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Abstract: Although standard iterative learning control (ILC) approaches can achieve perfect tracking for active
magnetic bearing (AMB) systems under external disturbances, the disturbances are required to be iteration-invariant.
In contrast to existing approaches, we address the tracking control problem of AMB systems under iteration-variant
disturbances that are in different channels from the control inputs. A disturbance observer based ILC scheme
is proposed that consists of a universal extended state observer (ESO) and a classical ILC law. Using only
output feedback, the proposed control approach estimates and attenuates the disturbances in every iteration. The
convergence of the closed-loop system is guaranteed by analyzing the contraction behavior of the tracking error.
Simulation and comparison studies demonstrate the superior tracking performance of the proposed control approach.

Key words: Active magnetic bearings (AMBs); Iterative learning control (ILC); Disturbance observer
https://doi.org/10.1631/FITEE.1800558 CLC number: TP27; TH133

1 Introduction

The maglev rotor system is collectively related
to magnetic bearings (MBs), which make the ro-
tor rotate without friction. MBs can be classified
into active magnetic bearings (AMBs) and passive
magnetic bearings (PMBs), of which AMBs pro-
vide some unique characteristics, including high ro-
tation speed, low bearing losses, and lack of mechan-
ical wear. Therefore, AMBs have attracted much
attention in their broad applications such as vac-
uum pumps (Noh et al., 2005), spacecraft actuators
(Sawada et al., 2001; Yu et al., 2015; Matsumura
et al., 2016), and pumps that transport liquid in
environments that have high cleanliness standards,
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like artificial hearts (Lee et al., 2003).

Disturbances exist widely in different AMB sys-
tem processes, such as vibration of the external sys-
tem, exogenous noises, and measurement uncertain-
ties. These disturbances can severely affect the per-
formance of the system, and even damage mechanical
parts when a shaft rotates at an ultra-high speed.
Thus, it is essential for AMBs to attenuate the ef-
fect of exogenous disturbances. There are many
approaches that deal with the disturbance rejection
of the AMB system. Matsumura et al. (1996) ap-
plied a loop-shaping design procedure to asymptoti-
cally reject disturbances caused by an unbalanced ro-
tor. Lindlau and Knospe (2002) introduced an aug-
mented linearized suspension plant and used a robust
μ synthesis controller to counteract the independent
disturbance force based on a feedback linearization
model of voltage-controlled AMBs. Hong and Lan-
gari (2000) proposed a nonlinear magnetic bearing
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represented by a Takagi-Sugeno-Kang robust fuzzy
model, in which harmonic disturbances and param-
eter uncertainties were considered.

However, for these modern robust control de-
signs, the response of the system is not fast enough,
and it is not easy for them to overcome severe plant
uncertainties or disturbances because they cannot
directly suppress system disturbances (Yang and
Zheng, 2014). Meanwhile, disturbances of the ac-
tual AMB system exist periodically or have inher-
ent characteristics, such as harmonics, which are not
easily or promptly attenuated by traditional con-
trol designs. For these reasons, composite proto-
col combined modern control strategies with novel
direct disturbance rejection tools, known as distur-
bance observers, have become more popular in re-
cent years. These tools provide direct observation
and rejection of system disturbances, and are con-
sidered a promising solution to address the intrinsic
constraints of traditional feedback diagrams, such as
nominal performance versus robustness (Chen et al.,
2016). The superiority and convenience of distur-
bance observers have inspired researchers to explore
their application in a magnetic bearings system. Yu
et al. (2018b) proposed a disturbance observer based
method that can attenuate the synchronous vibra-
tion of a magnetically suspended wheel. Yu et al.
(2017) designed another instance of active vibration
control of magnetically suspended wheels based on
an active shaft deflection method. Peng et al. (2015)
divided a dynamic AMB system into two equal parts,
and used a robust controller and a disturbance ob-
server to attenuate both matched and unmatched
disturbances.

Most of the AMB system literature focuses on
system stability issues, but does not deal with sus-
pension tracking problems for suppression of the
noise due to the relative motion of outer con-
structions. Some researchers discuss AMB system
tracking problems. Yu et al. (2018a) discussed
sliding mode based methods to deal with unmod-
eled matched coupling disturbances. Chladny and
Koch (2008) proposed a nonlinear reduced-order dis-
turbance observer incorporated into flatness-based
tracking control. However, the AMB system mo-
tion is periodic and repetitive, so it is essential to
consider repetitive-variant disturbances. Iterative
learning control (ILC) is a type of system control
that processes control tasks by repeatedly adjusting

the control input. In each cycle, it processes the
set algorithm from the error information collected in
the previous or current cycle, thus leading the sys-
tem offset to finally converge to zero. The controller
acts like this to ensure that the system can follow
specific trajectories. Broad applications have been
implemented using the ILC algorithm. Bolder et al.
(2012) successfully implemented the ILC algorithm
in an inkjet printer. Baßler et al. (2015) described an
application of a multi-body service robot combined
with the ILC protocol. A dual-stage ILC system
has been introduced to improve the performance of
a multi-input multi-output (MIMO) unmatched sys-
tem in joint elasticity robots, and there has been
large-scale research on improving the ILC system.
An overview of the development of the ILC system
was available in Ahn et al. (2007). ILC is also widely
applied in systems where similar tasks are repeated,
such as motors (Mandra et al., 2015) and robotics
(Zhao et al., 2015). It is also convenient to apply the
ILC scheme in the AMB system to perform track-
ing goals cycle by cycle while rejecting exogenous
disturbances.

Nevertheless, for the AMB system, the varia-
tion in the perturbation caused by shaft vibration
would be hard for ILC to deal with alone. Because
traditional ILC systems are focused on repetitive dis-
turbances, there is no simple solution for a system
with non-repetitive perturbation, such as random vi-
bration in every period (Sun et al., 2014). On the
other hand, for voltage-controlled AMBs, which are
more widely used and affordable in real life, analy-
sis shows that exogenous force disturbances usually
affect the acceleration of the motion system, which
is in a channel that is different from the control in-
put. This is what we call the unmatched distur-
bance problem. The extended state observer (ESO)
can actively estimate system disturbances without
actual sensors, and requires only system input and
output information. Thus, it is ideal for application
in the AMB system. It is proved that ESO-based
control can dynamically attenuate unmatched dis-
turbances and improve the performance of systems
that suffer from undesirable uncertainties. There-
fore, in this study, an extended disturbance observer
is introduced and combined with an ILC scheme to
estimate and reject exogenous unmatched iteration
variation disturbances of the AMB system.
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2 Problem formulation

Active magnetic bearings are usually built in five
degrees of freedom (DOFs), with two radial transla-
tional DOFs, two radial torsional DOFs, and an axial
translational DOF. The unbalanced factors, includ-
ing vibration, external noises, and non-alignment
between the mass center and the geometric center,
could lead to runout of the rotor (Bi et al., 2005).
Each of the translational DOFs can be an explicit
single-degree-of-freedom (SDOF) model controlled
by active electromagnets, while the control current
operating the exogenous force is applied on the bear-
ings. Thus, in this study, an unbalanced tracking
problem for the radial SDOF model of AMBs is con-
sidered. Kucera (1997) proposed an SDOF nonlinear
model of the AMBs (Fig. 1). Exogenous disturbances
are in the form of external force Fs.
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Fig. 1 Active magnetic bearing (AMB) model

In Fig. 1, rotor displacement along the x axis is
controlled by two electromagnetic poles working in
differential mode. Control voltages u1 and u2 gener-
ate winding currents i1 and i2 of the upper pole and
down pole, respectively, bringing magnetic forces F1

and F2, respectively. The external disturbance force
is represented by Fs, while x0 refers to the displace-
ment when the rotor is in an equilibrium position.
The magnetic gap lengths are represented by x1 and
x2, while x is the displacement deviation along the x

axis.

According to the Newton laws, the motion

equation of the rotor can be derived as

mẍ = F1 − F2 + Fs, (1)

where m is the mass of the rotor. According to the
Ampere law, we have

Fj =
K

4

(
ij
xj

)2

, j = 1, 2, (2)

where K = μ0N
2A, and μ0, N, and A refer to the

vacuum permeability, number of turns, and surface
area, respectively.

As x1 = x0 + x, x2 = x0 − x, i1 = i0 + i, and
i2 = i0 − i, we conclude that the electromagnetic
force is

F1 − F2 =
K

4

((
i1
x1

)2

−
(
i2
x2

)2
)

=
K

4

((
i0 + i

x0 + x

)2

−
(

i0 − i

x0 − x

)2
)
.

(3)

Now, we linearize Eq. (3) at around x = x0 and
i = i0 via the Taylor expansion, and can obtain

F1 − F2 =
μ0N

2Ai0
x2
0

i− μ0N
2Ai20

x3
0

x = ksx+ kii,

(4)
where

ks = −K

2

i20
x3
0

, ki =
K

2

i0
x2
0

.

The voltage drop of the system can be determined as

u = Ri+ Ls
di

dt
+ ki

dx

dt
, (5)

where R and Ls are the referred resistance and in-
ductance of the magnetic coils, respectively (Bleuler
et al., 2009).

If we define velocity as v = ẋ, then the system
states can be expressed as x = [x, v, i]T. The third-
order state equation we obtain can be described as

ẋ =

⎡
⎢⎣

0 1 0
2ks

m 0 2ki

m

0 −ki

Ls

−R
Ls

⎤
⎥⎦x+

⎡
⎢⎣
0

0
1
Ls

⎤
⎥⎦u+

⎡
⎣ 0

1
m

0

⎤
⎦Fs.

(6)

Putting it in the state-space form, we have{
ẋk(t) =Axk(t) +Buuk(t) +Bddk(t),

yk(t) =Cxk(t),
(7)

where yk(t), xk(t), uk(t), and dk(t) represent the
kth iteration displacement output, system state,
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control input, and external disturbances, respec-
tively. Define x(t+ kJ) = xk(t), d(t+ kJ) = dk(t),
and u(t+ kJ) = uk(t), where t ∈ [0, J ], k ∈ N, and
J is a positive constant. Meanwhile, A, Bu, Bd, and
C represent the system matrix parameters; refer to
Eq. (6), of which C = [1, 0, 0].

From the above state space form expression of
the SDOF-AMB kinematic model, it can be found
that all external constant factors, such as the mass
of the rotor, are offset by part of the electromag-
netic force, which comes from the bias current, or
permanent magnetic force for some other traditional
passive MBs. Therefore, control schemes need to be
applied for adjustment of the electromagnet voltages,
because it can easily be seen that the system is an un-
stable open loop. However, for most traditional con-
trol schemes like the proportional-integral-derivative
(PID) controller, system runout would occur in cer-
tain initial conditions in a real system, caused by
the non-alignment of the geometric center and mass
center (Bi et al., 2005). Iterative learning schemes,
referred to as ILC, can actively stabilize the system
by refining the control input from the error infor-
mation obtained by the previous cycle. Its repet-
itiveness can also compensate for the perturbation
by tuning the control signal. For the AMB sys-
tem, the designed ILC can generate a specific force
to adjust the motion state of the bearings with the
error information provided by the position sensors.
The traditional ILC does not make direct use of dis-
turbance information, but uses error information to
compute the control input, which makes it difficult
to deal with iteration-variant disturbances. Hence,
it is essential to add the disturbance observer to ob-
serve and compensate for variant disturbances in ev-
ery cycle; as for the real AMB system, perturbation
mostly appears with random amplitude rather than a
periodic signal.

3 Mismatched disturbance estimation
and rejection of an active magnetic
bearing system

3.1 Common extended state observer design

Disturbance observer based control (DOBC) has
been widely proposed in the literature, and there is
a detailed overview of diverse forms of disturbance
observer design and related methods in Chen et al.

(2016). ESO is a kind of disturbance observer that
can be designed with a minimum requirement of sys-
tem information, which makes it widely applied and
studied in various areas. For the proposed linear
AMB system, only the order of the plant is required.
A common ESO is formulated as follows.

Consider a system with order n:
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

q̇1 = q2,

q̇2 = q3,

...

q̇n = a1q1 + . . .+ anqn + cω + bu,

p = q1,

(8)

where ω and u refer to disturbances and system in-
put, respectively. It can be written as the state-space
form: {

q̇ = Āq + B̄uu+ B̄dω,

p = C̄q,
(9)

where q = [q1, q2, . . . , qn]
T,

Ā =

⎡
⎢⎢⎢⎣
0 1 0 . . . 0

0 0 1 . . . 0
...

...
...

...
a1 a2 a3 . . . an

⎤
⎥⎥⎥⎦ ,

B̄u = [0, 0, . . . , b]T,

B̄d = [0, 0, . . . , c]T,

C̄ = [1, 0, . . . , 0].

Then we augment the proposed equation by adding
the state qn+1 = a1q1 + a2q2 + . . .+ anqn + cω,
and thus obtain q̇n = qn+1 + bu, q̇n+1 = a1q̇1
+ . . .+ anq̇n + cω̇. An ESO can be designed as

Ż = [ż1, ż2, . . . , żn+1]
T = MZ +Np+Du, (10)

where

M =

⎡
⎢⎢⎢⎢⎢⎢⎣

−α1 1 0 . . . 0

−α2 0 1 . . . 0
...

...
...

...
−αn 0 0 . . . 1

−αn+1 0 0 . . . 0

⎤
⎥⎥⎥⎥⎥⎥⎦
,

N = [α1, α2, . . . , αn+1]
T, D = [0, . . . , b, 0]

T, where
zi (i = 1, 2, . . . , n) represent the estimates of the orig-
inal system states, and αi (i = 1, 2, . . . , n) represent
the observer gains that need to be designed.
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Thus, the estimation error can be calculated by
subtracting the estimation value from the proposed
system equations as

Ė =

⎡
⎢⎢⎢⎣

ė1
ė2
...

ėn+1

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎣

−α1 1 0 . . . 0

−α2 0 1 . . . 0
...

...
...

...
−αn 0 0 . . . 1

−αn+1 0 0 . . . 0

⎤
⎥⎥⎥⎥⎥⎥⎦
E

+

⎡
⎢⎢⎢⎣

0 0 . . . 0 0

0 0 . . . 0 0
...

...
...

...
−a1 −a2 . . . −an 0

⎤
⎥⎥⎥⎦ q̇n+1 +

⎡
⎢⎢⎢⎣
0

0
...
c

⎤
⎥⎥⎥⎦ ω̇.

(11)
With a properly chosen observer gain, it was proved
in Liu and Li (2012) that the stability is guaranteed if
the system states, disturbances, and their derivatives
are bounded.

3.2 Universal extended state observer design

However, for traditional ESO design, the pro-
posed AMB model does not satisfy the standard
form, because there is no integral framework. Mean-
while, for the AMB system, the exogenous distur-
bance force is applied in a different channel than
the control input, which is widely known as the un-
matched case. It is difficult to apply the standard
DOBC form in a system with unmatched lumped
disturbances.

Using system (7), a fundamental DOBC
composite controller can be designed in the form of

u∗
k(t) = uk(t)− zn+1

b
, (12)

where uk(t) is the controller designed to achieve
system stability or for tracking purposes. Thus, it
can obviously be observed that a direct compensa-
tion design cannot attenuate the influence of lumped
disturbances from the output channel.
Remark 1 Although disturbances here can still be
estimated, direct rejection is not applicable. There-
fore, a generalized composite controller can be de-
signed in the form u∗

k(t) = uk(t) +Kdω̂, and a new
controller gain Kd is calculated to attenuate the
unmatched disturbances.

A generalized ESO can evolve from a framework
similar to the basic ESO. If we define a new system
state xn+1 = dk in system plant (7), an augmented

plant can be acquired as
{

˙̃xk(t) = Ãx̃k(t) + B̃uuk(t) + B̃dḋk(t),

yk(t) = C̃x̃k(t),
(13)

where
x̃k(t) = [x1, x2, . . . , xn+1]

T,

Ã =

[
An×n (Bd)n×1

01×n 01×1

]
, B̃u = [(Bu)1×n,0]

T,

B̃d = [01×n,1]
T, C̃ = [C1×n,0].

In terms of realizing a generalized ESO design, the
following assumptions are proposed:
Assumption 1 The disturbance dk and its deriva-
tion ḋk are bounded, i.e., ||dk(t)||2 ≤ H1,||ḋk(t)||2 ≤
H2 for any k ∈ N over t ∈ [0,∞), where H1 and
H2 are positive constants, while the exogenous dis-
turbance converges to a constant value during one
period of the iterative cycle, i.e., limt→T ḋk(t) = 0.
Assumption 2 (Ã, C̃) is observable.

A universal ESO can be designed as
{

˙̂
x̃k(t) = Ã ˆ̃xk(t) + B̃uuk(t) +L (yk(t)− ŷk(t)) ,

ŷk(t) = C̃x̃k(t),

(14)
where L is the observer gain to be designed. Com-
paring an augmented system with a generalized
ESO, the estimation error can be obtained by the
difference between two equations:

Ėg = (Ã−LC̃)Eg − B̃uḋk(t), (15)

where Eg = [x1, x2, . . . , xn, dk]
T refers to the vector

included estimation error information on the system
state and exogenous disturbances.
Lemma 1 (Li et al., 2012) Supposing Assump-
tions 1 and 2 hold for Eq. (13), the error vector Eg is
bounded if observer gain L is chosen to ensure that
(Ã− LC̃) is Hurwitz.

4 Iterative learning control

4.1 Iterative learning control framework

The basic idea for ILC is to create the control
input of the present cycle by processing input and
error information collected in the past and present
cycles. In other words, it is a method that processes
repetitive tasks based on the transient response of
different sessions. Therefore, it is ideal to deal with
repetitive work plant control problems. Recalling
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the state-space AMB system (7), we have

{
ẋk(t) = Axk(t) +Buuk(t) +Bddk(t),

yk(t) = Cxk(t).
(16)

Assumption 3 xk(0) = 0, for any k ∈ N.
Assumption 4 (A,Bu) is controllable.

Suppose Assumptions 1–4 hold for Eq. (7) when
t ∈ [0, J ], where J is a positive constant (Sun and Li,
2017). The aim of the ILC system is to find an input,
uk(t), to ensure that the trajectory yk converges to
the real trajectory yr, when the cycles tend to infin-
ity. The kth iteration tracking error ek(t) is defined
by ek(t) = yr(t)− yk(t).

Considering a classical ILC system like the
following (Arimoto et al., 1984):

uk(t) = uk−1(t) + Pek(t) +Qek−1(t), (17)

where P and Q are the iterative learning gains that
need to be designed, it can be simply derived that
the initial status is u0(t) = 0.

4.2 Tracking performance analysis

To derive tracking errors, the Laplace transform
is applied to Eq. (7):

{
sXk(s) = AXk(s) +BuUk(s) +BdDk(s),

Yk(s) = CXk(s),
(18)

Xk(s) = (sI−A)−1BuUk(s)+(sI−A)−1BdDk(s),

(19)

Yk(s) =CXk(s) = C(sI −A)−1BuUk(s)

+C(sI −A)−1BdUk(s)

=Θ1(s)Uk(s) +Θ2(s)Dk(s),

(20)

where {
Θ1(s) = C(sI −A)−1Bu,

Θ2(s) = C(sI −A)−1Bd.
(21)

The tracking error can be obtained by calculating
the difference between the reference trajectory and
the control output of every cycle. Let yr(t) be the
reference signal, and Yr(s) the Laplace transform of
yr(t). The tracking error can be represented as

Ek(s)−Ek−1(s) = Yk(s)−Yr(s)− (Yk−1(s)−Yr(s)),

(22)

Ek(s) =Yk(s)− Yk−1(s) + Ek−1(s)

=Ek−1(s)− (Θ1(s)Uk−1(s) +Θ2(s)Dk−1(s))

+ (Θ1(s)Uk(s) +Θ2(s)Dk(s))

=Ek−1(s) +Θ1(s)(Uk(s)− Uk−1(s))

+Θ2(s)(Dk(s)−Dk−1(s)).

(23)
According to Eq. (17), Uk(s)−Uk−1(s) = PEk(s) +

QEk−1(s) can be obtained. Hence, we can derive

Ek(s) =(1 +Θ1(s)P )−1Θ2(s)(Dk(s)−Dk−1(s))

+
(
(1 +Θ1(s)P )−1(1−Θ1(s)Q)

)
Ek−1(s).

(24)
Theorem 1 For the designed ILC system,
the tracking error converges asymptotically to
a specific value if the learning parameters
P and Q are set properly to ensure that
||(1 +Θ1(s)P )−1(1 −Θ1(s)Q)||∞ ≤ 1.
Proof From Eq. (24), we have

||ek(t)||2
≤||(1 +Θ1(s)P )−1(1−Θ1(s)Q)||∞||ek−1(t)||2
+ ||(1 +Θ1(s)P )−1Θ2(s)||∞||dk(t)− dk−1(t)||2.

(25)
It is clear that ||(1 + Θ1(s)P )−1(1 − Θ1(s)Q)||∞
and ||(1 +Θ1(s))

−1Θ2(s)||∞ are bounded. Con-
sider that the second term of inequality (25) is
bounded due to Assumption 1, and thus the conver-
gence of the ILC tracking error depends on the term
||(1 +Θ1(s)P )−1(1 −Θ1(s)Q)||∞||ek−1(t)||2. As-
sume that the second term of inequality (25) is
bounded with

||(1 +Θ1(s))
−1Θ2(s)||∞||dk(t)− dk−1(t)||2 ≤ S1.

(26)
There exists R that satisfies

||(1 +Θ1(s)P )−1(1−Θ1(s)Q)||∞ ≤ R < 1.

In such a way, combined with inequality (26), we
have

||ek(t)||2 ≤ R||ek−1(t)||2 + S1

≤ R2||ek−2(t)||2 +RS1 + S1

≤ R3||ek−3(t)||2 +R2S1 +RS1 + S1

...

≤ Rk||e0||2 + S1

k−1∑
n=0

Rn.

(27)
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From the first term of inequality (27), ||e0(t)||2 is
bounded, and

||(1 +Θ1(s))
−1Θ2(s)||∞||dk(t)− dk−1(t)||2 ≤ S1.

According to the sum algorithm of the geometric
sequence, it can be concluded that the convergence
of both terms is ensured if R < 1.
Remark 2 If and only if S1 = 0, namely, the
exogenous disturbances are iteration-invariant, the
learning gains P and Q can be chosen so
that ||(1 +Θ1(s)P )−1(1−Θ1(s)Q)||∞ ≤ 1, and the
tracking error would converge to zero.

5 Composite iterative learning control

The tracking performance of the traditional ILC
system was proved in Section 4. The universal ESO
design in Section 3 provides a solution to attenu-
ate disturbances in a different channel with control
input.

Recall the generalized ESO composite con-
troller. A similar form of the composite disturbance
controller can be written as

ūk(t) = uk(t) + T d̂k(t), (28)

where T is the disturbance compensation gain that
needs to be designed, and d̂k(t) refers to the esti-
mated iteration-variant disturbances.

If we replace new input Eq. (28) into the original
AMB system (7), the Laplace transformed system
tracking error can be displayed as

Ek(s) =Yr(s)− Yk(s)− (Yr(s)− Yk−1(s)) + Ek−1(s)

=Yk−1(s)− Yk(s) + Ek−1(s)

=Ek−1(s)− (Θ1(s)Ūk +Θ2(s)Dk(s))

+ (Θ1(s)Ūk−1(s) +Θ2(s)Dk−1(s))

=Ek−1(s) +Θ1(s)(Ūk−1(s)− Ūk(s)),
(29)

and based on Eqs. (17) and (28), it can be derived
that

Ek(s) =Θ2(s)(Dk−1(s)−Dk(s))

=− (1 +Θ1(s)P )−1Θ2(s)

· (Dk−1(s)−Dk(s)− (D̂k−1(s)− D̂k(s))
)

+
(
(1 +Θ1(s)P )−1(1−Θ1(s)Q)

)
Ek−1(s)

+
(
(1 +Θ1(s)P )−1(TΘ1(s) +Θ2(s))

)
· (D̂k−1(s)− D̂k(s)).

(30)

Theorem 2 For the designed composed control
system (28) with proper compensation gain T , the
tracking error would be significantly reduced if the
learning parameters P and Q are set to ensure that
||(1 +Θ1(s)P )−1(1 −Θ1(s)Q)||∞ ≤ 1.
Proof Likewise, based on the analysis in Section 4,
we have
||ek(t)||2 ≤
||(1 + Θ1(s)P )−1(1−Θ1(s)Q)||∞||ek−1(t)||2
+ ||dk−1(t)− dk(t)− d̂k−1(t) + d̂k(t))||2
· ||(1 +Θ1(s))

−1Θ2(s)||∞
+ ||dk−1(t)− dk(t)||2
· ||(1 +Θ1(s)P )−1(TΘ1(s) +Θ2(s))||∞.

(31)

It is obvious that the second and third terms are
bounded when Assumptions 1 and 2 are satisfied.
Assume

||dk−1(t)− dk(t)− d̂k−1(t) + d̂k(t))||2
· ||(1 +Θ1(s))

−1Θ2(s)||∞ + ||dk−1(t)− dk(t)||2
· ||I +Θ1(s)P

−1
(
TΘ1(s) +Θ2(s)

)||∞ ≤ S2.
(32)

It is proved in inequality (27) that the conver-
gence of ek depends on the proper choice of learn-
ing gains P and Q to ensure R < 1. The same
results hold for inequality (32). The variable R

here refers to the maximum value of the term
||(1 +Θ1(s)P )−1(1 −Θ1(s)Q)||∞. Back to inequal-
ity (32), if the disturbance compensation gain is set
as

T =
(
C(sI −A)−1Bu

)−1
C(sI −A)−1Bd, (33)

together with inequality (32), we can obtain

||dk−1(t)− dk(t)− d̂k−1(t) + d̂k(t))||2
· ||(1 +Θ1(s))

−1Θ2(s)||∞
=||(dk−1(t)− d̂k−1(t))− (d̂k(t)− dk(t))||2
· ||(1 +Θ1(s))

−1Θ2(s)||∞ ≤ S2,

(34)

and substituting it into inequality (31) gives

||ek(t)||2 ≤ Rk||e0(t)||2 + S2

k−1∑
n=0

Rn ≤ S2 − S2R
k−1

1−R
.

(35)
Remark 3 Comparing inequalities (27) and (35),
it can be seen that the tracking error of composite
ILC is much smaller, because the estimation error of
disturbances (dk−1(s)− d̂k−1(s))− (d̂k(t)− dk(t))

is surely smaller than (dk−1(s)− dk(t)) if the ESO is
properly designed.
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6 Simulation results

An AMB plant was built with the composite ILC
system, based on the model that has been described.
To prove the efficiency and superiority of the compos-
ite control scheme, iterative-variant-exogenous dis-
turbances were introduced in the simulation, and
the performance of each control scheme is shown and
compared.

System parameters were set as:
ks = 9.5× 105 N/m, ki = 675 N/A, m = 15 kg,
Ls = 0.025 H, R = 12 Ω, and thus the state-space
model can be calculated.

The learning gain can be designed in PI form,
which is Q(s) = 0.5 + 1

s , P = 1.5 + 2.5
s , and thus

||(1 +Θ1(s)P )−1(1−Θ1(s)Q)||∞ ≤ R < 1 is satis-
fied, and the disturbance compensation gain can be
designed according to Eq. (33). The disturbance esti-
mation gain is set as L = [−547.2,−340,−40,−60]T.
The iteration-variant disturbance force was set as

dk(t) = 0.01k + 0.001ke(−2t−1.4k)sin(2t− k),

where t ∈ [0, 0.01] and k ∈ N. Two sets of different
reference trajectories were used in the simulation to
prove the superiority and efficiency of the proposed
control scheme.

The step response tracking performance of r =

0.5 mm is shown in Figs. 2a–2d. The rotor posi-
tion trajectories under different control schemes at
four different iteration cycles (k = 2, 5, 10, and30)
were demonstrated. It can be seen that the oscil-
lation of the system trajectories gradually decreased
for both systems, with the effect of the ILC algo-
rithm. However, traditional ILC cannot offset the
steady-state error, because the variability of the dis-
turbances makes ||dk−1(t) − dk(t)||2 a variant value
cycle by cycle. The composite control system, which
combines ESO and ILC, quickly attenuated the dis-
turbances, significantly reducing the steady-state
error.

Figs. 3a–3d demonstrate the system tracking
performance under the harmonics input reference

r = 0.5× 10−3(1 − e−1200t)sin(3 × 103t),

where t ∈ [0, 0.01], k ∈ N. It can be seen that the
oscillation at the beginning of every cycle decreased
as the number of cycles increased, and the system
responses of two diverse control schemes show the
same convergence rate. From both input signals, it
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Fig. 2 Step tracking performance comparison for k=2
(a), k=5 (b), k=10 (c), and k=30 (d) (ILC: iterative
learning control; ESO: extended state observer)

can be seen that traditional ILC can roughly track
the references with a steady-state error, while the
observer-based composite control can reject exoge-
nous disturbances to realize a more precise track-
ing goal. The influence of iteration-variant distur-
bance is proven to be eliminated. Compared to
some existing results, the closed-loop-composite ILC
can track set trajectories while rejecting exogenous
disturbances.
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Fig. 3 Harmonics tracking performance comparison
for k=2 (a), k=5 (b), k=10 (c), and k=30 (d) (ILC:
iterative learning control: ESO, extended state ob-
server)

7 Conclusions

In this study, a linearized model of voltage con-
trolled AMBs has been analyzed under unmatched
external disturbances. Then an integrated con-
trol scheme was proposed that combines a uni-
versal extended state observer and Arimoto-ILC
and solves the unmatched problem improving the

iteration-variant disturbance rejection ability, com-
pared with the standard ILC system. Simulation re-
sults demonstrated that the proposed methods can
achieve reference tracking while significantly atten-
uating the influence of unmatched-iteration-variant
disturbances.

References
Ahn HS, Chen YQ, Moore KL, 2007. Iterative learning

control: brief survey and categorization. IEEE Trans
Syst Man Cybern Part C, 37(6):1099-1121.
https://doi.org/10.1109/TSMCC.2007.905759

Arimoto S, Kawamura S, Miyazaki F, 1984. Bettering opera-
tion of robots by learning. J Field Robot, 1(2):123-140.
https://doi.org/10.1002/rob.4620010203

Baßler S, Dünow P, Marquardt M, et al., 2015. Application
of iterative learning control methods for a service robot
with multi-body kinematics. 20th Int Conf on Methods
and Models in Automation and Robotics, p.465-470.
https://doi.org/10.1109/MMAR.2015.7283920

Bi C, Wu DZ, Jiang Q, et al., 2005. Automatic learning
control for unbalance compensation in active magnetic
bearings. IEEE Trans Magn, 41(7):2270-2280.
https://doi.org/10.1109/TMAG.2005.851866

Bleuler H, Cole M, Keogh P, et al., 2009. Magnetic Bearings:
Theory, Design, and Application to Rotating Machinery.
Springer-Verlag Berlin Heidelberg.

Bolder J, Lemmen B, Koekebakker S, et al., 2012. Iterative
learning control with basis functions for media posi-
tioning in scanning inkjet printers. IEEE Int Symp on
Intelligent Control, p.1255-1260.
https://doi.org/10.1109/ISIC.2012.6398276

Chen WH, Yang J, Guo L, et al., 2016. Disturbance-observer-
based control and related methods—an overview. IEEE
Trans Ind Electron, 63(2):1083-1095.
https://doi.org/10.1109/TIE.2015.2478397

Chladny RR, Koch CR, 2008. Flatness-based tracking of an
electromechanical variable valve timing actuator with
disturbance observer feedforward compensation. IEEE
Trans Contr Syst Technol, 16(4):652-663.
https://doi.org/10.1109/TCST.2007.912121

Hong SK, Langari R, 2000. Robust fuzzy control of a mag-
netic bearing system subject to harmonic disturbances.
IEEE Trans Contr Syst Technol, 8(2):366-371.
https://doi.org/10.1109/87.826808

Kucera L, 1997. Robustness of self-sensing magnetic bear-
ing. Proc Industrial Conf and Exhibition on Magnetic
Bearings, p.261-270.

Lee JH, Allaire PE, Tao G, et al., 2003. Experimental
study of sliding mode control for a benchmark magnetic
bearing system and artificial heart pump suspension.
IEEE Trans Contr Syst Technol, 11(1):128-138.
https://doi.org/10.1109/TCST.2002.806457

Li SH, Yang J, Chen WH, et al., 2012. Generalized ex-
tended state observer based control for systems with
mismatched uncertainties. IEEE Trans Ind Electron,
59(12):4792-4802.
https://doi.org/10.1109/TIE.2011.2182011

Lindlau JD, Knospe CR, 2002. Feedback linearization of an
active magnetic bearing with voltage control. IEEE



140 Tang et al. / Front Inform Technol Electron Eng 2019 20(1):131-140

Trans Contr Syst Technol, 10(1):21-31.
https://doi.org/10.1109/87.974335

Liu HX, Li SH, 2012. Speed control for PMSM servo system
using predictive functional control and extended state
observer. IEEE Trans Ind Electron, 59(2):1171-1183.
https://doi.org/10.1109/TIE.2011.2162217

Mandra S, Galkowski K, Aschemann H, et al., 2015. Guar-
anteed cost iterative learning control—an application
to control of permanent magnet synchronous motors.
IEEE 9th Int Workshop on Multidimensional (nD) Sys-
tems, p.1-6.
https://doi.org/10.1109/NDS.2015.7332639

Matsumura F, Namerikawa T, Hagiwara K, et al., 1996.
Application of gain scheduled H∞ infinity robust con-
trollers to a magnetic bearing. IEEE Trans Contr Syst
Technol, 4(5):484-493.
https://doi.org/10.1109/87.531915

Matsumura T, Kataza H, Utsunomiya S, et al., 2016. Design
and performance of a prototype polarization modulator
rotational system for use in space using a superconduct-
ing magnetic bearing. IEEE Trans Appl Supercond,
26(3):3602304.
https://doi.org/10.1109/TASC.2016.2533584

Noh MD, Cho SR, Kyung JH, et al., 2005. Design and imple-
mentation of a fault-tolerant magnetic bearing system
for turbo-molecular vacuum pump. IEEE/ASME Trans
Mech, 10(6):626-631.
https://doi.org/10.1109/TMECH.2005.859830

Peng C, Fang JC, Xu XB, 2015. Mismatched disturbance
rejection control for voltage-controlled active magnetic
bearing via state-space disturbance observer. IEEE
Trans Power Electron, 30(5):2753-2762.
https://doi.org/10.1109/TPEL.2014.2352366

Sawada H, Hashimoto T, Ninomiya K, 2001. High-stability
attitude control of satellites by magnetic bearing wheels.
Trans Jpn Soc Aeronaut Space Sci, 44(145):133-141.
https://doi.org/10.2322/tjsass.44.133

Sun JK, Li SH, 2017. Disturbance observer based iterative
learning control method for a class of systems subject
to mismatched disturbances. Trans Inst Meas Contr,
39(11):1749-1760.
https://doi.org/10.1177/0142331216645173

Sun JK, Li SH, Yang J, 2014. Iterative learning control
with extended state observer for iteration-varying dis-
turbance rejection. Proc 11th World Congress on Intel-
ligent Control and Automation, p.1148-1153.
https://doi.org/10.1109/WCICA.2014.7052880

Yang J, Zheng WX, 2014. Offset-free nonlinear MPC for
mismatched disturbance attenuation with application
to a static var compensator. IEEE Trans Circ Syst II,
61(1):49-53.
https://doi.org/10.1109/TCSII.2013.2290912

Yu YJ, Yang ZH, Fang JC, 2015. Medium-frequency distur-
bance attenuation for the spacecraft via virtual-gimbal
tilting of the magnetically suspended reaction wheel.
IET Contr Theory Appl, 9(7):1066-1074.
https://doi.org/10.1049/iet-cta.2014.0578

Yu YJ, Yang ZH, Han C, et al., 2017. Active vibration
control of magnetically suspended wheel using active
shaft deflection. IEEE Trans Ind Electron, 64(8):6528-
6537. https://doi.org/10.1109/TIE.2017.2682786

Yu YJ, Yang ZH, Han C, et al., 2018a. Fuzzy adaptive
back-stepping sliding mode controller for high-precision
deflection control of the magnetically suspended mo-
mentum wheel. IEEE Trans Ind Electron, 65(4):3530-
3538. https://doi.org/10.1109/TIE.2017.2750617

Yu YJ, Yang ZH, Han C, et al., 2018b. Disturbance-observer
based control for magnetically suspended wheel with
synchronous noise. Contr Eng Pract, 72:83-89.
https://doi.org/10.1016/j.conengprac.2017.10.019

Zhao YM, Lin Y, Xi FF, et al., 2015. Calibration-based
iterative learning control for path tracking of industrial
robots. IEEE Trans Ind Electron, 62(5):2921-2929.
https://doi.org/10.1109/TIE.2014.2364800


	Introduction
	Problem formulation
	Mismatched disturbance estimation and rejection of an active magnetic bearing system
	Common extended state observer design
	Universal extended state observer design

	Iterative learning control
	Iterative learning control framework
	Tracking performance analysis

	Composite iterative learning control
	Simulation results
	Conclusions

