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Abstract: Nonlinear oscillators and circuits can be coupled to reach synchronization and consensus. The occurrence of complete 
synchronization means that all oscillators can maintain the same amplitude and phase, and it is often detected between identical 
oscillators. However, phase synchronization means that the coupled oscillators just keep pace in oscillation even though the 
amplitude of each node could be different. For dimensionless dynamical systems and oscillators, the synchronization approach 
depends a great deal on the selection of coupling variable and type. For nonlinear circuits, a resistor is often used to bridge the 
connection between two or more circuits, so voltage coupling can be activated to generate feedback on the coupled circuits. In this 
paper, capacitor coupling is applied between two Pikovsk-Rabinovich (PR) circuits, and electric field coupling explains the po-
tential mechanism for differential coupling. Then symmetric coupling and cross coupling are activated to detect synchronization 
stability, separately. It is found that resistor-based voltage coupling via a single variable can stabilize the synchronization, and the 
energy flow of the controller is decreased when synchronization is realized. Furthermore, by applying appropriate intensity for the 
coupling capacitor, synchronization is also reached and the energy flow across the coupling capacitor is helpful in regulating the 
dynamical behaviors of coupled circuits, which are supported by a continuous energy exchange between capacitors and the in-
ductor. It is also confirmed that the realization of synchronization is dependent on the selection of a coupling channel. The ap-
proach and stability of complete synchronization depend on symmetric coupling, which is activated between the same variables. 
Cross coupling between different variables just triggers phase synchronization. The capacitor coupling can avoid energy con-
sumption for the case with resistor coupling, and it can also enhance the energy exchange between two coupled circuits. 
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1  Introduction 
 

Analog circuits can be built to detect and analyze 
the outputs of many nonlinear dynamical systems 
(Ikezi et al., 1983; Timmer et al., 2000; Kiliç et al., 
2002; Hanias et al., 2006; Muthuswamy and Chua, 
2010), which can generate periodic and chaotic series. 
For example, neural circuits (Davison and Ehlers, 

2011; Adesnik et al., 2012; Ren et al., 2017; Zhang et 
al., 2018a) can be designed to reproduce the main 
dynamical properties of electrical activities in an 
isolated neuron and coupled neurons. The neural 
network of circuits can be effective in investigating 
the collective behaviors of a nervous system. Non-
linear analysis provides reliable methodologies for 
signal processing and decoding of information. The 
circuit equations can be described when electric de-
vices are connected to build any oscillatory circuit 
according to Kirchhoff’s law. Furthermore, scale 
transformation is applied to obtain dimensionless 
dynamical systems, so a reliable algorithm can be 
used to find numerical solutions for the variables, and 
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then feasible procedures (Andrievskii and Fradkov, 
2004; Nazzal and Natsheh, 2007; Schöll and Schuster, 
2008; Wang et al., 2012, 2015; Guo et al., 2018) can 
be activated for target control. 

Synchronization can be triggered when an ap-
propriate coupling is applied between two or more 
agents, and it is thought of as a class of cooperation 
and competition via exchange of energy flow. For 
multi-agent systems and a network of oscillators, 
internal cooperation and external forcing (periodic or 
even noise) (Qin et al., 2014; Ma et al., 2015) can 
enhance the realization of consensus in dynamical 
behaviors such as amplitude and phase. An isolated 
circuit generates a finite signal in amplitude and even 
chaotic circuits can generate a variety of signals with 
frequency differences. Nonlinear circuits can be 
coupled to enhance the power of outputs, and syn-
chronization based on chaotic circuits has potential 
applications in secure communications (Wu and Chua, 
1993; Boccaletti et al., 1997; Zaher and Abu-Rezq, 
2011). Some researchers regard the nervous system as 
a complex network of integrated circuits, and each 
neuron is thought of as an effective nonlinear circuit 
for signal processing. Electric synapses and chemical 
synapses (Eccles, 1982; Bennett, 1997, 2000; Kopell 
and Ermentrout, 2004; Song et al., 2015) play im-
portant roles in receiving and propagating signals. 
Gap junction coupling (Bennett, 1997; Song et al., 
2015) is often used to investigate the electrical re-
sponse between neurons connected with electric 
synapses, and even most biological researchers argue 
that neurons should be considered as a chemical 
synapse connection. Indeed, a gap junction is the 
same as voltage coupling via a resistor, which can 
consume certain energy during signal processing and 
propagation. As a result, the power consumption of 
coupling resistors can be very large when millions of 
neurons are connected via complex paths or links. 
Chemical synapse coupling (Balenzuela and García- 
Ojalvo, 2005; Li et al, 2007; Burić et al., 2008) de-
pends on the diffusion of neurotransmitters, and the 
cost of Joule heat on the coupling resistor is removed; 
therefore, it provides important guidance for circuit 
synchronization.  

It is well known that a resistor connection just 
generates voltage coupling and the difference be-
tween output voltages from the nonlinear circuits 
bridged by a resistor can induce time-varying feed-

back on each circuit by applying an external stimulus. 
Indeed, when a capacitor is used to bridge a connec-
tion between two nonlinear circuits, the outputs from 
each circuit can charge the plates, and the distribution 
of electric field in the capacitor will be changed. As a 
result, the exchange of field energy and charges will 
impose appropriate feedback on both of the coupled 
circuits. In this paper, two Pikovsk-Rabinovich (PR) 
chaotic circuits (Pikovsky and Rabinovich, 1978) are 
connected with a resistor and capacitor to detect when 
synchronization is realized for each. Symmetric cou-
pling in the same channel and cross coupling between 
different channels are used to investigate the stability 
of synchronization.   
 
 

2  Model description and method 
 

Nonlinear electric devices are critical for build-
ing chaotic circuits. The well-known nonlinear elec-
tric devices include the negative resistor, nonlinear 
capacitor, nonlinear inductor, and memristor (Mu-
thuswamy and Kokate, 2009; Buscarino et al., 2012; 
Budhathoki et al., 2013; Bao et al., 2016, 2017; Zhang 
et al., 2018b). A negative resistor R requires the non-
linear dependence of voltage on current. A nonlinear 
capacitor means that the charges q on the plates 
change the voltage of the capacitor in a nonlinear 
relation. In sum, the main characteristic of nonlinear 
devices is that the change in an output variable does 
not follow the change in the input variable propor-
tionally. These nonlinear electric devices can be  
applied to build a variety of chaotic circuits, and ro-
bust synchronization (Buscarino et al., 2009) can be 
further investigated between hyperchaotic circuits 
through experiments. For example, an autonomous 
and self-excited circuit (Pikovsky and Rabinovich, 
1978; Pikovsky, 1981; He et al., 2003; Louodop et al., 
2014) was built by Pikovsk and Rabinovich in 1978. 
The circuit was made of a capacitor C, a linear resistor 
r, an inductor L, a nonlinear resistor with negative 
conductance −g, and a tunnel diode with parasitic 
capacitance C1. The circuit is illustrated in Fig. 1. 

The tunneling diode can be switched on at a re-
verse bias and its reverse breakdown voltage is zero, 
while the quantum tunneling effect can generate a 
region of negative resistance under a forward bias. 
Fig. 2 shows the voltage-current (U-I) curve of this 
tunneling diode. 
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According to the physical Kirchhoff law, the 

circuit equations for Fig. 1 can be approached as 
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For further dynamical analysis and numerical 
studies, scale transformation is proposed to obtain a 
dimensionless dynamical system. It requires the var-
iable transformation as follows: 

 

0

0 0 0

0

0

0 0 0
2 2 2

0 0 1 0

1,  ,  1, = ,

1
,  ,  2 ,

,  1 ,  .

V Ir UI U
x y z t

I LI U

Ugr gL rC

LC I L LC

rU gU I

L I I LC C U

 


  
 

  
  

      

     



    


 (2) 

As a result, the dimensionless dynamical system 
can be described by three-variable ordinary differen-
tial equations (ODEs) as follows: 
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The dynamics (3) can be investigated via bifur-

cation analysis, and different attractors can be formed 
by setting appropriate parameters. For example, a 
chaotic series can be observed by applying the pa-
rameters as δ=0.66, γ=0.201, α=0.165, β=0, and μ= 
1/0.047. From a control view, the stabilization of 
variable y is very important for control of chaos. In 
the case of synchronization problems, two identical 
PR circuits are often coupled via different channels or 
variables. The coupled circuits are plotted in Fig. 3, 
where X describes the coupling channel; for example, 
when the output ends 1-2 or 3-4 are connected, 
symmetric coupling is activated so that the same 
variables are coupled. However, cross coupling is 
switched on when the output ends 1-4 or 3-2 are 
connected so that different variables are coupled. The 
coupled PR circuits under bidirectional coupling can 
be described by  
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where parameters λ1, λ2, λ3, and λ4 decide the on-off 
state for the coupling device by resetting 0 and 1. 
Resistor-based voltage coupling and capacitor-based 
current (for an electric field) coupling can be defined 
by 
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Fig. 1  Schematic of a Pikovsk-Rabinovich (PR) circuit, 
a self-excited oscillator 

 
 

Fig. 2  I-U characteristic of the tunnel diode 
The output voltage for capacitor C1 is denoted as U, while 
V represents the voltage for negative conductance. I is the 
current across inductor L, and I1 describes the current 
across the tunnel diode, I1=I0+I0[(U/U0−1)3−(U/U0−1)] 
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where gX and CX represent the conductance of the 
coupling resistor and the capacitance of the coupling 
capacitor, respectively. The variables Vi and Vj de-
scribe the output voltage from the two PR circuits. 
The symbol ± selects the direction of the coupling 
current. The coupling current across the coupling 
device can trigger different forms when different 
output ends are connected. For the most part, we 
discuss the effect of resistor coupling and capacitor 
coupling as well when symmetric and cross coupling 
are considered, respectively. When the output ends 1, 
2 are connected (λ1=λ2=1, λ3=λ4=0), the variables y, ŷ 
are coupled, and the dynamical equations can be de-
scribed by 
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where the coupling coefficient k1=gXL1/2/(C−Cgr)1/2, 
and the intrinsic parameters also modulate the cou-
pling intensity. When the output ends 3, 4 are con-
nected (λ1=λ2=0, λ3=λ4=1), the dynamical equations 
for the two coupled systems via resistor coupling can 
be described by 
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where the coupling coefficient k2=gXU0/I0, and the 
intrinsic parameters in the tunnel diode also give 
possible modulation on the coupling intensity. Eqs. (6) 
and (7) suggest the case for symmetric coupling. The 
case for cross coupling is also attractive. When the 
output ends 3, 2 are connected (λ3=λ2=1, λ1=λ4=0), the 
dynamical equations are given as follows: 
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where the coupling coefficient k3=gXU0/I0, and the 
coupling coefficients k1, k2, k3 are approached under 

gr1. That is, cross coupling can be activated by 

connecting the output ends 3, 2 or 1, 4. For a syn-
chronization stability approach, the error function for 
the coupled systems can be estimated by 
 

2 2 2

2 2 2

ˆ ˆ ˆ( , , ) ( ) ( ) ( )

.

x y z

x y z

e e e x x y y z z

e e e

      

  
   (9) 

 
Complete synchronization is stabilized when the 

error function decreases to zero within a finite tran-
sient period, which is dependent on the selection of 
the coupling coefficient and intensity as well. It is 
important to discuss the case in which a capacitor 

 

Fig. 3  Schematic of two PR circuits under different cou-
pling channels and styles 
X denotes the coupling devices, which can be resistors or 
capacitors. i=1, 3, j=2, 4 represent the output ends 



Xu et al. / Front Inform Technol Electron Eng   2019 20(4):571-583 575

coupling is activated, and then symmetric coupling 
and cross coupling are investigated, respectively. 
When the coupling capacitor is switched on between 
the output ends 1, 2 (λ1=λ2=1, λ3=λ4=0), the dynamical 
equations are confirmed as follows: 
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where the coupling coefficient k4=CX/C. In fact, as 
shown in Eq. (5), the capacitor coupling just intro-
duces a differential modulation, and then Eq. (10) is 
rewritten as Eq. (11). 

From the equivalent definition shown in Eq. (11), 
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k4/(2k4+1), and the additive feedback from variable 
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tive responses of the coupled circuits, and then an 
appropriate coupling intensity could be effective in 
realizing synchronization. Furthermore, symmetrical 
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dynamical equations are achieved as Eq. (12). 
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In Eq. (12) the coupling coefficient k5=CX/C1. 

Then Eq. (12) is rewritten with an equivalent form 

and the differential coupling feedback can be dis-

cerned. It reads as Eq. (13) (see the next page). 

It is found that differential coupling via a ca-

pacitor can be fed back into the coupled circuits under 

an adjustable gain k5/(1+2k5), and the synchronization 

orbits can be tamed to keep them close by applying 

appropriate coupling gains. Furthermore, when cross 

coupling via the capacitor is connected between 

output ends 3, 2 (λ3=λ2=1, λ1=λ4=0), it is the same case 

for a connection between output ends 1, 4 (λ3=λ2=0, 

λ1=λ4=1), and the dynamical equations can be con-

firmed as Eq. (14). 
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In Eq. (14) the coupling coefficient k6=C1/CX, 

and for simplicity, we set C1/C=0.1. In the same way, 
coupling gain can be adjusted to find the synchroni-
zation orbits. According to our prior knowledge, bi-
directional coupling supports complete synchroniza-
tion between identical oscillators or systems, while 
phase synchronization (Parlitz et al., 1996; Neiman et 
al., 1999; Pikovsky et al., 2000; Fell and Axmacher, 
2011; Ma et al., 2017) occurs between non-identical 
systems under coupling. On the other hand, sub-
threshold coupling (or weak coupling) can induce 
phase synchronization between identical systems. 
The phase series can be detected by applying the 
Hilbert transform (Hahn, 1996) on the sampled time 
series for observable variables. Furthermore, the 

phase error can be calculated to detect the stability of 
phase synchronization. 
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      (15) 

 
where PV represents the principal value of the  
integral, and (t) and ′(t) are the phase series  
calculated from the time series for outputs x(t) and 
ˆ( ),x t  respectively. 

 
 
3  Numerical results and discussion 
 

In this section, Matlab (ODE45) is applied to 
find solutions for the dynamical systems under volt-
age coupling and also under field coupling. The initial 
values for an isolated PR circuit system are selected 
as (0.1, 0.1, 0.1), the time step is h=0.01, the param-
eters are selected in the chaotic region as δ=0.66, 
γ=0.201, α=0.165, β=0, μ=1/0.047, and the strange 
attractor developed is plotted in Fig. 4. 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

The Lyapunov exponent spectrum can be cal-
culated to find the dependence of chaos occurrence on 
the parameter setting. For simplicity, the maximum 
value of the sampled time series for variable x is es-
timated and the bifurcation analysis is plotted in  
Fig. 5. 
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Fig. 4  Formation of a chaotic attractor in a PR circuit
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It is shown that chaos can be triggered in a large 

parameter region. Furthermore, some phase portraits 
are plotted to illustrate the dependence of the attractor 
profile on the parameter setting δ. The results are 
shown in Fig. 6.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
In the following studies, we discuss mainly the 

synchronization approach and stability between cha-
otic PR systems. The initial values for the coupled 
system are selected as (0.1, 0.1, 0.1, 0.1, 0.1, 1), with 
the same time step of 0.01 applied. First, we investi-
gate the case shown in Eq. (6), by which the output 
ends 1, 2 are connected via a resistor with conduct-
ance gX, and the error function is estimated in Fig. 7. 

It is confirmed that the error function can de-
crease to zero within a finite transient period; e.g., it 
takes about 270 time units when the coupling coeffi-
cient is selected as k1=0.12. Furthermore, with the 
increase of coupling intensity, the transient period for 

the synchronization approach becomes shorter. Then 
the dependence of the maximum value of the error 
function is calculated under different coupling coef-
ficients. The results are shown in Fig. 8. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
It is shown that the maximum value of the error 

function can decrease to a finitely small value and that 
the means toward complete synchronization becomes 
available via resistor coupling when a single variable 
is used to couple the chaotic PR systems. Furthermore, 
the synchronization approach is detected when output 
ends 3, 4 are connected, for which the dynamical 
system under resistor coupling is defined in Eq. (7), 
and the results are plotted in Fig. 9. 

Thus, when a coupling resistor is connected 
between output ends 3, 4, this complete synchroniza-
tion approach becomes difficult even when the cou-
pling coefficient is further increased. Then, we cal-
culate the evolution of the phase series, which are 

X
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Fig. 5  Bifurcation diagram of the maximum value of 
variable x vs. parameter δ in the PR system 
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Fig. 6  Formation of attractors under different parame-
ter values: (a) δ=0.66; (b) δ=1.35; (c) δ=1.5; (d) δ=5 
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Fig. 7  Evolution of the error function via resistor cou-
pling under the connection output ends 1, 2 for k1=0 (a), 
k1=0.12 (b), k1=0.25 (c), and k1=3.0 (d) 
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Fig. 8  Dependence of the maximum error on the cou-
pling coefficient via resistor coupling under connection 
output ends 1, 2 
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calculated using a Hilbert transform as shown in  
Eq. (15). The results are presented in Fig. 10. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
From Fig. 10, it can be seen that anti-phase 

synchronization can be reached by applying an ap-
propriate coupling coefficient when output ends 3, 4 
are connected using resistor coupling. The failure of 
complete synchronization could be due to the fact that 
the coupling between the outputs from the tunnel 
diodes can be suppressed by the outputs from para-
sitic capacitance C1 paralleled with the diode. Then, 
cross coupling is considered between output ends 3, 2, 
and the dynamical system is described by Eq. (8). The 
results are plotted in Fig. 11. 

With the increase of the coupling coefficient for 
resistor connection, the maximum value for the error 

function just fluctuates between several finite values, 
and the realization of complete synchronization be-
comes difficult when a coupling resistor is used to 
bridge the connection between output ends 3, 2. 
Consider a clear illustration, where the evolution of 
the error function is calculated under different cou-
pling coefficients, as shown in Fig. 12.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The results in Fig. 12 provide evidence that cross 

coupling via a resistor can generate the coexistence of 
chaos and periodicity, and the transition from chaos to 
periodicity can be induced with the increase of the 
coupling coefficient. Furthermore, we calculate the 
phase series to observe the occurrence of phase syn-
chronization, and the results are plotted in Fig. 13. 

Phase synchronization can be stabilized under 
cross coupling when the coupling resistor bridges the 
connection between output ends 3, 2, and the transient 

 

Fig. 9  Evolution of the error function via resistor cou-
pling under connection output ends 3, 4 for k2=0 (a), 
k2=0.3 (b), k2=0.6 (c), and k2=1 (d) 

 

Fig. 10  Error evolution of a phase series via resistor 
coupling with a connection between output ends 3, 4 for 
k2=0 (a), k2=0.3 (b), k2=0.5 (c), and k2=1 (d) 
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Fig. 12  Evolution of the error function via resistor cou-
pling under connection output ends 3, 2 for k3=0.2 (a), 
k3=1.5 (b), k3=3.5 (c), and k3=8 (d) 

 

Fig. 11  Dependence of the maximum error on the cou-
pling coefficient via resistor coupling with a connection of 
output ends 3, 2 
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period is shortened with an increase in the coupling 
coefficient. As mentioned above, capacitor coupling 
can contribute to the transmission of energy flow 
between the coupled circuits. Therefore, it is im-
portant to discuss the case for capacitor coupling, as 
mentioned above, where the coupling capacitor is 
bridged to connect output ends 1, 2 and then sym-
metric coupling is activated. This case is described by 
the dynamical system as defined in Eq. (10), and the 
results are plotted in Fig. 14. 

 
 
 
 
 
 
 
 
 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
It is verified that complete synchronization be-

tween the two chaotic PR systems becomes stable 
when the coupling capacitor activates symmetrical 
coupling at the appropriate coupling coefficient, and 
the transient period becomes shorter with the increase 
of the coupling coefficient. In addition, the maximum 
value for the error function is estimated under dif-
ferent coupling coefficients, and the results are illus-

trated in Fig. 15. 
The bifurcation diagram predicts that complete 

synchronization can be reached when capacitor cou-
pling is applied with an appropriate coupling coeffi-
cient beyond the threshold of k4~0.23. Capacitor 
coupling is also considered between output ends 3, 4, 
whose dynamical system is described by Eq. (12). 
The results are given in Fig. 16. 

 
 
 
 
 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 
 

 
That is to say, complete synchronization between 

the two chaotic PR systems becomes difficult even if 
a capacitor is applied to connect output ends 3, 4. 
Furthermore, the phase series from the two PR sys-
tems are calculated to find the possibility of phase 
synchronization. The results are shown in Fig. 17. 

It is found that the two chaotic PR systems can 
be stabilized at phase synchronization, while anti- 
phase synchronization is reached with a further  
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Fig. 13  Evolution of the phase error under cross coupling 
via a linear resistor when output ends 3, 2 are connected 
for k3=0.16 (a), k3=0.21 (b), k3=3.2 (c), and k3=5 (d) 
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Fig. 14  Evolution of the error function via capacitor 
coupling under connection output ends 1, 2 for k4=0 (a), 
k4=0.23 (b), k4=1.0 (c), and k4=4.0 (d) 
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Fig. 16  Evolution of the error function via capacitor 
coupling under connection output ends 3, 4 for k5=0 (a), 
k5=1 (b), k5=5 (c), and k5=11 (d) 

 

Fig. 15  Dependence of the maximum error on the cou-
pling coefficient via capacitor coupling under connec-
tion output ends 1, 2 
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increase of the coupling coefficient for the coupling 
capacitor. It seems that capacitor coupling shows 
more efficiency in keeping the stability of phase 
synchronization and anti-phase synchronization than 
resistor coupling between output ends 3, 4. Finally, 
cross coupling via the capacitor is verified by con-
necting output ends 3, 2, whose dynamical system is 
described by Eq. (14). The results are shown in Figs. 
18 and 19. 

The error function between the two chaotic PR 
systems becomes time-varying even when the cou-
pling coefficient for the coupling capacitor increases 
greatly, and extensive numerical results confirm that 
the profile of chaotic attractors shows distinct diver-
sity and difference. Then the phase series are calcu-
lated to analyze the phase synchronization, and the 
results are plotted in Fig. 19. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
According to the previous definition for a cou-

pling coefficient, we have k5=1/k6=CX/C1; as a result, 
the modulation and feedback from the coupling ca-
pacitor is enhanced when the coupling capacitor is 
endowed with a larger value and the synchronization 
approach becomes relaxed. When the coupling ca-
pacitor is selected with finite capacitance values, a 
certain transient period is needed to reach synchro-
nization stability.  

In summary, the synchronization approach de-
pends heavily on the coupling channel and coupling 
type. The capacitor coupling plays the same role in 
realizing complete synchronization between chaotic 
systems, and the coupling capacitor just enhances the 
energy exchange of the electric field and never con-
sumes energy while the coupling resistor has to con-
sume a certain amount of Joule heat and energy when 
the coupling is activated. Complete synchronization 
is realized when resistor coupling or capacitor cou-
pling is applied to connect the outputs from capacitor 
C in each circuit, while coupling between parasitic 
capacitance C1 in the chaotic PR circuits cannot 
support complete synchronization other than phase 
synchronization. Cross coupling via a linear resistor 
or capacitor can induce phase synchronization. In-
deed, a time-varying electric field is induced in the 
coupling capacitor, and energy flow is transmitted 
across this coupling capacitor when the coupling 
connection is switched on. As a result, the coupled 
circuits are regulated to keep pace with each other, 
while resistor-based voltage coupling just consumes 
the Joule energy to suppress nonlinear oscillations in 
the coupled PR circuits. This type of coupling via 
capacitor simply provides evidence for understanding 
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Fig. 17  Evolution of the phase error under cross coupling 
via a linear resistor when output ends 3, 4 are connected 
for k5=0 (a), k5=1 (b), k5=5 (c), and k5=7.1 (d) 
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Fig. 18  Evolution of the error function via capacitor 
coupling under connection output ends 3, 2 for k6=0.01 
(a), k6=0.6 (b), k6=4 (c), and k6=10 (d) 

 

Fig. 19  Evolution of the phase error under cross coupling 
via a capacitor when output ends 3, 2 are connected for 
k6=0.01 (a), k6=0.6 (b), k6=4 (c), and k6=10 (d) 
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the well-known differential coupling control. On the 
other hand, a capacitor coupling builds a bridge for 
the exchange of field energy. For L-C (inductor and 
capacitor) circuits, the electric field energy is in-
cluded in the capacitor while the magnetic field en-
ergy stays in the inductor. Then the field energy in the 
driving, response system and coupling capacitor can 
be described by 

 

2 2 2
1 1

2 2 2
2 1

2

2

1 1 1
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2 2 2
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As a result, the energy storage in the coupling 
capacitor will decrease to zero when two chaotic PR 
circuits are synchronized completely. In fact, the field 
energy flow can be kept in the coupling capacitor, and 
the capacitance CX dominates the transport capacity 
of energy released from the two coupled PR circuits. 
Therefore, a continuous exchange of field energy can 
regulate the dynamics of coupled systems effectively. 
Because of the conservation of energy, the field en-
ergy in the coupling capacitor comes from the energy 
release as HCX=H1−H2 in the absence of electromag-
netic radiation from these electric devices. The nu-
merical results can be further described to observe the 
evolution and transport of energy between the cou-
pled systems. 

Readers can also extend this study by applying 
an inductor (induction coil) and memristor between 
chaotic and hyperchaotic circuits, and interesting 
results could be confirmed in the forthcoming studies. 
On the other hand, capacitor coupling just provides 
insights into field coupling (Guo et al., 2017; Lv et al., 
2018; Xu et al., 2018), which is confirmed to benefit 
signal propagation between neurons even when syn-
apse coupling is suppressed or inactive. Therefore, 
researchers can build more neural circuits and explore 
signal encoding and transmission by capacitor and 
inductor coupling between hyperchaotic circuits. In 
an experimental method, Ren et al. (2019) confirmed 
that the synchronization between two Colpitts sys-
tems can be realized by building a transformer and 

that the coupling coefficient of the transformer is an 
important bifurcation parameter for the synchroniza-
tion manifold of the system. When field coupling is 
applied, secure communication can be further inves-
tigated using chaos synchronization. The coupling 
inductor and capacitor can also be used to collect 
external field energy; for example, electromagnetic 
radiation energy can be collected by these electric 
coupling devices and the coupled circuits will be 
regulated via energy flow. 

In fact, we just discussed the case between two 
nonlinear circuits. The same further investigation 
becomes attractive and important when field coupling 
is considered between neurons in a network. As is 
well known, noise, time delay, and Calcium signal 
(Tang et al., 2017; Yu et al., 2017) can change the 
neural activities of neurons. Therefore, neural circuits 
can be connected via field coupling, and the collective 
behaviors can be detected for analysis of consensus 
and synchronization.  

 
 

4  Conclusions 
 

Based on chaotic PR circuits, symmetric cou-
pling and cross coupling via a single variable are 
applied to investigate synchronization stability. It was 
found that symmetric coupling can support the sta-
bility of complete synchronization, while cross cou-
pling, for which different channel variables were 
coupled, just triggers phase synchronization. When a 
linear resistor is used to activate voltage coupling, 
complete synchronization is reached while the cou-
pling resistor has to consume a great deal of Joule 
heat and energy. Complete synchronization failed 
although phase synchronization can be stabilized 
when coupling is activated between the outputs from 
parasitic capacitance C1, which holds a small capaci-
tance. Complete synchronization, phase synchroni-
zation, and anti-phase synchronization can reach the 
desired target when capacitor coupling is activated, 
which can build a time-varying electric field, and the 
energy flow across the coupling capacitor is trans-
mitted to further regulate the outputs and dynamics in 
the coupled circuits. In summary, capacitor coupling 
enhances the exchange of energy flow between the 
coupled circuits; as a result, the synchronization be-
comes relaxed and no additive energy is consumed as 
the coupling resistor. 
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