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Abstract: The multi-robot coverage motion planning (MCMP) problem in which every reachable area must be
covered is common in multi-robot systems. To deal with the MCMP problem, we propose an efficient, complete, and
off-line algorithm, named the “auction-based spanning tree coverage (A-STC)” algorithm. First, the configuration
space is divided into mega cells whose size is twice the minimum coverage range of a robot. Based on connection
relationships among mega cells, a graph structure can be obtained. A robot that circumnavigates a spanning tree
of the graph can generate a coverage trajectory. Then, the proposed algorithm adopts an auction mechanism to
construct one spanning tree for each robot. In this mechanism, an auctioneer robot chooses a suitable vertex of the
graph as an auction item from neighboring vertexes of its spanning tree by heuristic rules. A bidder robot submits a
proper bid to the auctioneer according to the auction vertexes’ relationships with the spanning tree of the robot and
the estimated length of its trajectory. The estimated length is calculated based on vertexes and edges in the spanning
tree. The bidder with the highest bid is selected as a winner to reduce the makespan of the coverage task. After
auction processes, acceptable coverage trajectories can be planned rapidly. Computational experiments validate the
effectiveness of the proposed MCMP algorithm and the method for estimating trajectory lengths. The proposed
algorithm is also compared with the state-of-the-art algorithms. The comparative results show that the A-STC
algorithm has apparent advantages in terms of the running time and the makespan for large crowded configuration
spaces.
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1 Introduction

Motion coverage is an important real-world
application for mobile robots, such as floor
cleaning, harvesting, and surveillance by robots
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(Di Franco and Buttazzo, 2016; Yehoshua et al.,
2016; Xin et al., 2017; Li et al., 2018). In these
applications, the coverage motion planning (CMP)
problem is a key planning issue (An et al., 2017;
Radmanesh et al., 2018). It is a typical complex
problem that requires robots to plan trajectories
to cover all points of interest while avoiding con-
flicts. At the same time, the CMP problem can
be seen as a variant of the traveling salesman prob-
lem (TSP) (Galceran and Carreras, 2013). There-
fore, the CMP problem is a non-deterministic poly-
nomial (NP) hard problem in which the computation
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time increases quickly with the dimensionality of the
problem. In recent years, more researchers have
concentrated on the multi-robot coverage motion
planning (MCMP) problem (Gautam et al., 2015;
Chakraborty et al., 2017; Fang et al., 2017). Multi-
ple robots can partition a workload and cover target
areas cooperatively. Although it is more complex
than a single-robot coverage problem, multi-robot
coverage has several potential advantages in terms
of robustness and task performance.

Choset (2001) classified CMP algorithms as
complete or heuristic algorithms based on whether
the algorithms can plan paths to cover all reachable
vertices. In addition, the CMP algorithm can be clas-
sified as off-line CMP algorithms if robots know the
global environment information in advance, and on-
line CMP algorithms otherwise. Khan et al. (2017)
summarized environmental CMP algorithm model-
ing methods as classical exact cellular decomposition
methods, grid-based methods, etc.

Rekleitis et al. (2008) proposed an algorithm
which adopts the exact cellular decomposition, called
“boustrophedon decomposition,” to solve the MCMP
problem. In this algorithm, the robots play two
roles: one is an explorer that covers the bor-
der, and the other covers the remaining areas.
Karapetyan et al. (2017) presented a greedy ap-
proach that extends an exact cellular decomposition
by heuristics. Azpúrua et al. (2018) proposed an al-
gorithm that segments the configuration space into
hexagonal cells and allocates groups of robots into
different clusters of coverage cells.

Grid-based methods approximately decompose
the configuration space into several minimum cells.
Each minimum cell is a square whose size is the same
as that of the robot’s associated coverage range.
Gabriely and Rimon (2002) first proposed the spi-
ral spanning tree coverage (STC) algorithm belong-
ing to the class of grid-based methods. The STC
algorithm divides the environment into mega grid
cells whose size is twice that of the minimum cell
to obtain an undirected graph structure. Then the
STC algorithm can quickly obtain a Hamiltonian
cycle of the graph as a coverage path for a sin-
gle robot. Gabriely and Rimon (2003) provided the
full STC algorithm, which can deal with situations
where mega cells partially contain some obstacles.
Hazon and Kaminka (2008) proposed a robust and
efficient algorithm based on the STC algorithm for

the MCMP problem. Using this algorithm, which
constructs a spanning tree for all robots, every robot
circumnavigates a part of the spanning tree to gener-
ate multiple coverage trajectories. According to the
robots’ initial positions, Kapoutsis et al. (2017) de-
signed an MCMP algorithm, called “DARP,” which
divides areas equally to plan coverage trajectories.
Kapanoglu et al. (2012) proposed heuristic coverage
motion planning with a grid decomposition that
adopts a pattern-based genetic algorithm (GA) to
solve the MCMP problem.

In the MCMP problem, a key issue is how to
allocate coverage task areas to robots. A good task
allocation needs to balance each robot’s workload
and avoid conflicts among robots. The auction al-
gorithm (Dias et al., 2006; Khamis et al., 2015) is a
common market-based mechanism for task alloca-
tion used in multi-robot systems. In auction pro-
cesses, robots compete for each sub-task and try
to minimize a global function. Tang et al. (2018)
used an auction-based task allocation for a multi-
robot search-and-rescue task. Elango et al. (2011)
provided a balancing task allocation algorithm us-
ing auction mechanisms that concentrate on distance
and workload. Auction-based approaches can be di-
vided into two types: centralized and distributed
approaches (Kong et al., 2016).

The heuristic pattern-based GA can handle all
cases (Kapanoglu et al., 2012). Nevertheless, it has
high computation costs. The complete DARP al-
gorithm can obtain the optimal solution in some
cases (Kapoutsis et al., 2017); unfortunately, it can-
not deal with some situations, such as a disconnected
configuration space or a configuration space where
mega cells are occupied partially by obstacles.

To design a complete MCMP algorithm which
can deal with all cases, we propose a novel auction-
based spanning tree coverage (A-STC) algorithm.
The configuration space is modeled as a graph struc-
ture by the STC decomposition method. Each
robot’s spanning tree is managed by an auction
mechanism to plan multiple coverage trajectories.
An auctioneer robot selects a suitable vertex of the
graph as an auction item using heuristic rules. A bid-
der robot will submit a proper bid to the auctioneer
according to the auction vertex’s connection relation-
ships with its spanning tree and the estimated length
of its trajectory. The estimated length is calculated
based on vertexes and edges in the spanning tree,
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which provides an upper bound to approximate the
real path length. After iterative auction processes,
complete coverage trajectories that avoid obstacles
and conflicts among robots can be generated. Con-
tributions compared with previous research are as
follows:

1. The proposed auction strategies guarantee
that each robot’s spanning tree is connected, and
that the workload is balanced for all robots.

2. The proposed MCMP algorithm is complete
and can handle situations where mega cells are par-
tially occupied by obstacles.

3. Acceptable makespans and trajectories can
be obtained in a short computation time using the
A-STC algorithm.

2 Problem definition and preliminaries

2.1 Problem definition

In the MCMP problem (Hazon and Kaminka,
2008; Di Franco and Buttazzo, 2016), n homoge-
neous robots are distributed at different locations
in the configuration space, which can be decom-
posed into multiple cells. The size of a cell is equal
to that of a robot’s associated coverage range D,
and each cell is numbered by its center’s coordi-
nate. In this grid-based decomposition method, two
types of cells are distinguished. One is a free cell
that robots can cover; the other is a cell that is
occupied by obstacles. Assume that robots with a
uniform speed vel can move in four base directions
(north, south, east, and west), and the time needed
for a robot to change its direction is short enough
to be neglected. robi denotes the robot with index i

(i ∈ R
+). vi(t) = (xi(t), yi(t)) denotes the position

of robi at moment t. Motion trajectory Li of robi

can be represented by a sequence of consecutive cells
[vb,i,1, vb,i,2, . . . , vb,i,p]. vb,i,q, which corresponds to a
cell’s center coordinate, denotes the position of robi

at the qth sequence of Li. {Li} denotes the set of all
cells without repetition in Li.

The global mission is that robots must cover
all reachable points in target areas while avoiding
collisions with other robots and obstacles. The ob-
jective is to minimize the maximum completion time
of multiple robots, which is the makespan of the cov-
erage task. After that, the MCMP problem can be

formulated as the following minimization problem:

L∗ = arg min
L

max
i∈{1,2,...,n}

Ti

s.t. {L1} ∪ {L2} ∪ . . . ∪ {Ln} = Gf ,

∀i ∈ {1, 2, . . . , n}, {Li} ∩Gob = ∅,

∀i ∈ {1, 2, . . . , n}, Li is continuous,

∀i, j ∈ {1, 2, . . . , n}, i �= j, vb,i,q ∩ vb,j,q = ∅,

(1)
where L = {L1, L2, . . . , Ln} represents the set of
robot motion trajectories, L∗ represents the opti-
mal set of robot trajectories for the MCMP problem,
Ti represents the completion time of robi moving in
trajectory Li, max

i∈{1,2,...,n}
Ti represents the makespan

of the coverage task, Gf represents the set of all
free cells in the configuration space, and Gob repre-
sents the set of all cells that contain obstacles. The
first constraint means that all reachable minimum
cells must be covered. The second constraint means
that robots must avoid obstacles in the configuration
space. The third constraint means that trajectories
are realizable in the real world. The last constraint
means that robots do not conflict with each other.

Additionally, the distance between any two ver-
texes va = (xa, ya) and vb = (xb, yb) can be calcu-
lated as follows:

d(va, vb) =
√
(xa − xb)2 + (ya − yb)2. (2)

2.2 Spiral spanning tree coverage algorithm
for a single robot

Fig. 1 shows the single-robot off-line STC algo-
rithm (Gabriely and Rimon, 2002, 2003), which is an
approximate cellular-decomposition CMP method.
In this study, the STC algorithm is used to plan
each robot’s trajectory based on its spanning tree.
In the STC algorithm, the configuration space is
divided into mega square cells of size 2D. Based
on these mega cells, an undirected graph structure
Gs = (Vs, Es) can be obtained. When a mega cell is
occupied totally by obstacles or free cells, the corre-
sponding vertex of Gs is set individually as a free or
obstacle vertex. The free vertex can connect neigh-
bor vertexes in four directions, whereas the obsta-
cle vertex cannot connect any neighbors. When a
mega cell in the configuration space is partially oc-
cupied by obstacles, the connection relationships be-
tween the corresponding STC vertexes and neighbors
of the vertex will change. The changed connection
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Fig. 1 Coverage path planning using the spiral span-
ning tree coverage (STC) algorithm

relationships can be divided into four types (Fig. 2).
When an STC mega cell contains only a single obsta-
cle, its corresponding vertex can connect neighbors
in four directions, in the same way as a free vertex
does. A double-obstacle vertex with two obstacles
in the same side belongs to the second type. The
double-obstacle vertex can extend in all directions
except the direction of obstacles. The third type is
a triple-obstacle vertex, which can connect vertexes
of Gs in only two directions. In the last type, an
STC mega cell is partially occupied by two obstacles
in different sides. The mega cell will be decomposed
into two triple-obstacle vertexes of Gs, which are ad-
jacent to neighbor cells in two directions.

(a) (b)

(c) (d)

Fig. 2 Connection relationships of a single-obstacle
vertex (a), a vertex with double obstacles in the same
side (b), a triple-obstacle vertex (c), and double ver-
texes (d) with neighbors

For Gs = (Vs, Es), Vs = {vs,1, vs,2, . . . , vs,m}
is the set of all reachable vertexes in Gs, and

Es = {es,1, es,2, . . . , es,p} ⊆ Vs × Vs is the set of
edges that connect two adjacent vertexes. Vs con-
tains all reachable minimum cells. A spanning tree
of Gs can be generated easily by spanning-tree al-
gorithms, such as the Dijkstra algorithm and Prim
algorithm (Yehoshua et al., 2016). Then a coverage
trajectory can be planned where the robot moves
along the spanning tree until it returns to the start
position. When mega cells in the configuration space
are totally occupied by obstacles or free cells, the
STC planning algorithm can obtain the Hamiltonian
cycle that minimizes the coverage time.

2.3 Problem analysis

Completion time Ti of robi is directly propor-
tional to vel and the number of cells in Li. In view
of the STC algorithm, a coverage motion trajectory
Li can be generated based on the spanning tree in
the STC graph Gs. Trs,i represents the spanning
tree of robi. Tr = {Trs,1,Trs,2, . . . ,Trs,n}, which is
composed by all spanning trees of robots, can corre-
spond to a solution L in the MCMP problem. The
cardinality of Trs,i is defined by the number of cells
in the corresponding Li. Meanwhile, the relationship
between Ti and the cardinality of Trs,i is

Ti =
|Trs,i| ·D

vel
=

|Li| ·D
vel

, (3)

where |Trs,i| represents the cardinality of Trs,i, and
|Li| represents the number of cells in Li.

To approximate the optimal solution L∗, con-
straints are set as

Trs,i ∩ Trs,j = ∅, ∀i, j ∈ {1, 2, . . . , n}, i �= j, (4)

Tr1 ∪ Tr2 ∪ . . . ∪ Trn = Vs, (5)

|Trs,1| ≈ |Trs,2| ≈ . . . ≈ |Trs,n|, (6)

Trs,i is connected, ∀i ∈ {1, 2, . . . , n}, (7)

vs,i(0) ∈ Trs,i, ∀i ∈ {1, 2, . . . , n}. (8)

Constraint (4) makes sure that each STC vertex be-
longs to only one robot’s spanning tree, and the
robots’ paths have no conflicts. Constraint (5) high-
lights that every free minimum cell will be covered.
As shown in constraint (6), the makespan of the
coverage task will decrease when the maximum car-
dinality difference among all robots’ spanning trees
decreases. Conditions (7) and (8) guarantee that the
STC algorithm can plan coverage paths for multiple
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robots. vs,i(0) represents an STC vertex correspond-
ing to the initial position of robi. However, it is not
always possible to satisfy all these criteria in complex
environments.

According to the above analyses, how to gener-
ate one spanning tree for each robot is a key issue for
the MCMP problem. In the next section, an auction
mechanism is designed with several heuristic rules
and strategies to manage the spanning tree of each
robot.

3 Auction-based spanning tree cover-
age algorithm

The A-STC algorithm is an off-line MCMP al-
gorithm as shown in Algorithm 1, applicable only
for environments that can be decomposed into undi-
rected graphs. First, the STC graphGs of the config-
uration space is constructed. Each robot’s spanning
tree Trs,i is a null set, denoted by ∅. Then, an STC
vertex vs,i(0) corresponding to the initial position of
robi is added to Trs,i. In iterative auction processes,
all robots participate to solve the MCMP problem. A
fixed number of iterations “maxIter” is set as a ter-
mination condition for the auction processes. The
other termination condition is that all robots are in
sleep mode. A robot in sleep mode cannot organize
an auction. The sleep mode is designed to reduce
invalid auctions. At the kth auction, an auctioneer
must be selected first. An auctioneer chooses an STC
vertex (denoted by va) from the STC graph. Every
robot can be a participant which submits a bid to the
auctioneer. After all bids are received, the auctioneer
determines the winner robot (denoted by robwinner)
from all bidder robots. Robots will be ready for the
(k + 1)th auction after they update their relevant
statuses and spanning trees. When iterative auction
processes are terminated, each robot will obtain its
own spanning tree Trs,i. Using the STC algorithm,
robots circumnavigate their spanning trees to plan
coverage trajectories.

Based on different vertexes and edges in span-
ning tree Trs,i of robi, trajectories with different
lengths will be planned. Meanwhile, a trajectory
that covers p free target cells is planned by the STC
algorithm in time O(p). To reduce the computation
time of the MCMP problem, a heuristic method for
estimating the length of robi’s trajectory (Fig. 3) is
designed in this study. In this heuristic estimation

Algorithm 1 Auction-based spanning tree coverage
(A-STC) algorithm
Require: Configuration space and maxIter.
Ensure: L = {L1, L2, . . . , Ln}.
1: According to the configuration space, construct Gs;
2: ∀i ∈ {1, 2, . . . , n}, add vs,i(0) to Trs,i;
3: k = 0;
4: for k < maxIter do
5: Select an auctioneer;
6: Auctioneer determines an auctioneer vertex;
7: if ∀i ∈ {1, 2, . . . , n}, robi is in the sleep mode

then
8: terminate iterations;
9: end if

10: if auctioneer is in the sleep mode then
11: continue;
12: end if
13: Bidders provide bids;
14: Auctioneer determines the winner robot;
15: Bidders update own statuses and spanning trees;
16: k = k + 1;
17: end for
18: ∀i ∈ {1, 2, . . . , n}, plan Li based on Trs,i by the

STC algorithm.

cost=4D cost=4D

cost=4D cost=4D

cost=4D

cost=6D

cost=2Dcost=2D

cost=6D

Leaf node

Leaf node

Leaf node

Leaf node

Leaf node

Branch node

Branch node

Branch node

Branch node

Fig. 3 Estimated costs of different vertexes with dif-
ferent edges in the spanning tree

method, the estimated length of a trajectory is equal
to the sum of the estimated cost of each STC vertex
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in the spanning tree. Two categories of vertexes in
the spanning tree are distinguished. One is a vertex
whose estimated cost keeps the same value denoted
by vs,s; the other vertex’s estimated cost (denoted
by vs,c) changes with its connection relationships to
neighbors. Vertexes with unchanged estimated costs
contain free vertexes and single-obstacle vertexes.
Their estimated costs are set as 4D and 6D, respec-
tively. According to different degrees in a spanning
tree, nodes are classified as leaf and branch nodes.
The estimated value of a vertex with double obsta-
cles is set as 2D, provided that it is a leaf node and
that its adjacent edge is perpendicular to the side of
obstacles. In other situations, the estimated value
of a double-obstacle vertex is 4D. If a vertex of Gs

with triple obstacles is a leaf node, its estimated cost
is set as 2D. Otherwise, the estimated cost of a
triple-obstacle STC vertex is 4D.

3.1 Auction process

The auctioneer is a role that selects a vertex for
bidding, originates an auction, and determines the
winner robot. First, a neighbor vertex set of Trs,i is
defined as

V ∗
s,i={vs∈Gs|∃vs,i∈Trs,i, e(vs,vs,i)∈Es, vs /∈Trs,i},

(9)
where V ∗

s,i represents the set of all reachable vertexes
adjacent to vertexes of spanning tree Trs,i except
those belonging to Trs,i.

If robi wants to be an auctioneer, it will select a
mega vertex as an item for bidding from V ∗

s,i. Thus,
when V ∗

s,i = ∅, robi, which cannot be an auctioneer,
is set in sleep mode. This strategy for selecting a bid-
ding vertex is used to keep each spanning tree’s con-
nectedness. V ∗

s,i contains three parts. The first part
represents a set of vertexes that are assigned to other
robots, and is denoted by V ∗

s,i,as = V ∗
s,i ∩

∑n
i=1 Trs,i.

The second part represents a set of vertexes with un-
changed estimated costs that have not been assigned,
and is denoted by V ∗

s,i,us. The last part represents
a set of unassigned vertexes whose estimated costs
change with relationships of connections, and is de-
noted by V ∗

s,i,uc. Because the size of vertexes in V ∗
s,i

is usually not equal to 1, several heuristic rules are
designed to select a suitable vertex va from V ∗

s,i.
Rule 1 The robot robi prefers to select va from the
set of unassigned vertexes. At the same time, ver-
texes in V ∗

s,i,us have higher priorities to be an auction

item than vertexes in V ∗
s,i,uc. When vertexes belong

to the same type, to determine the most suitable
STC vertex in V ∗

s,i,us ∪ V ∗
s,i,uc, we use

Psu(i, j) =

n∑

p=1
p�=i

∑

vs∈Trs,i

d(v∗i,j , vs), (10)

where Psu(i, j) is a priority cost that represents the
sum of the distances from vertex v∗i,j to all current
vertexes assigned to robots except robi. Robot robi

chooses the element that corresponds to the maxi-
mum Psu(i, j) as an auction vertex va.
Rule 2 When V ∗

s,i,us = V ∗
s,i,uc = ∅, an auction-

eer robot chooses a candidate va from V ∗
s,i,as. If a

graph constructed by V ∗
i,j = {x ∈ Trs,i|x �= v∗i,j} is

disconnected, v∗i,j cannot be selected as an auction
item. In addition, the priorities of vertexes in V ∗

s,i,as
can be described as

Psa(i, j) = Cp, v
∗
i,j ,∈ Trs,i, (11)

where Psa(i, j) means the estimated coverage length
of the robot whose spanning tree Trs,i contains ver-
tex v∗i,j . The vertex corresponding to the maximum
value of Pas(i, j) will be chosen as an auction item.
If the maximum value of Pas(i, j) is not greater than
the auctioneer’s estimated length, the auctioneer will
also be set in sleep mode. In this mode, the robot
cannot organize any auctions. Nevertheless, a robot
in sleep mode will awake when the maximum value
of Pas(i, j), which is calculated by Eq. (11), is greater
than its estimated path length.
Rule 3 When the maximum values obtained by
Rule 2 are not unique, the robot will choose the ver-
tex nearest to its spanning tree Trs,i as the auction
item:

Pss(i, j) =
1

∑

vp∈Trs,i
d(v∗i,j , vp)

, (12)

where Pss(i, j) represents the reciprocal of the sum
of distances from the candidate vertex v∗i,j to all ver-
texes in Trs,i. The robot will choose the vertex that
has the minimum sum of the distances for an auction
process.
Remark 1 Rule 1 is designed to auction all ver-
texes rapidly so that the spanning tree of each robot
can be generated rapidly. Vertexes that have lower
estimated costs in their leaf node conditions prefer to
become leaf nodes in spanning trees. Rules 2 and 3
are used to choose a vertex that has a potential abil-
ity to decrease the makespan of the coverage task.
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According to Rules 2 and 3, an auction pro-
cess for a single robot is shown in Algorithm 2. In
lines 5 and 14 of Algorithm 2, the auctioneer robot
will choose a robot with the highest bid as robwinner

to decrease the makespan of the coverage task. The
results are broadcasted to make the information con-
cordant at the end of the auction process.

Algorithm 2 Auction process of robi

Require: V ∗
s,i,Trs,1,Trs,2, . . . ,Trs,n

1: if V ∗
s,i �= ∅ then

2: if V ∗
s,i,us �= ∅ or V ∗

s,i,uc �= ∅ then
3: Obtain va according to Rule 1;
4: Collect all bids from the other robots;
5: Select the highest bidder as robwinner;
6: Broadcast the results of this auction;
7: else
8: Calculate the status of robi;
9: if robi is in the sleep mode then

10: robi cannot organize an auction;
11: end if
12: if robi is awake then
13: Obtain va according to Rules 2 and 3;
14: Collect all bids from the other robots;
15: Select the highest bidder as robwinner;
16: Broadcast the results of this auction;
17: end if
18: end if
19: else
20: Set robi in the sleep mode;
21: end if

3.2 Bid process

The strategies for bidding and determining the
winner robot cooperatively keep the continuity of the
motion trajectories and the balance of each robot’s
workload. In the A-STC algorithm, every robot es-
timates the length of its trajectory based on the
above estimation method. The estimated cost of
robi’s path is denoted by Ci. When the bidder robot
receives the STC vertex va offered by the auction-
eer, it will bid for this coverage sub-task. First, if
va = vs,i(0), the bid of robi is infinite to meet the
demand vs,i(0) ∈ Trs,i. To satisfy constraint (7), the
bid offered by robi is zero when va /∈ Trs,i ∪ V ∗

s,i.
Otherwise, if va ∈ Trs,i, the bid offered by robi at
the kth iteration auction is the reciprocal of Ci(k).
When va ∈ V ∗

s,i, edges es which connect va and a
vertex of Trs,i are not always unique. Different con-
nection relationships can cause different trajectory

lengths. Thus, to determine how to connect va and
Trs,i, a minimization problem is formulated as

e∗s = arg min
es

Ći

s.t. es =< va, vs >,

vs ∈ Trs,i,

es ∈ Es,

(13)

where Ći represents an estimated cost based on a
new spanning tree composed of Trs,i and va with
edge es, e∗s represents the optimal solution, and C∗

i

represents the estimated cost of the optimal edge.
Because the number of items in es is up to 4, the

minimum Ći can be calculated using the exhaustion
method. Ći is equal to Ci plus the increment of the
estimated cost caused by va and vs. Because va is a
leaf node, the increment is calculated first in terms of
its type and connection relationships with neighbors.
If the degree of vs is equal to 1 and its estimated cost
is 2D, 2D will also be added to the increment of
estimated cost.

According to the above bid strategies, the bid
process of a single robot is shown in Algorithm 3.
If robi wins an auction vertex that is not in Trs,i,
it adds va and the optimal edge e∗s to Trs,i. When
robi loses an auction vertex, it deletes va and its cor-
responding edge from Trs,i. If the deletion makes
the spanning tree disconnected, Trs,i will be re-
constructed to make it connected again. Vertexes
with unchanged estimated costs have higher priori-
ties than vertexes with changed estimated costs in
the reconstruction. At the same time, robi updates
its V ∗

s,i and Ci to get ready for another bid process.

3.3 Algorithm analysis

Lemma 1 The A-STC algorithm generates n tra-
jectories that jointly cover every cell accessible from
the starting position of each robot.
Proof Because the STC algorithm can circum-
navigate the spanning tree to obtain a closed path
that covers all the cells, the completeness problem
can be decomposed into two problems. One prob-
lem is to prove that spanning trees of all robots can
occupy all vertexes; the other problem is to prove
the connectedness of spanning trees. Assuming that
vc is a reachable vertex that has not been assigned
to robots, a traversal algorithm can obtain a con-
nected graph Gc composed by unassigned vertexes.
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Algorithm 3 Bidding process of robi

Require: V ∗
s,i,Trs,i, va, Ci

1: Receive va from the auctioneer;
2: if va ∈ Trs,i ∪ V ∗

s,i then
3: if va = Pi(0) then
4: bid = ∞ (infinity);
5: else
6: if va ∈ V ∗

s,i then
7: Calculate C∗

i,a and e∗s ;
8: bid = 1

C∗
i,a

;
9: else

10: bid = 1
Ci

;
11: end if
12: end if
13: else
14: bid = 0;
15: end if
16: Submit bid to the auctioneer;
17: Receive the auction results from the auctioneer;
18: if robwinner �= robi and va ∈ Trs,i then
19: Delete va and its corresponding edge from Trs,i,

and reconstruct Trs,i;
20: Update V ∗

s,i and Ci;
21: end if
22: if robwinner = robi and va ∈ V ∗

s,i then
23: Add va and the optimal edge e∗s into Trs,i;
24: Update V ∗

s,i and Ci;
25: end if

According to Rule 1, if Gc and a robot’s spanning
tree are connected, vc will be auctioned and added
to a spanning tree after several iterations. An auc-
tioneer robot selects a neighbor vertex as an auction
vertex, and a bidder robot bids for a neighbor vertex
or a vertex in its spanning tree. Thus, the connect-
edness of each spanning tree can be ensured.
Lemma 2 Denote the number of free minimum
cells in the configuration space by x. Define cells
that share at least one point with the grid boundary
as boundary cells. Denote the number of boundary
cells by y. The total length of trajectories that are
planned by the A-STC algorithm is less than or equal
to (x+ y)D.
Proof When a path is planned by the single-robot
STC algorithm, its length is less than or equal to
(x + y)D. The A-STC algorithm partitions a whole
spanning tree into n spanning trees.

To promote the generality of the A-STC algo-
rithm, the method for selecting an auctioneer robot
is not specified. For example, each robot can become
an auctioneer in a particular order, or a robot which

has the minimum Ci will be selected as an auction-
eer. These two methods for selecting an auctioneer
robot are both effective for the A-STC algorithm.

In iterative auction processes (Fig. 4), vertexes
with unchanged estimated costs are assigned rapidly.
At the same time, robots’ spanning trees tend to
remain far away from each other. When the auc-
tioneer robot receives multiple bids (0 < bid < ∞)
from different robots, the estimated lengths of bid-
der robots’ trajectories can get close to each other
to meet constraint (6). The difference in estimated
lengths can decrease if an auction vertex has been
assigned. When an auction vertex is not assigned to
any robots, the minimum estimated length of robot
spanning trees that are adjacent to the auction ver-
tex will increase. The coverage trajectories will not
conflict with each other because an STC vertex is
assigned to only one robot.

Robot_1
Robot_2
Robot_3
Robot_4
Robot_5
Robot_6

(a) (b)

(c) (d)

Fig. 4 Progressions of spanning trees with k = 0

(a), k = 150 (b), k = 400 (c), and in the termination
condition (d) (References to color refer to the online
version of this figure)

The A-STC algorithm can determine the paths
that cover all minimum cells until all STC vertexes
have been assigned. Therefore, the maximum num-
ber of iterations, maxIter, must ensure that all ver-
texes can be auctioned. When maxIter is set as too
large a number, the proposed sleep mode can end the
A-STC algorithm to reduce invalid iterations.

The proposed A-STC algorithm is used to solve
the MCMP problem of n robots. Table 1 shows the
computational complexities of the processes in the
A-STC algorithm.
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Table 1 Computational complexities of the processes
in the auction-based spanning tree coverage (A-STC)
algorithm

Step Process Computational complexity

1 Initialization O(|Gf |)
2 Auctioneer selection O(n)

3 Auction process O(|Gf |2)
4 Bidding process O(|Gf |)
5 Trajectories generation O(|Gf |)

The worst-case time complexity of the A-STC
algorithm can be approximately expressed by

O(maxIter · (|Gf |2 + n)). (14)

4 Computational experiments and
analysis

This section is devoted to the performance in-
vestigation of the proposed algorithm. To simplify
descriptions, the velocity of the robot is assumed to
be D in the whole section. A low boundary (LB)
of an MCMP problem’s solution is defined as the
minimum number of reachable cells that are covered
by each robot. The MCMP problem, which is an
NP-hard problem, cannot easily determine the op-
timal solution when the instance size is large. LB
is used in this section to evaluate a solution’s prox-
imity to the optimal solution. First, the effective-
ness of the proposed MCMP method and estimation
method is validated in different configuration spaces.
Second, to illustrate the generality of the A-STC al-
gorithm, different methods for selecting an auction-
eer robot are compared and discussed. Finally, the
A-STC algorithm is separately compared with the
GA and DARP algorithms (Kapanoglu et al., 2012;
Kapoutsis et al., 2017). GA can handle all configu-
ration spaces that are modeled by the grid decompo-
sition method. Nevertheless, the computation cost
of GA cannot be endured when the environment size
and the number of robots become large. The A-
STC algorithm is compared mainly with GA in terms
of the performance of small-scale MCMP problems.
The DARP algorithm, with low computation costs,
can handle the MCMP problem only in special con-
figuration spaces where all mega cells are totally oc-
cupied by free cells or obstacles. The A-STC algo-
rithm is also compared with the DARP algorithm in
these special configuration spaces. It should be high-
lighted that separate comparison experiments were

designed to illustrate different abilities of the A-STC
algorithm. The purpose of GA comparison experi-
ments is to verify the ability of the A-STC algorithm
to approximate the optimal solution in common con-
figuration spaces. The comparison experiments with
the DARP algorithm focused mainly on validating
the low computation cost of the A-STC algorithm.
A PC with Intel R© Xeon R© E5 @2.60 GHz and 32 GB
RAM was used for all computational experiments.
The A-STC algorithm compiled by C++ and the
DARP algorithm, written in Java, were provided by
Kapoutsis et al. (2017).

4.1 Experiment 1: validation effectiveness

Two situations with different environments and
robot positions are shown in Figs. 5 and 6. The con-
figuration spaces with random obstacles have 40×40
unit cells. Figs. 5b and 6b highlight the spanning
trees of all robots that are generated by the auction
mechanisms. Final trajectories of robots covering all
reachable areas are described in Figs. 5c and 6c. Ac-
cordingly, the adaptability of the proposed algorithm
to the configuration spaces and the number of robots
is verified.

A trajectory length is proportional directly to
the time spent by a robot that moves along the tra-
jectory. At the termination condition, the estimated
length of robi is denoted by Ct,i. The corresponding
estimated completion time can be calculated by the
estimated path length. Thus, to evaluate the effec-
tiveness of the proposed method for estimating the
trajectory length, a bias ratio of time is denoted by
Br as

Br =
max

i∈{1,2,...,n}
{Ct,i/D} − max

i∈{1,2,...,n}
Ti

max
i∈{1,2,...,n}

Ti
, (15)

where max
i∈{1,2,...,n}

{Ct,i/D} represents the estimated

makespan which is calculated by the proposed es-
timation method, and max

i∈{1,2,...,n}
Ti represents the

real makespan which is planned by the A-STC algo-
rithm. In the computational experiments, the above
two configuration spaces were used as test environ-
ments. A total of 200 experiments were carried out
for different numbers of robots. Fig. 7 shows the
relationships between the mean bias ratio of 200 ex-
periments and the number of robots. The number of
robots was up to ten. The bias ratio did not change
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Fig. 5 Initial positions (a), spanning trees (b), and trajectories (c) of robots in configuration space I (References
to color refer to the online version of this figure)
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Fig. 6 Initial positions (a), spanning trees (b), and trajectories (c) of robots in configuration space II
(References to color refer to the online version of this figure)

apparently with environments and the numbers of
robots. The maximum bias ratio was less than 0.08.
Therefore, the proposed estimation method is effec-
tive, and can be used in auction processes.

4.2 Experiment 2: sensitivity analysis of deci-
sion orders

The method for selecting an auctioneer in the A-
STC algorithm is equivalent to that for determining
a decision order. Different decision orders will cause
different solution qualities in multi-robot systems.
Thus, computational experiments were carried out
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Fig. 7 Bias ratio versus the number of robots

to validate the influences of decision orders on the al-
gorithm proposed in this paper. In the experiments,
the maximum number of robots was 10, the above
configuration spaces were adopted, and 200 different
decision orders were tested for each different number
of robots. In each decision order, every robot had the
same chance to be an auctioneer. According to the
statistical results (Fig. 8), the makespan of the cov-
erage task planned by the proposed algorithm was
insensitive to the decision order. The makespans of
200 different decision orders were very close to that
planned by the A-STC algorithm in the sequential
decision. Fig. 8 also shows a considerable decrease
in the makespan of the coverage task as the number
of robots increased. The effectiveness of the A-STC
algorithm is highlighted in Fig. 8.

4.3 Experiment 3: comparison with the ge-
netic algorithm

To test the A-STC algorithm’s performance in
different environments, some typical experimental
environments were applied. As shown in Fig. 9,
the experimental environments contained free, out-
door, bar maze, office, living room, and circular maze
(Gautam et al., 2015). Coverage rate Cr and re-
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Fig. 8 Statistical results with respect to different
decision orders in configuration spaces I (a) and II
(b) (References to color refer to the online version of
this figure)
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Fig. 9 Configuration spaces of the free (a), outdoor
(b), office (c), living room (d), bar maze (e), and
circular maze (f) environments

peated coverage Rc are introduced in this study to
investigate the algorithms’ performances:

Cr =
|{L1} ∪ {L2} ∪ . . . ∪ {Ln}|

|Gf | , (16)

Rc =

n∑

i=1

|Li| − |{L1} ∪ {L2} ∪ . . . ∪ {Ln}|
n∑

i=1

|Li|
, (17)

where |{L1}∪{L2}∪ . . .∪{Ln}| represents the num-
ber of all covered cells without repetition, |Gf | repre-
sents the number of all reachable cells, and

∑n
i=1 |Li|

represents the total number of cells in all robots’
trajectories including repeated covered cells. The
makespan and repeated coverage obtained by the A-
STC algorithm are shown in Table 2. In the A-STC
algorithm, robots with the minimum estimated cost
will be selected as the auctioneer. In the free and
living room environments, the makespan planned by
the A-STC algorithm is very close to LB. The re-
peated coverage of the A-STC algorithm increases
slowly as environments become complex. In the out-
door environment, the makespan of the A-STC algo-
rithm becomes apparently large due to the repeated
coverage. No matter how complex environments are,
the makespan decreases as the number of robots be-
comes large. GA’s parameters were set the same as
the parameters adopted by Kapanoglu et al. (2012).
Table 2 shows the experimental results in terms of
mean and standard deviation of final solutions’ ca-
pabilities within 10 independent runs obtained by
GA for the selected test instances. The computation
time of GA is very long. For example, the compu-
tation for the outdoor environment with 40×40 cells
requires eight hours. Thus, the comparative exper-
iments focused on small environments. Cr in the
A-STC algorithm is always equal to one because of
the completeness of the algorithm. For all instances,
the A-STC algorithm shows better performance than
GA in terms of the coverage rate. The makespan of
GA is not a real makespan when the corresponding
coverage rate is not equal to 1. The makespan is
equal to the time when all robots are stuck. Nev-
ertheless, the A-STC algorithm is significantly bet-
ter than GA when environments are complex or the
number of robots becomes large.

4.4 Experiment 4: comparison with the
DARP algorithm

The parameters of the A-STC and DARP al-
gorithms in the comparison experiments were set as
follows: The size of the configuration spaces ranged
from 16×16 to 100×100 units. The number of robots
varied from 2 to 80. Robots and obstacles were dis-
tributed randomly in the configuration space. All
mega cells in the configuration space were totally oc-
cupied by obstacles or free cells. In this situation,
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Table 2 Experimental results of the A-STC and genetic algorithms on the 15 instances

Type
Number of

robots
Space
size

Lower
bound (s)

A-STC algorithm Genetic algorithm

Makespan (s)
Repeated

Makespan (s)
Coverage Repeated

coverage rate coverage

Free

2 20 × 20 2.000×102 2.000×102 0×100
2.000×102 1.000×100 1.000×100

(0×100) (0×100) (0×100)

6 40 × 40 2.667×102 2.680×102 0×100
2.725×102 1.000×100 1.531×10−2

(1.55×100) (0×100) (5.343×10−3)

8 40 × 40 2.000×102 2.040×102 0×100
2.094×102 9.998×10−1 3.28×10−2

(2.629×100) (4.167×10−4) (1.02×10−2)

Outdoor

4 30 × 30 1.845×102 2.440×102 2.683×10−1 2.434×102 9.749×10−1 2.432×10−1

(8.542×100) (9.44×10−3) (1.686×10−2)

6 40 × 40 2.127×102 2.980×102 3.668×10−1 3.211×102 9.725×10−1 3.076×10−1

(1.421×101) (9.649×10−3) (1.754×10−2)

8 40 × 40 1.595×102 2.340×102 4.013×10−1 2.558×102 9.758×10−1 3.078×10−1

(1.529×101) (7.526×10−3) (1.465×10−2)

Bar
maze

3 30 × 30 2.480×102 2.760×102 9.812×10−2 2.747×102 9.972×10−1 5.424×10−2

(7.76×100) (4.235×10−3) (1.975×10−2)

6 30 × 30 1.240×102 1.380×102 7.527×10−2 1.375×102 1.000×100 4.610×10−2

(2.62×100) (0×100) (1.014×10−2)

Office

4 40 × 40 3.178×102 3.760×102 1.660×10−1 3.845×102 9.826×10−1 1.622×10−1

(1.459×101) (1.210×10−2) (1.768×10−2)

6 40 × 40 2.118×102 2.480×102 1.660×10−1 2.737×102 9.880×10−1 1.952×10−1

(7.508×100) (5.147×10−3) (1.110×10−2)

8 40 × 40 1.589×102 1.880×102 1.715×10−1 2.118×102 9.878×10−1 2.002×10−1

(6.383×100) (7.700×10−3) (2.153×10−2)

Living
room

2 20 × 20 1.515×102 1.620×102 6.271×10−2 1.625×102 9.948×10−1 6.957×10−2

(1.819×100) (3.590×10−3) (1.193×10−2)

4 20 × 20 7.575×101 8.400×101 7.591×10−2 8.593×101 9.967×10−1 8.216×10−2

(6.892×100) ( 4.667×10−3) (1.680×10−2)

Circular
maze

2 30 × 30 3.290×102 3.920×102 1.626×10−1 3.428×102 9.500×10−1 6.637×10−2

(3.007×101) (5.475×10−2) (3.046×10−2)

8 30 × 30 8.225×101 1.120×102 1.748×10−1 1.094×102 9.968×10−1 1.074×10−1

(7.47×100) (4.265×10−3) (5.016×10−2)

the trajectory generated by the STC algorithm did
not have any repeated coverage, and in some cases,
the optimal makespan of the MCMP problem was
equal to LB. In the A-STC algorithm, each robot
became an auctioneer in sequence. The maximum
number of iterations of the auction-based STC algo-
rithm was set to be 0.375|Gf |. To make the DARP
algorithm iterate sufficiently, the maximum number
of iterations of the DARP algorithm was set to be
80 000, which is larger than 0.375|Gf |.

The results obtained during computational ex-
periments are presented in Table 3. The sizes of
the tested instances are classified as small, medium,
and large scales. In the small- and medium-scale
instances without obstacles, the A-STC and DARP
algorithms both had a good ability to approximate
the optimal solution. The A-STC algorithm can

obtain an acceptable solution rapidly for large-scale
instances without obstacles. In contrast, the DARP
algorithm, which has a great ability of global opti-
mization, can obtain a better makespan of the cov-
erage task in more computation time. In some situa-
tions, the DARP algorithm cannot divide the target
areas. The termination condition of the DARP algo-
rithm is when the makespan of the planned solution
is equal to LB. In the large-scale instance, LB is not
always close to the optimal value; thus, the DARP
algorithm is hard to converge. One termination con-
dition for the A-STC algorithm is that all robots are
in sleep mode, and the A-STC algorithm can obtain
coverage trajectories in all tested situations. In sum-
mary, the A-STC algorithm is complete for every
instance, and it can find nearly optimal solutions in
less time to obtain paths covering all reachable areas.
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Table 3 Experimental results of the A-STC and DARP algorithms on the 16 instances

Instance
size

Number of
robots

Space
size

Number of
obstacles

Lower
bound (s)

A-STC algorithm DARP algorithm

Makespan Running Makespan Running
(s) time (s) (s) time (s)

Small

2 20×20 0 2.000×102 2.000×102 4.000×10−3 2.000×102 5.000×10−3

7 30×30 0 1.285×102 1.320×102 1.800×10−2 1.320×102 1.997×10−1

5 16×16 20 4.720×101 4.800×101 1.000×10−3 4.800×101 1.700×10−2

7 30×40 164 1.480×102 1.760×102 4.200×10−2 * *

Medium

10 64×44 0 2.816×102 2.840×102 2.500×10−1 2.840×102 5.004×10−1

15 64×64 0 2.730×102 2.760×102 1.100×10−1 2.760×102 1.981×100

20 64×64 0 2.048×102 2.080×102 2.220×10−1 2.080×102 6.767×100

10 64×48 320 2.752×102 2.800×102 8.200×10−2 2.760×102 7.275×10−1

15 64×64 640 2.304×102 2.440×102 6.130×10−1 2.320×102 1.151×101

20 64×64 1272 1.412×102 1.640×102 2.860×10−1 1.480×102 6.583×100

Large

40 80×80 0 1.600×102 2.040×102 1.016×100 1.600×102 1.342×103

60 100×100 0 1.667×102 1.840×102 1.737×100 1.680×102 5.947×102

80 100×100 0 1.250×102 1.440×102 1.126×100 * *
40 80×80 1204 1.299×102 1.520×102 5.750×10−1 * *
60 100×100 1612 1.398×102 1.760×102 3.956×100 * *
80 100×100 1612 1.049×102 1.200×102 7.130×10−1 * *

∗ means that the algorithm cannot return a result within the limited number of iterations

5 Conclusions and future work

In this paper, we have described the MCMP
problem. An A-STC algorithm that contains an auc-
tion mechanism was proposed to manage multiple
spanning trees. In the proposed algorithm, the span-
ning tree of every robot can be generated rapidly.
The A-STC algorithm ensures the connectedness of
each spanning tree, and tries to balance the work-
load among robots. The validity and adaptability of
the A-STC algorithm to different environments and
robot positions were verified by computational ex-
periments. Comparative experiments with the GA
and DARP algorithms showed that the A-STC algo-
rithm has advantages in large complex configuration
spaces and in terms of running time. In the future,
we will investigate the MCMP problem with different
robot coverage ranges. The different coverage ranges
will mean that robots cannot auction vertexes in the
same graph.
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