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Abstract: Frequent itemset mining serves as the main method of association rule mining. With the limitations in
computing space and performance, the association of frequent items in large data mining requires both extensive
time and effort, particularly when the datasets become increasingly larger. In the process of associated data mining
in a big data environment, the MapReduce programming model is typically used to perform task partitioning and
parallel processing, which could improve the execution efficiency of the algorithm. However, to ensure that the
associated rule is not destroyed during task partitioning and parallel processing, the inner-relationship data must be
stored in the computer space. Because inner-relationship data are redundant, storage of these data will significantly
increase the space usage in comparison with the original dataset. In this study, we find that the formation of the
frequent pattern (FP) mining algorithm depends mainly on the conditional pattern bases. Based on the parallel
frequent pattern (PFP) algorithm theory, the grouping model divides frequent items into several groups according to
their frequencies. We propose a non-group PFP (NG-PFP) mining algorithm that cancels the grouping model and
reduces the data redundancy between sub-tasks. Moreover, we present the NG-PFP algorithm for task partition and
parallel processing, and its performance in the Hadoop cluster environment is analyzed and discussed. Experimental
results indicate that the non-group model shows obvious improvement in terms of computational efficiency and the
space utilization rate.
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1 Introduction

The rapid development of information technol-
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ogy has ushered in the era of big data, driven by the
spreading use of the Internet, social networks, secu-
rity, and the Internet of Things (Wang et al., 2015;
Zhang et al., 2016; Zhuang et al., 2017). Data in the
network space are being generated and stored at un-
precedented and increasing rates. The emergence
of big data has important implications for many
social agents, including industry, academia, and
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government agencies (Chen et al., 2013; Zhao et al.,
2016; Zhang et al., 2017). Big data are generated
automatically by humans, machines, and material
sources, all of which intersect and become interre-
lated in cyberspace. At present, data sources are in-
creasing rapidly, data are being renewed and updated
more frequently, and the scale of the data available is
expanding inexorably. However, owing to the prob-
lems of data sparsity, traditional technologies and
methods are inadequate for effective and quick data
acquisition requested by a specific user. The contra-
dictory situation therefore arises that we have access
to a massive amount of data, yet there is a lack of
knowledge.

Three major types of traditional algorithms
have been derived from the association rule min-
ing algorithms: the Apriori algorithm (Agrawal and
Srikant, 1994), the frequent pattern (FP) algorithm
(Han et al., 2000), and the Eclat algorithm (Zaki,
2000). However, a large number of candidate item-
sets have been generated by the iterative processes in
the Apriori and Eclat algorithms. The input/output
(I/O) overhead increases exponentially with the in-
crease in computation as a result of multiple scans of
datasets. Frequent pattern mining is the core algo-
rithm of association rule mining and determines the
frequent itemset from the itemset of the frequency
variable. The FP algorithm follows the method of
FP-growth, without generating candidate patterns.
Only two scans of the database are required by the
FP algorithm. The concealed relationship in the
dataset can be identified from the frequent item-
set. Nevertheless, as the dataset grows, a commen-
surately large memory space is required to build the
large FP-tree.

Traditional algorithms are unable to meet the
requirements of big data, because the generation
of such data has placed increasing demands on FP
mining. Li et al. (2008) proposed the parallel fre-
quent pattern (PFP) mining algorithm, which can
perform processing using the MapReduce model in
the Hadoop platform. The transaction dataset is re-
organized by the PFP algorithm group list, decom-
posing the data and allowing them to be addressed by
parallel processing in cluster computing. However,
to ensure that the associated rule is not destroyed
during task partitioning and parallel processing, the
inner-relationship data must be protected. Because
redundant storage of this data is required, the space
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usage will increase significantly, in comparison with
the original dataset.

In this study, we present the non-group paral-
lel frequent pattern (NG-PFP) mining algorithm for
task partition and parallel processing in detail, and
analyze and discuss its performance in the Hadoop
cluster environment. Three MapReduce processes
are required in the NG-PFP algorithm, the key idea
being that the local FP-tree is built on the basis
of the global frequent item list (F-list). This en-
sures that the inner-relationship between the fre-
quent items will not be changed when the task shard
is processed on different machines. Our algorithm
differs from the PFP algorithm in that PFP is re-
solved in the transaction database of the group list
(Section 3.2). If the transaction data contain the
same items that exist in different groups, those trans-
action data will be redelivered to multiple groups in
whole or in part. Conversely, in the NG-PFP algo-
rithm, the original transaction database is decom-
posed and run by the FP-growth algorithm. Hence,
we can eliminate the grouping, and there is no longer
a need to resolve the transaction dataset in multiple
redundant parts.

The NG-PFP algorithm has two additional ad-
vantages. First, in contrast with the PFP algorithm,
the non-group mechanism can reduce the redundant
data during the process of the algorithm. Second,
task partitioning is related to the size of the task,
and does not strongly depend on the group list.

For the small cluster test environment, we used
the WebDocs, a real-life huge transactional dataset
(Lucchese et al., 2004), as the test set to evaluate the
computing space occupancy rate and computational
efficiency. We used nine machines as the test environ-
ment to run the association rule mining algorithm.
The results showed that the processing redundancy
data decreased from 1.43 GB to 0.94 GB.

2 Related work

In the era of data explosion, due to the multi-
source, massive, heterogeneous, and dynamic char-
acteristics of application data involved in a dis-
tributed environment, the traditional serial algo-
rithms (Agrawal and Srikant, 1994; Srikant and
Agrawal, 1996; Han et al., 2000; Zaki, 2000, 2001b;
Agarwal et al., 2002; Wang and Han, 2004; Siddiga
et al., 2017) are no longer able to meet the needs of
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data mining. Hence, dealing with problems of big
data with the parallel association algorithm has be-
come a necessary research task. Some traditional
parallel algorithms (Zaki, 2001a; Cong et al., 2005;
El-Hajj and Zaiane, 2006) provided a good theoret-
ical support for large data processing. However, the
traditional parallel algorithms cannot directly deal
with big data. In big data, the processing platform is
based on key-value databases. Key-value databases
are constituted as a simple data model and data are
stored corresponding to key-values. Therefore, tradi-
tional parallel algorithms cannot meet the challenges
on the categories and scales created by big data.

di-Jorio et al. (2009) proposed a paralleled grad-
ual itemset extraction (GRITE) algorithm, which
is based on the linear-time closed itemsets mining
(LCM) algorithm; they found that the former showed
a linear growth of mining time and that it is appli-
cable to complicated datasets. Liu et al. (2015) pro-
posed the parallel mining method, which can be used
for a cloud computing platform. On the compute
node resource allocation problems, considering exe-
cution efficiency and load balancing, Lin and Chung
(2015) proposed FLR-Mining, which is capable of
determining the appropriate number of computing
nodes automatically and achieving better load bal-
ancing compared with existing methods. Compared
with the traditional serial algorithms, parallel algo-
rithms can solve the problem of limited memory and
effectively improve the performance.

Currently, big data processing depends mainly
on parallel programming models like MapReduce,
which provide a cloud computing platform of big
data services for the public. Some research (Yang
et al., 2010; Li et al., 2012; Riondato et al., 2012)
focuses on improving the Apriori algorithm based
on the MapReduce model. Lin et al. (2012) pro-
posed three algorithms to investigate effective imple-
mentations of the Apriori algorithm in the MapRe-
duce framework. Other research (Zhang et al., 2013;
Zheng and Wang, 2014; Ge et al., 2017) focuses on
enhancing the Eclat algorithm based on the MapRe-
duce model.

In the relational schema, the Apriori algorithm
is a typical functional dependency (FD), through
the data of frequent model expressing the relation-
ship. However, in the real big data environment,
problems often arise concerning inconsistent data or
semantically related pattern recognition problems.
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Caruccio et al. (2016) extended FD definitions with
the term relaxed functional dependencies (RFDs).
Caruccio et al. (2017) determined a proper distance
threshold for a given relaxed FD holding over the
entire database. Kruse and Naumann (2018) pre-
sented a novel and highly efficient algorithm, Pyro,
to discover both approximate FDs and approximate
unique column combinations. Berti-Equille et al.
(2018) defined a notion of genuineness and proposed
algorithms to compute the genuineness score of a dis-
covered FD. This can be used to identify the genuine
FDs within the set of all valid dependencies that
hold on the data. Huhtala et al. (1999) presented
an efficient algorithm to find functional dependen-
cies from large databases, which respects database
attribute values and partitions the rowsets. In ad-
dition, Mandros et al. (2017), Bauer et al. (2018),
and Caruccio et al. (2018) considered the problem of
discovering relaxed functional dependencies; for ex-
ample, the Apriori and Eclat algorithms depend on
the number of data items, and need multiple itera-
tions, thus increasing the computational complexity
in the MapReduce frame.

Li et al. (2008) implemented the conventional
FP algorithm using the MapReduce method, and
achieved algorithm parallelism which not only di-
vides a large dataset into many smaller sub-tasks,
but also processes multiple sub-tasks concurrently.
Yu et al. (2007), Zhou et al. (2010), and Yang et al.
(2016) considered the problem of load balance; they
presented balanced parallel FP-growth algorithms
that are based on the PFP algorithm and improved
parallelization, and thereby improved the perfor-
mance. Xia et al. (2013, 2014) used MapReduce to
implement the parallelization of the FP-growth al-
gorithm, thus improving the overall performance of
frequent itemset mining. Deng and Lou (2015) pre-
sented a distributed SPFP algorithm based on the
Spark framework and improved the FP-growth algo-
rithm. However, these parallel FP-like algorithms es-
tablish a group list (Q-list) after obtaining a frequent
patterns list, and redeliver transaction data followed
by a Q-list. Meanwhile, in the processes of task par-
titioning and parallel processing, the associated rule
must not be destroyed and a great amount of redun-
dant data are needed to protect inner-relationships
between sub-tasks, thus leading to a larger storage
space compared with the original dataset.

Unlike the aforementioned research, we present
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the non-group PFP (NG-PFP) mining algorithm in
the MapReduce framework, in which we focus on
cancelling the grouping mechanism rather than reor-
ganizing transaction data based on a group list.

3 Problem statement

Mining out all the frequent patterns is a main
challenge in association rule mining. In this study,
we are concerned with minimum support, because it
could control the scope for the FP set. The FP prob-
lem is defined below. Let I = {i1,ia,...,0,} de-
note an itemset and D a transaction dataset, where
each transaction ¢ is an itemset (¢ C I). Each
transaction has a unique identifier TID. If X C ¢,
transaction ¢ includes a subset X of I. The asso-
ciation rule is an implication from X = Y, where
X cIl,Y CI and XNY. N is the total num-
ber of itemsets. A is an itemset and A C I; when
support(A4) = A/N, support(A) > e (the minimum
support) and A is a frequent pattern set.

3.1 Missing pattern problem

In a big data environment, the process of FP
mining is conducted using the MapReduce model.
In this model, a heavy task is decomposed into
many sub-tasks, after which parallel processing is
performed to obtain the result that combines all an-
swers for the sub-tasks. The FP algorithm is differ-
ent from the Apriori algorithm in the MapReduce
model of parallel processing. Given a large number
of candidate sets and multiple scans at the database
conducted via the Apriori algorithm, the association
rules and FPs will not miss even the random sub-
tasks. However, the FP algorithm obtains the FP
sets by scanning the database only twice; the FP and
association rules are compressed in the global FP-
tree. When random decomposition of heavy tasks is
performed using the FP algorithm in the MapReduce
model, some FPs may not be identified.

Assume that the transaction database is shown
in Table 1 and that the minimum support threshold
value is three. We can obtain the frequent item count
by first scanning the database. According to the def-
inition of frequent items and assumptions, frequent
items should meet the conditions in which the fre-
quent count is no less than three. The frequent-list
(F-list) and FP-tree for Table 1 are shown in Fig. 1.
By following the FP algorithm, we can obtain the

FP-tree by referring to the F-list and performing
a second scan of the database. Then the transac-
tion database is decomposed into three shards, i.e.,
<f, ¢, a, m, p> and <f, ¢, a, b, m>, <f, b> and

<c, b, p>, and <f, ¢, a, m, p> (Table 2).

Table 1 Transaction dataset

TID Original dataset
100 {f, a, ¢, d, g, i, m, p}
200 {f, a, b, ¢, i, m, o}
300 {b, £, b, j, o}
400 {b, ¢, k, s, p}
500 {a, f, ¢, e, p, m, n}

Table 2 Shard transformation data

Shard ID

Transaction

Shard 1 {f, ¢, a, m, p} and {f, ¢, a, b, m}
Shard 2 {f, b} and {c, b, p}
Shard 3 {f, ¢, a, m, p}

f

Fig. 1 Frequent-list and FP-tree for Table 1

The local frequency counts for item f are 2, 1,
and 1. Although the global frequency count of f is 4,
which is greater than the minimum support thresh-
old (¢ = 3), the local frequency count is less than
the minimum support threshold. Given that the fre-
quent items are distributed in the different shards,
thus making the local frequency count less than the
threshold, the system may be deemed having no fre-
quent items in the local shard. Therefore, the fre-
quency pattern f will probably be missing in sub-task
processing.
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3.2 Parallel frequent pattern algorithm

The PFP algorithm performs paralleled compu-
tation with a three-phase MapReduce in five steps as
follows:

1. The transaction dataset is separated into
shards, which are stored on multiple computers.

2. Start to compute the count for frequent item-
sets in the transaction dataset, define the F-list, and
then sort by the count.

3. The frequent items in the F-list are grouped
into @ groups, and this new list is called the Q-list.
Each group of frequent items has a unique group
identifier (gid). The grouping process requires a
small amount of calculation, so the process is com-
pleted on a single machine.

4. Next, the Q-list is partitioned, and the local
FP-tree in each task is formed, followed by the FP
mining of the sub-tasks.

5. Combining and de-weighting are performed
to obtain the full set of FPs.

The PFP algorithm process is shown in Fig. 2.
In this process, step 4 is considered the most critical
step. The transaction dataset shown in Fig. 1 is di-
vided into three groups: <Groupl: f, ¢c>, <Group2:
a, b>, and <Group3: m, p>. The PFP grouping
strategy performs horizontal sharding of the conven-
tional FP-tree and then duplicates and migrates the
transaction data according to the group list. There-
fore, no frequent items will be omitted during the
FP mining process as a result of the local frequent
items support being less than the minimum thresh-
old value. Meanwhile, the sharded mining tasks
guarantee that the local transaction data are less
than the original data, thus facilitating parallel pro-
cessing and improving mining efficiency. However,
some problems may arise in step 4 of the PFP al-
gorithm. In particular, parallel processing on the
basis of the group list may achieve breakthrough
improvements in time validity, but can also lead
to wasted space. For example, in one transaction
data <f, c, a, b, m, p> are recognized as three parts
<f, ¢, a, b, m, p>, <f, ¢, a, b>, and <f, ¢>, and
then assigned to three different groups: <Groupl:
f,c,a, b, m, p>, <Group2: {, ¢, a, b>, and <Group3:
f, ¢> (Fig. 3). Although step 4 has been cut via the
hash table, it does not solve the essential problems
related to the wasted space. Assuming that each let-
ter takes a unit space, <f, ¢, a, m, p> occupies five
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unit spaces, replicated and assigned to three different
groups as described above. Groups 1, 2, and 3 take
up to 2, 3, and 5 unit spaces, respectively, adding
up to 10 unit spaces. Hence, after decomposing the
data, the space occupancy rate becomes two times
larger than the original data. With the increase in
the number of groups and length of the transaction
data, the space occupancy rate becomes larger than
the original data. In other words, we have to reserve
a space that is several times larger than the big data
for the association rule mining process, which is not

reasonable.
Step3:
grouping items
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Fig. 2 Parallel frequent pattern algorithm process
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Fig. 3 Parallel frequent pattern data transformation

On the other hand, the MapReduce computer
system in Hadoop first saves data in the computer
and then processes the computation. Hence, there
are multiple data migrations in the sharding process,
which in turn can reduce computation efficiency.
Therefore, as we have considered, we may use a new
algorithm based on conditional pattern bases to per-
form parallel processing without grouping the group
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list. This method does not generate redundant data
and ensures that frequent items are not omitted in
the algorithmic process.

4 Non-group parallel frequent pattern
algorithm

The FP algorithm has two main steps: con-
structing the FP-tree and discovering the conditional
pattern base, and then mining the FPs using the FP-
growth algorithms. The FP-tree contains the fre-
quent item count and simultaneously maintains the
inner-relationship between data. In two instances,
the screening is reduced using the minimum sup-
port threshold in two main steps. The first is when
screening is performed to reduce the infrequent items
at the beginning of the created F-list. The second is
when screening is performed to reduce the infrequent
items in the sequence. Although the PFP algorithm
uses the hash function mapping relationship to en-
sure that the local and global frequency counts are
consistent, it will result in a large amount of gen-
erated redundant data. Therefore, we propose the
NG-PFP algorithm based on a conditional pattern.

Three MapReduce processes are required in the
NG-PFP algorithm, and determining the global F-
list is the first step in this procedure. The key idea
is that the local FP-tree is built on the basis of the
global F-list, because we can ensure that the inner-
relationship between the frequent items will not be
changed after the task shard is processed on differ-
ent machines. Hence, we can eliminate the grouping,
and there is no longer a need to build the local F-list.
While screening, we can use the minimum support
threshold to reduce the infrequent items in the re-
ducing stage (not in the mapping stage), because
the dataset becomes global after the reducing stage.
The process of the NG-PFP algorithm is shown in
Fig. 4.

1. The global F-list is computed, and transac-
tion data sharding is performed to obtain the fre-
quent computation of all itemsets via MapReduce.
The F-list obtained is presented in descending order.

2. The conditional pattern bases of all items are
obtained, after which the local FP-tree is formed on
the basis of the global F-list. Then the conditional
pattern bases of all items are identified using the
bottom-up method.

3. The full set of frequent items is obtained, and
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the infrequent items in conditional pattern bases are
eliminated as per the minimum threshold. Using the
FP-growth approach, the full set of frequent items
is obtained on the basis of the conditional pattern
bases of infrequent items as a minimum threshold.

§

g z
' 5 z
Step 1: obtain = g
frequent-list 2 g
| - i
el
: 8 >
Step 25 pbtain ;5)) © N ggg
conditional b= — 822
pattern base = © Y% EcS
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I z
Step 3: Map Reduce ®
: 2T CPU 3CPU 35
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reduction & 8_%% CPU CPU £
aggregating GE,S o % _E
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Fig. 4 Process of the non-group parallel frequent
pattern (NG-PFP) algorithm

Based on the FP algorithm theory, the main
preconditions for FP mining are the F-list and the
conditional pattern base. In Section 4.1, we discuss
the process of obtaining the F-list in the MapReduce
model. The sub-algorithm used to achieve the con-
ditional pattern is discussed in Section 4.2. Finally,
the full FP mining process is discussed in Section 4.3.

4.1 F-list count algorithm

Obtaining the F-list is one of the important pre-
conditions for the F-list count algorithm; therefore,
the first step is to immediately obtain the F-list. In
the MapReduce model, we can improve the Word-
Count method for the solution to the F-list. Given
that the F-list is constituted mainly by the one-
dimensional (1D) itemset and frequency count, each
item can be viewed as a single word.

The computation of the frequent item count is
conducted using MapReduce, which uses a key-value
pair. Here the 1D itemset is regarded as the key,
and the frequent count is the value. When the item
appears in the transaction data, the value should
be “1,” wherein a; is the item of the transaction
Note that a;
appears in multiple transaction data, forming multi-

data and 7T; the transaction dataset.

ple instances of “1.” Then these instances of “1” are
combined to obtain the frequency count of a; in all
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transaction datasets. The F-list count algorithm is
described in Algorithm 1, in which S(a;) is the set of
the items appearing in all the transaction data and
the sum is the frequency count.

Algorithm 1 F-list count algorithm
Procedure:

1: Mapper(key, value = T5)
2: for each item a; in T; do
3:  Call Output(< a;,'1>)
4: end for
Procedure:
1: Reduce(key = a;, value = S(a;))
2: Count < 0
3: min_support < €
4: for each item “1” in S(a;) do
Count < Count+1
if Count > min_support then
Call Output(< null, a; + Count >)
else
Continue
10: end if
11: end for

In the process of frequency counting, data are
cut using the minimum threshold, which reduces the
amount of data that must be processed, thereby im-
proving processing efficiency. Upon completion of
the frequent item count, we identify the values in de-
scending order according to the frequency counting
that matches the basic requirements of the FP algo-
rithm. This part is needed to construct the FP-tree.

4.2 Conditional pattern algorithm

According to the FP algorithm theory, the con-
ditional pattern is one of the main basic factors
that are needed for FP mining. The local FP-
tree is created, followed by the global F-list, which
does not change the conditional pattern. In other
words, the inter-relationship between itemsets will
Assuming that the data dis-
tribution is as shown in Table 2, through the F-
list count algorithm, we can easily obtain the F-
list:<f:4, c:4, a:3, b:3, m:3, p:3>.

The local frequent count should not affect the
item order, because the global F-list already con-
forms to the item order in descending order. For
example, in shard 2, the local frequency count for
item “b” is two, and its global frequency count is
three. However, the local frequency count for item “f”

not be converted.
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is one, but the global frequency count is four. Based
on the rule of the FP-tree, which does not con-
sider the global F-list, item “b” should be in front
of item “f” in descending order. This means that
item “b” is the conditional pattern of item “f,” which
does not conform to the global data situation, thus
damaging the relationship between itemsets. There-
fore, the process of creating the local FP-tree should
follow the global F-list item order. The local FP-
trees for the three shards are shown in Fig. 5. In
shard 2, the conditional patterns of item “b” are <f>
and <c>, which are the same as in the global data
situation shown in Fig. 1.

f,c,am <f,b>
hard 1tfrnhm | Shard 2 }_<C\W

Frequent-listI

f o 4=
c 4-4

a 3.

b | 3.4 TN |-
m 3-1. __________
p | 3]

Fig. 5 Local FP-trees for Table 2

The conditional pattern algorithm is based on
the reversed order of FP-growth, that is, according
to the F-list bottom-up mining. The first item is “p,”
followed by “m,” “b,” and so on, until item “f.” We
consider item “p”
the FP-tree, we obtain the conditional patterns of
item “p,” which are <f:1, c¢:1, a:1, m:1>, <c:1, b:1>,
and <f:1, c:1, a:1, m:1>. The conditional pattern

as an example. After generating

of each shard can be incorporated in the reducing
stage. This allows us to obtain the provisional con-
ditional patterns of item “p,” which are given by
<f:2, ¢:3, a:2, m:2>. The conditional pattern al-
gorithm is described in Algorithm 2.

At this stage, we obtain the provisional condi-
tional patterns because we do not abridge the infre-
quent items in the conditional pattern. Neverthe-
less, we are not prepared to perform pruning at this
stage, because we assume that there are many ma-
chines that can be used in the reduction process in
the big data environment. Using the shard ID as
the key in both the mapping and reducing stages,
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the conditional patterns of the same items can be in
different machines performing the reduction process.
In other words, the provisional conditional patterns
of an item are not integrated in the global transition
dataset. If we cut the infrequent item out of the
provisional conditional patterns, we can lose the op-
portunity to identify the FP or obtain the incorrect
results. Therefore, simplification and the complete

FP mining process are performed in the next phase.

Algorithm 2 Conditional pattern algorithm
Procedure:

: Mapper(key, value = T5)
: Load Shard _list
: for each T; in Shard ID do
Call Output(< Shard ID,T; >)
end for

Procedure:
Reduce(key = Shard 1D, value = DBr,ocal)
Load F_list
FPtreer,ocal < clear
Define and clear conditional pattern: CP
for each T; in DBr,oca1 do

Call CreateFPtree(FPtreerocal, T3, F_list)
end for
for each a; in FPtreer,ocal do

CP,, < CreateCP(FPtreerocal, a;)

Call Output(< null, a; + CP,, >)
: end for

=
= o

4.3 Complete frequent pattern algorithm

Frequent patterns and conditional patterns exist
in the following relationships:

Frequent Pattern
= Z(Conditional_Pattern U Frequent Item).

(1)

In Section 4.2, we obtained the provisional con-
ditional patterns using the MapReduce model. How-
ever, we also need to obtain the complete FP by fur-
ther processing the temporary conditional patterns.
The process is divided mainly into two stages: the
first stage is incorporating all the temporary con-
ditional patterns and then deleting the infrequent
items in the temporary conditional patterns using
the minimum threshold, and the second stage is us-
ing the final conditional pattern and descending or-
der in the F-list to revive the complete FP for each
itemset.

Discovering the final conditional pattern and
mining the complete FP needs to use the MapRe-
duce model once. Therein, the item is the key and
the temporary conditional pattern is the value for
each key. In this way, we ensure that the tem-
porary conditional patterns of the same item are
distributed into the same reduction process. We
consider item “m;” although item “m” is processed
in a different mapping stage, because the key is
equal to the item, all the temporary conditional
patterns (<f:1, c:1, a:1, b:1>, <f:1, ¢:1, a:1>, and
<f:1, ¢:1, a:1>) of item “m” will be distributed in the
same reducing stage (Fig. 6). The global temporary
conditional pattern of item “m” is <f:3, ¢:3, a:3, b:1>,
which is achieved by combining <f:1, c:1, a:1, b:1>,
<f1, c¢:1, a:l>, and <f:1, c:1, a:l>. Owing to
<f:3, ¢:3, a:3, b:1>, we can obtain the global tem-
porary conditional pattern for item “m,” and then
delete the infrequent item <b:1> using the mini-
mum threshold. In doing so, we obtain the final
conditional pattern. Without the deletion step, a
problem similar to that in the Apriori algorithm will
appear in the process of mining, thus resulting in a
large number of candidate sets.

Therefore, we can achieve the complete FPs us-
ing the recursive method, which can then be used to
obtain the final conditional patterns and descending
order of each item. We continue taking item “m”
as an example. The final conditional pattern base
of “m” is <f:3, ¢:3, a:3>, from the global FP-tree
or all the local FP-tree by item “m” (Fig. 7). The
complete FP mining process of item “m” is shown in
Fig. 8. The FP mining by item “m” is the descending
order from “f” to “m” (f+—c<—a<m). Hence, following
Eq. (1), we can obtain the 1D FPs of item “m,” which
are <am:3>, <cm:3>, and <fm:3>. Next, we con-
sider obtaining the conditional pattern bases of two-
dimensional (2D) items (“am,” “cm,” and “fm”) and
the FPs. The conditional pattern base of “fm” is null;
thus, we keep computing for “am” and “cm,” whose
FPs are <cam:3>, <fam:3>, and <fcm:3>. In the
same way, the conditional pattern bases of “fcm” and
“fam” are null; we just have to think about the condi-
tional pattern base of “cam.” Finally, the FP of the
three-dimensional (3D) “cam,” which is <fcam:3>,
is achieved. We also obtain the complete FPs of
item “m,” which are <am:3>, <cm:3>, <fm:3>,
<cam:3>, <fam:3>, <fcm:3>, and <fcam:3>. The
complete FP algorithm is described in Algorithm 3.
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Fig. 6 Complete frequent pattern mining by the MapReduce process
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Fig. 8 Process of complete FP mining for m

The NG-PFP algorithm can determine the
complete FPs using the MapReduce model. Divid-
ing by the task size and reversing the traditional
grouping model can solve the problem of data redun-
dancy and reduce the overhead of data migration.

Procedure:
1: Mapper(key, value = a + CP,)
2: for each a; in a do
3: Call Output(< a;, CPq4,; >)
4: end for
Procedure:
1: Reduce(key = ai, value = Merge(CP,, ))

2: Define and clear complete frequent pattern: CFP
3: min_support < €
4: for each a; in Merge(CP ) do
5: for each item in CP,, do
6: if Count > min_support then
7: Continue
8: else
9: Delete item from CPy,,
10: end if
11 end for
12: end for
13: for each a; in CP,,; do
14:  CFPg, - CreateCFP(CP,, ,a:)
15: Call Output(< null, a; + CFP,, >)
16: end for

5 Evaluation

Three factors must be considered in perform-
ing data mining in a big data environment, i.e.,
correctness of the results, time validity required by
the computing process, and the cost of computing
space. We used nine machines with Intel Core i5-
4200M QuadCore 2.5 GHz CPU and 8.00 GB RAM.
All the experiments were performed on the Ubuntu
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14.04 OS with Hadoop 2.0 and JDK 1.7.0 for per-
forming the related algorithm, one master node, and
eight slave nodes.
test environment, we used WebDocs, a real-life huge
transactional dataset (Lucchese et al., 2004), as the

Because of the smaller cluster

test dataset for evaluating the computing space occu-
pancy rate and computational efficiency of the PFP,
improved PFP (IPFP), and NG-PFP algorithms.

First, we considered the correctness of the re-
sults. Both the PFP and NG-PFP algorithms used
the FP-growth method (Han et al., 2000) for frequent
pattern mining. PFP is generally mined according
to conditional pattern bases and the global FP-tree,
while the NG-PFP algorithm adopts all local FP-
trees contained in the mining item. For the mining
item, the paths by the global FP-trees and all the
local FP-tree of this item should be consistent, so we
obtained the same conditional pattern bases. In the
experimental results, both the PFP and NG-PFP al-
gorithms obtained consistent and correct frequency
patterns.

Then we tested the PFP and IPFP algorithms
with an increase in the number of groups. The com-
puting space occupancy rate gradually increased and
the computational efficiency was also affected. In
this study, the PFP and IPFP algorithms strongly
depend on the group list. We found that the per-
formances of the PFP and IPFP algorithms were
affected by the number of groups. The maximum
cost occurred when the number of groups is equal to
the number of itemsets. However, for the NG-PFP
algorithm, the results of the computing space uti-
lization rate and computational efficiency were con-
sistent (Figs. 9 and 10). Hence, compared with the
PFP and IPFP algorithms, the computation cost of
the NG-PFP algorithm is relatively manageable.

Next, we examined the shard datasets and ob-
served the increase in the amount of data, computing
space occupancy rate, and computational efficiency
of the NG-PFP, PFP, and IPFP algorithms. The
results for the three algorithms are shown in Figs. 11
and 12. The NG-PFP algorithm significantly im-
proved space utilization in the second phase of the
MapReduce process but increased the amount of
temporary data in the third phase. Overall, the NG-
PFP algorithm can improve the computing space oc-
cupancy rate by 32%-37%.
in three aspects: distribution of the data itself, the
number of items, and the length of the transaction

The main reason lies
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dataset. In other words, data distribution is more
spread out if the number of items is higher and the
length of transaction data is longer. Hence, the
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NG-PFP algorithm is more advantageous than the
PFP algorithm. On the other hand, the gap in
the computing efficiency between these algorithms
is not very obvious. The main reason for this may
be the presence of relatively small datasets, in which
the cluster distributions are relatively concentrated.
However, we believe that the NG-PFP algorithm is
reduced by the grouping and the group of data migra-
tion is reduced, which improves computing efficiency
to some extent.

6 Conclusions

In this study, we have analyzed the main
problem of PFP algorithm frequent item omission
and the main reason for data redundancy caused
by grouping in the PFP algorithm. The solution
process of complete frequent itemsets in the FP
algorithm was to find the conditional pattern bases
of the itemsets. To do so, we proposed an NG-PFP
algorithm based on the conditional pattern bases.
This algorithm controls the sequential structure
of the local FP-tree using the global F-list, and
therefore obtains the conditional pattern bases of
all frequent items using the MapReduce model.
The algorithm then achieved dimension reduction
against conditional pattern bases through the
minimum threshold and obtained the complete
frequent itemsets. Using the proposed method,
the item grouping process can be avoided, and the
data redundancy caused by multiple allocations
was reduced. The NG-PFP algorithm, based on
the conditional pattern bases, also reduces the
required computing space and the consumption cost
of parallel processing associated with data mining.
In future work, we aim to study the distribution of
complex data clustering for further verification.
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