, then we
check whether the γ nearest nodes have links among
themselves, and new weighted links will be generated
between Vnew and the nodes who connect with each
other. The global update is to relearn the metric
matrix M and regenerate the entire graph. This can
consume much more time and computing resources
than the local one, but can obtain a better perfor-
mance on the subsequent attack detection.

To detect an unknown DDoS attack pattern,
i.e., a new node, both the similarity- and entropy-
based methods are used. If a new pattern of DDoS
attack occurs, the randomness will decrease, and
traffic will have a high similarity and a low en-
tropy. When a traffic group cannot be classified into
existing attack patterns, the Mahalanobis distance
based similarities in the new traffics are higher than
a threshold value, and entropy of the new traffic is
lower than a threshold, then a new type of DDoS
pattern needs to be added into the FPG.

3.2.4 Attack detection

The attack detection module is used to detect
the pattern, i.e., DDoS type or benign, of an incom-
ing OpenFlow-based flow according to the weighted
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FPG at runtime.
Algorithm 2 shows the steps in detecting the

pattern of a newly incoming flow. The algorithm
needs two inputs: one is the weighted feature-
pattern graph built in the previous part, contain-
ing the nodes, weighted links, and the feature ma-
trix for each node; the other input is the 1 × k

feature vector of the newly incoming flow, denoted
as Fnew =

[
f
(new)
1 f

(new)
2 . . . f

(new)
k

]
. The dis-

tance between Fnew and each node or distance be-
tween Fnew and each feature is stored in hashmap
“Dist.” The keys for “Dist” are the indices of nodes,
and values for “Dist” are the distance values or lists
of distances (lines 8 and 20). First, we turn the l× k

feature matrix Fi into a 1×k vector F ′
i by calculating

the entropy of each feature. By calculating the Ma-
halanobis distance between Fnew and different nodes,
we can find the minimum distance. If the minimum
is significantly smaller than other distances, which
means this method can classify the newly incoming
flow into one attack pattern, the attack pattern node
that has the minimum distance is the predicted pat-

Algorithm 2 FPG-based attack detection
1: Input: FPG: {V,E,F }; Fnew = [f1, f2, . . . , fk]

2: Initialize Dist = ∅

3: for each Fi in F do
4: F ′

i = get_entropy(Fi)
5: end for
6: F ′ = {F ′

1,F
′
2, . . . ,F

′
n}

7: for each F ′
i in F ′ do

8: dist(i,new) = dist2mah(F
′
i ,Fnew)

9: Dist[i] = dist(i, new)

10: end for
11: i = min(Dist).index
12: if Dist[i] is significantly smaller than other items in

Dist then
13: Return node Vi as the attack pattern
14: else
15: nodesnearest = [list of β nearest nodes with Fnew]
16: Dist = {key:value}
17: for each node Vj in nodesnearest do
18: for each row r in Fj do
19: f

(j)
r = [f

(j)
r1 , f

(j)
r2 , . . . , f

(j)
rk ]

20: dist(f,new) = dist2mah(f
(j)
r ,Fnew)

21: end for
22: Dist[j] = [list of top α shortest dist(f,new)]
23: end for
24: Return the smallest sum(Dist[j]), and Vj is the

attack pattern
25: end if

tern of Fnew. As shown in Fig. 2a, the distance be-
tween V1 and Fnew is significantly smaller than that
between other nodes, so the pattern of V1 is treated
as the pattern of Fnew.

V1

V2

V4

V3

Fnew

(a)

Fnew

V1

V2

V4

V3

(b)

Fig. 2 Discovering the nearest neighbor using the Ma-
halanobis distance: (a) discovering the nearest neigh-
bor; (b) discovering the two nearest neighbors

On the other hand, if the distance between Fnew

and nodes cannot properly detect the pattern, the
algorithm calculates the distance between Fnew and
the feature vector of each sample in the β nearest
nodes. On finding the β nearest nodes, we first find
the nearest node Vi, and then find (β − 1) nodes by
sorting the node similarity with Vi. For example, in
Fig. 2b, nodes V1 and V4 are two nearest neighbors of
Fnew, both having a short distance to Fnew, and the
two nodes have a high similarity. The calculation
of distances between Fnew and the feature of each
sample in nodes V1 and V4 is described in Fig. 3,
whereF1 and F4 are feature matrices of nodes V1 and
V4 respectively, and each row represents a feature
sample. We use a list nodesnearest to store the β

nearest nodes with Fnew, i.e., two nearest nodes V1

and V4 in Fig. 3. For each node in nodesnearest, we
compute the distance between Fnew and the feature
vector of each sample, and store the top α shortest
distances into Dist. For example, if the samples f1

and f2 in V1 and samples f3 and f2 in V4 have the
shortest two distances to Fnew, then

Dist={1: [dist2mah(f
(1)
1 ,Fnew), dist2mah(f

(1)
2 ,Fnew)],

4: [dist2mah(f
(4)
3 ,Fnew), dist2mah(f

(4)
2 ,Fnew]}.

We then obtain the summation of each list in Dist,
and the node with the least summation, i.e., the high-
est similarity, is regarded as the predicted pattern.
It can also work if we calculate the distances between
Fnew and the features of every node to find the most
similar one, but when the nodes and samples in each
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node are large enough, the detection will be slow,
so we choose to compute the distances between only
Fnew and β nearest nodes to ensure the efficiency of
the mechanism.

V1

Fnew

V4

Fnew

V1

V4

f11
(1) f12

(1) f1k
(1)

f21
(1) f22

(1) f2k
(1)

fl1
(1) fl2

(1) flk
(1)

...

...

...

F1

f11
(4) f12

(4) f1k
(4)

F4
f21
(4) f22

(4) f2k
(4)

fl1
(4) fl2

(4) flk
(4)

...

...

...

Fig. 3 Calculating the distances between Fnew and
each feature

After detecting the pattern of flows, the coun-
termeasures should be taken. The countermeasures
can be divided into forward, modify, or drop by the
reaction method. For example, the benign flows will
be forwarded to the target port; flows that have the
same target port at the same time will be modified
and redirected to other ports; flows that have no
predefined countermeasures will be dropped. The
countermeasures we define include: flow redirection,
flow isolation, deep packet inspection, creating filter-
ing rules, MAC address change, IP address change,
block port, quarantine, network reconfiguration, and
network topology change.

4 Evaluation

4.1 Network topology

The test scenarios are performed by simulation
to prove the feasibility and effectiveness of the pro-
posed method. Fig. 4 shows the network topology
which is created to simulate the SDN environment.
Mininet (de Oliveira et al., 2014) is used to create
a realistic virtual SDN and run example topologies
based on the Ryu controller and OpenFlow switch.
Ryu (Shalimov et al., 2013) is a component-based
SDN framework written in Python which supports
OpenFlow. The well-defined APIs can be used for
network prototyping, management, and monitor-
ing. Open vSwitch is a widely used SDN OpenFlow
switch which supports the OpenFlow protocol. The

network1 in Fig. 4 acts as a botnet, and the hosts
simulate the DDoS attack traffic by sending pack-
ets to the OpenFlow switch and Ryu controller with
a packet manipulation program Scapy (Kobayashi
et al., 2007). Network2 simulates the normal traffic.
We use the Wireshark connection monitoring system
to capture the network traffic between hosts and the
controller.

Ryu controller

Open vSwitch1 Open vSwitch2

Network1

host1
host2 host3 host4

Network2
host5

host6 host7
host8

Fig. 4 Network topology for the test scenario

4.2 Dataset and implementation

The datasets we use for evaluation contain two
parts. One is the intrusion detection evaluation
dataset (ISCXIDS2012) (Shiravi et al., 2012), called
dataset1, which contains the network traffic collected
during the time periods with DDoS attack using an
Internet relay chat (IRC) botnet. The traffic flows
of the DDoS attack are labeled as attack or nor-
mal, which are separated into two sets for training
and testing, respectively, in the experiment. Data
in dataset1 are organized in the network packet for-
mat, so we need to transfer the packet-based data
into flow-based data according to the procedure in
Section 3.1. The other part of dataset, i.e., dataset2,
is created with our test scenario shown in Fig. 4.
We generate DDoS attack traffic and normal traf-
fic at different time periods so that the traffic will
be automatically classified as attack or benign. The
dataset statistics used for training and testing are
shown in Table 2. The implementation procedures
are described as follows.

Table 2 Dataset statistics for training and testing

Type
Dataset1 Dataset2

Training Testing Training Testing

Attack 650 785 383 306 73 575 8623
Benign 278 913 147 225 68 347 9678
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1. Flow table creation
Considering the characteristics of DDoS attacks,

the attack usually lasts a certain time period, so we
need to analyze the features of traffic at different
time periods. The creation of the flow table with
flow-based data is necessary for feature extraction.
A flow table is defined as a set of flows that are
generated during the same time period, and the time
interval is set to 10 s in this experiment. According
to the generation time for packets in each flow, those
flows whose packet timestamps located in one time
slot are categorized into the same flow table.

2. Feature extraction
We define different features for DDoS attack

patterns on TCP, UDP, and ICMP, respectively.
Each flow table is turned into a 42-dimensional fea-
ture vector after feature extraction. The TCP-,
UDP-, and ICMP-based DDoS attacks contain 21,
13, and 8 features, respectively (Table 3).

3. Link weight learning and graph generation
Based on the features extracted, we use the

method proposed in Section 3.2.2 to calculate the
distance matrix M . By computing the Mahalanobis
distance between each pair of nodes, a weighted
graph is generated.

4. Attack detection
We evaluate the attack detection performance

by launching a binary class prediction, i.e., attack or
normal, and a multi-class prediction, i.e., normal or
attack based on TCP, UDP, ICMP, or a combination
of three. The binary classification uses the dataset

with binary labels to learn the metric matrix, while
multiple classification uses the dataset with multiple
labels.

Two methods are used for prediction to evalu-
ate the prediction performance, as described in Sec-
tion 3.2.4. One calculates the similarity between
newly coming flow features and each node to find
the smallest distance, abbreviated as SFN. The other
computes the similarity between new flow features
and each feature in β nearest nodes, abbreviated as
SFF; this method is more time-consuming but has
higher accuracy than the first one.

4.3 Results

4.3.1 Attack detection

We measure the effectiveness of the proposed
attack detection approach in terms of Precision (P),
Recall (R), and F -score (F ). P is the fraction of the
predicted pattern which matches the corresponding
flow, R is the fraction of the target flow’s pattern
values which are correctly predicted, and F is the
harmonic mean of P and R:

P =
TP

TP + FP
, (8)

R =
TP

TP + FN
, (9)

F =
2PR

P +R
, (10)

where TP means true positive, FP false positive, and
FN false negative.

Table 3 Features contained in the TCP-, UDP-, and ICMP-based DDoS attacks

Pattern Features

TCP-based Fraction of TCP flows, fraction of symmetric TCP flows, number of distinct source IP, entropy of source
IP, median of bytes per flow, median of packets per flow, number of distinct window size, entropy of
window size, number of distinct TTL values, entropy of TTL values, number of distinct source ports,
entropy of source port, number of distinct destination ports, entropy of destination ports, fraction of

destination ports less than 1024, fraction of flows with SYN flag, and fraction of flows with ACK flag,
fraction of flows with URG flag, fraction of flows with FIN flag, fraction of flows with RST flag, and
fraction of flows with PSH flag

UDP-based Fraction of UDP flows, fraction of symmetric UDP flows, number of distinct source IP, entropy of source
IP, median of bytes per flow, median of packets per flow, number of distinct source ports, entropy of
source port, number of distinct destination ports, entropy of destination port, fraction of destination
ports less than 1024, number of distinct TTL values, and entropy of TTL values

ICMP-based Fraction of ICMP flows, fraction of symmetric ICMP flows, number of distinct source IP, entropy of source
IP, median of bytes per flow, median of packets per flow, number of distinct TTL values, and entropy of

TTL values
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Binary class prediction and multi-class predic-
tion are launched in the attack detection procedure.
Binary classification predicts the attack or normal
pattern of a newly incoming flow. Multi-class pre-
diction represents five classes here, i.e., a normal pat-
tern with a majority of TCP flows, a normal pattern
with a majority of UDP flows, a normal pattern with
both TCP and UDP flows, a TCP flooding DDoS at-
tack, and a combination of TCP and UDP flooding
DDoS attack.

We compare our proposed method (FPG) with
three other methods on distance calculation, de-
scribed as follows. Each method launches the binary
class and multi-class prediction, while each predic-
tion computes the similarity between the flow feature
and node (SFN) and similarity between the flow fea-
ture and features of a node (SFF). Note that x and
y in each equation represent the feature vector of a
new flow and the entropy vector of each node F ′

i re-
spectively, when using the SFN method; they denote
the feature vector of a new flow and each flow in a
node respectively when using the SFF method.

1. FPG
Our proposed attack detection method is based

on a feature-pattern graph by calculating the Maha-
lanobis distance with metric learning.

2. KLD
The Kullback-Leibler divergence (KLD), also

called related entropy (van Erven and Harremos,
2014), is used to measure the similarity between two
probability distributions and is calculated by

DKL(x,y) =
∑

i

xilog
xi

yi
. (11)

The lower the value of DKL(x,y), the higher the
similarity of x and y.

3. Pearson
Pearson correlation (Wu et al., 2009; AlEroud

and Alsmadi, 2017) is a widely used similarity mea-
sure in intrusion detection, calculated by

DPearson(x,y) =
cov(x,y)
σxσy

=
E[(x− μx)(y − μy)]

σxσy
, (12)

where cov is the covariance, σ the standard devia-
tion, E the expectation, and μx the mean of x. A
higher value of DPearson(x,y) denotes a higher simi-
larity of x and y.

4. Cosine
Cosine similarity (Nguyen and Bai, 2010), cal-

culated by

Dcosine(x,y) =

∑n
i=1 xiyi

√∑n
i=1 x

2
i

√∑n
i=1 y

2
i

, (13)

is a widely used measure of similarity between two
non-zero vectors of an inner product space that mea-
sures the cosine of the angle between them. A lower
value of Dcosine(x,y) represents x and y as being
more similar.

The precision, recall, and F -score of the attack
detection are demonstrated in Figs. 5 and 6.

The results show that our proposed method gen-
erally outperforms the compared methods. The SFN
gives an imperfect result in multi-class prediction but
behaves well in binary class prediction. The reason
may be that the entropy values of the features in
the nodes belonging to the same category, i.e., at-
tack or normal, are not sufficiently distinguishable.
Almost all the compared methods with SFF have
higher precision and recall than SFN; this is because
the proposed SFF calculates the similarity of the
feature vectors of different flows, which can prop-
erly distinguish the similarity of flows. The proposed
FPG method outperforms the other compared meth-
ods considerably on multi-class prediction with SFF,
which indicates that by using the combined feature-
pattern graph with metric learning and similarity of
feature vectors, our model can better predict the pat-
tern of a new flow and can thus better detect DDoS
attacks.

4.3.2 Graph update

The other part of the experiment is to measure
the effectiveness of the updated graph model. We
add a new node by local update and global update
and measure the performance.

1. Graph before update
The feature-pattern graph generated before up-

date is shown in Fig. 7a with black nodes and edges.
Each node stands for a network pattern. Since the
data used for training contain only five different pat-
terns before graph update, the graph has five nodes,
where nodes V0, V2, V4 are in a normal pattern and
nodes V1, V3 are in a DDoS pattern. The links be-
tween two nodes represent the feature-based Maha-
lanobis distance of two patterns. Node V0 means a
normal pattern whose flows are principally in TCP
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Fig. 5 Average precision (a), recall (b), and F -score (c) of multi-class prediction
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Fig. 6 Average precision (a), recall (b), and F -score (c) of binary class prediction
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Fig. 7 Graph generated by local (a) and global (b) update

traffic, node V1 is a DDoS attack pattern with TCP
traffic, V2 and V3 represent flows with an approxi-
mately equal amount of TCP and UDP in normal
and attack pattern respectively, and V4 is the nor-
mal pattern with UDP traffic. The graph distinctly
shows the similarity and relationships of the differ-
ent nodes. The distance between nodes is noted in
Fig. 7a; the shorter the distance between two nodes,
the more similar they are. Nodes V0 and V2 are simi-
lar because they share similar features on TCP traffic
and also feature values in normal status. Nodes with
no link mean that they have pretty low similarity.

2. Graph with local update
Node V5 in Fig. 7a is a new node added to the

graph. We generate a test dataset of DDoS attacks
with UDP traffic, which is not in the existing feature-
pattern graph; so, we add a new node, i.e., V5, in the
graph. The local update measures the traffic feature
similarity of the new pattern and the existing pat-
terns to find the γ nearest nodes and establish links.
During the update, we find that only the distance
between V5 and V4 is significantly smaller than other
distances, so local update inserts only one link.

3. Graph with global update
Global update relearns matrix M in Sec-

tion 3.2.2 and recalculates the Mahalanobis distance
between nodes. The result of a global update is
shown in Fig. 7b. The global update can find the
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latent relationships and similarities between a new
node and existing nodes more accurately.

The precision, recall, and F -score of the SFF
method after various updates are shown in Fig. 8.
The three nodes in each line represent no update,
local update, and global update. We notice a minor
decline in these three values after local update; this is
because local update cannot precisely find the links
between the new node and existing nodes, which
leads to wrong prediction of a new pattern and a
decline in precision and recall values. However, af-
ter global update, the values of precision and recall
increase and go back to the values before update.
Despite the decline in values of P, R, and F after
local update, R and F are still higher than those of
the compared methods. A global update can bring
greater effectiveness, but needs more time and com-
putation. The best way to combine local and global
update in practical use is to launch local update in
real time when finding a new pattern, and to imple-
ment a global update regularly during slack hours to
guarantee effectiveness.

Precision
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F-score

No update Local update Global update
0.6
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1.0

Status
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lu

e

Fig. 8 Detection performance after graph update

5 Conclusions

In this paper, we have proposed a discov-
ery method for distributed denial-of-service attack
behaviors in SDNs using a feature-pattern graph
model. We created attack signatures adapted to
the SDN environment through flow creation with
the dataset from the traditional network and SDN
traffic. A feature-pattern graph has been modeled
based on the attack signatures, where each node rep-
resents a network pattern and weighted links denote
the feature-based similarity of the nodes. To bet-
ter depict the relationships among network patterns,
we introduced link weight learning. Distance met-

ric learning was used to learn the matrix M and
the Mahalanobis distance calculated with M was
treated as the similarity between nodes or feature
vectors. The graph model is scalable and we pro-
posed local and global update methods to insert new
nodes. To optimize the performance of FPG-based
DDoS attack detection, we also presented a model
which is a combination of two methods. One calcu-
lates the distance between the newly incoming flow
and nodes in the graph to find the nearest node; the
other computes the distances between the new flow
and features in each node. Generally, we paid more
attention to the typical and common DDoS attacks
in our work. Other types of DDoS attack such as
IP address spoofing, certain mimicry attack, attacks
based on complexity exploitation, and characteris-
tics of link-flooding and target link-flooding attacks
are not considered in this work.

Experiments have been conducted to evaluate
the performance of the proposed method. A sim-
ulated SDN environment was established to mon-
itor and collect SDN traffic. The evaluation re-
sults on two datasets demonstrated the feasibility
of the proposed method. The results of the experi-
ments demonstrated that the feature-pattern graph
based discovery method for DDoS attack behav-
iors substantially outperforms the compared meth-
ods on precision, recall, and F -score. Results from
graph update testified to the effectiveness of the local
and global update approaches. Since flooding-based
DDoS attacks are the most common kinds among all
the DDoS attacks and also easy to simulate, we typ-
ically used the datasets on flooding-based attacks.

As part of our future work, we anticipate
to improve the method in three ways to make it
effective and serviceable in practical use. The first
one is to equip the method with an automated
countermeasure selector to facilitate the selection of
countermeasures according to the traffic patterns.
The second one is to reduce time consumption
and computing resources in the metric learning
process to make attack detection more efficient.
Finally, considering the complexity of the practical
environment, besides flooding-based DDoS attacks,
various kinds of DDoS attacks should be considered.
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