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Abstract: In this study, we investigate the leader-following consensus problem of a class of heterogeneous second-
order nonlinear multi-agent systems subject to disturbances. In particular, the nonlinear systems contain uncertain-
ties that can be linearly parameterized. We propose a class of novel distributed control laws, which depends on the
relative state of the system and thus can be implemented even when no communication among agents exists. By
Barbalat’s lemma, we demonstrate that consensus of the second-order nonlinear multi-agent system can be achieved
by the proposed distributed control law. The effectiveness of the main result is verified by its application to consensus
control of a group of Van der Pol oscillators.
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1 Introduction

The research on multi-agent systems has re-
ceived considerable attention due to the broad ap-
plication of cooperative control in engineering prob-
lems. Some typical examples of cooperative control
include attitude consensus of multiple spacecrafts
and formation flight of a group of aircrafts. Var-
ious cooperative control problems have been stud-
ied, such as consensus, formation, flocking, connec-
tivity preservation, containment control, and coop-
erative output regulation (Jadbabaie et al., 2003;
Moreau, 2004; Olfati-Saber and Murray, 2004; Ren
and Beard, 2005; Olfati-Saber, 2006; Tuna, 2008;
Wieland et al., 2011; Su and Huang, 2012; Deng
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et al., 2017). Among them, consensus is one of the
most fundamental problems (Moreau, 2004; Olfati-
Saber and Murray, 2004; Ren and Beard, 2005; Tuna,
2008; Cheng et al., 2010; Wieland et al., 2011; Lu and
Liu, 2017).

The consensus problem of second-order nonlin-
ear multi-agent systems has been extensively studied
in the literature, for example, Song et al. (2010),
Meng et al. (2013), Su and Huang (2013), Su (2015),
Liu and Huang (2016), and Lu and Liu (2018). An
interesting version of the consensus problem is the
leader-following consensus problem. For this prob-
lem, the output of all systems (or called followers),
needs to track some common trajectory generated by
a system which is called the leader system. In par-
ticular, the leader-following consensus problem of a
class of homogeneous second-order nonlinear multi-
agent systems was first studied in Song et al. (2010)
under the global Lipschitz condition. By proposing
a pinning control law, it was shown that the con-
sensus problem can be solved under general static
directed networks. Then, the semi-global leader-
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following consensus problem of a class of second-
order nonlinear multi-agent systems was addressed
in Meng et al. (2013), where external disturbances
were considered. Later, the leader-following con-
sensus problem for a class of second-order nonlinear
multi-agent systems without uncertainty was studied
in Wang and Ji (2015) under static undirected net-
works and external disturbances. In addition, the
leader-following consensus problem of second-order
nonlinear multi-agent systems was addressed in Su
(2015), where the system uncertain parameter be-
longs to some prescribed compact set. By the in-
ternal model approach, the disturbance can also be
tackled (Su, 2015).

In this study, the leader-following consensus
problem for second-order nonlinear multi-agent sys-
tems under disturbances is further addressed. In
comparison with existing works, our result has some
specific characteristics. First, all agents have non-
identical dynamics. Second, nonlinear systems in
our work do not need to satisfy the global Lipschitz
condition, and the initial conditions of the system
can be arbitrary. Third, assuming that the system
uncertain parameters can be linearly parameterized,
we do not require the system uncertainty be in some
prescribed compact set. In addition, communica-
tion among agents can be avoided. Specifically, we
propose a class of distributed control laws that de-
pends on the relative state of the system to solve
the problem. Moreover, by the adaptive control ap-
proach, the system uncertainties can be accommo-
dated. By means of Lyapunov analysis, it is shown
that the proposed distributed control law can solve
the leader-following consensus problem of a class
of second-order nonlinear multi-agent systems sub-
ject to system uncertainties and disturbances under
static directed networks. The result is demonstrated
by one application to consensus control of a group of
Van der Pol oscillators.

Notation: For zi ∈ R
ni×q, i = 1, 2, . . . ,m,

col(z1, z2, . . . , zm) = [zT
1 , z

T
2 , . . . , z

T
m]T. For M =

MT > 0, λm(M) denotes the smallest eigenvalue of
M .

2 Problem formulation and preliminar-
ies

In this study, we consider the following second-
order nonlinear multi-agent systems:

{
q̇i =pi,

ṗi =fi(qi,pi, t) + di + ui, i = 1, 2, . . . , N,
(1)

where qi ∈ R
n and pi ∈ R

n are the system
states, ui ∈ R

n is the control input, fi(qi,pi, t) =

gi0(qi,pi) + gi(qi,pi)θi for an unknown parame-
ter vector θi ∈ R

np and some known matrices
gi0(qi,pi) ∈ R

n and gi(qi,pi) ∈ R
n×np which are

continuous with respect to its arguments, and di is
the disturbance.

It is assumed that the disturbance di and the
reference signal q0 are generated by a linear system
as follows: ⎧⎪⎨

⎪⎩
v̇ =Sv,

di =Div,

q0 =Fv,

(2)

where S ∈ R
m×m, Di ∈ R

n×m, and F ∈ R
n×m

are constant matrices. It is assumed that (F ,S) is
observable.

Systems (1) and (2) constitute a multi-agent
system, where system (2) is the leader and the
N subsystems (1) are the followers. Associated
with this multi-agent system, a nonnegative matrix
A = [aij ] ∈ R

(N+1)×(N+1) can be defined, where
for i = 1, 2, . . . , N, j = 0, 1, . . . , N , aij > 0 if and
only if the relative state (qj − qi) is accessible to
agent i and aij = 0 otherwise. Associated with
matrix A, a digraph G = (V,E) can be defined
(Godsil and Royle, 2001). Then, the node set is
V = {0, 1, . . . , N}, where node 0 denotes system (2)
and nodes i, i = 1, 2, . . . , N, denote system (1). The
edge set is E ⊆ V × V , where the edge (i, j) ∈ E if
and only if aji > 0. If the graph contains a sequence
of edges (il, il+1), l = 1, 2, . . . , k − 1, then node ik
is said to be reachable from node i1. The neighbor
set of node i is denoted by Ni = {j | (j, i) ∈ E}.
If (i, j) ∈ E ⇔ (j, i) ∈ E, the graph is called an
undirected graph; otherwise, it is called a directed
graph.

Consider the distributed control law as follows:{
ui =ψi(ξi,pi, qi, q̇i, qj − qi, j ∈ Ni),

ξ̇i=ϕi(ξi,pi, qi, q̇i, qj−qi, j∈Ni),i=1, 2, . . . , N,
(3)

where ξi ∈ R
nξi for some positive integer nξi , and

ψi and ϕi are smooth functions defined later.
Now, we can describe the consensus problem of

the second-order nonlinear multi-agent system:
Problem 1 Given the multi-agent system com-
posed of followers (1) and the leader system (2),
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and a digraph G, design a distributed control law
of the form (3) such that, for any initial condition
qi(0),pi(0), i = 1, 2, . . . , N , and v(0), the solution of
system (1) satisfies

lim
t→∞(qi(t)− q0(t)) = 0, lim

t→∞(pi(t)− q̇0(t)) = 0. (4)

To solve the problem, we need some basic as-
sumptions as follows:
Assumption 1 Matrix S is marginally stable.
Assumption 2 Digraph G contains a directed
spanning tree with node 0 as its root.
Remark 1 Assumption 1 is used to guarantee the
boundedness of the disturbance signals and reference
signals described by system (2). Assumption 2 is a
basic assumption on the static graph (Hu and Hong,
2007; Su and Huang, 2012).

Under Assumption 1, system (2) can still de-
scribe a large class of disturbance signals and ref-
erence signals, for example, signals that can be ex-
pressed as a combination of any finite number of
sinusoidal signals.

3 Main result

In this section, we develop an adaptive dis-
tributed control law to solve the consensus problem.
First, we introduce a distributed dynamic compen-
sator as follows:

η̇i = Sηi +L
∑
j∈Ni

aij(qj − qi), (5)

where ηi ∈ R
m, and L ∈ R

m×n is a constant matrix
to be determined.
Remark 2 It will be shown that the distributed
dynamic compensator (5) is served as a distributed
observer for the leader system. This is inspired by
the distributed observer approach in Su and Huang
(2012). The difference is that system (5) depends on
the relative state of the multi-agent system. Thus, it
can be implemented when no communication among
agents exists.

To develop the control law, we define

q̇ri =FSηi − α(qi − Fηi), (6)

where α is a positive constant to be defined. It fol-
lows that

q̈ri =FSη̇i − α(q̇i − F η̇i). (7)

Furthermore, let

si = q̇i − q̇ri. (8)

Now, we can design the adaptive distributed
control law as follows:⎧⎪⎪⎨
⎪⎪⎩
ui=−Kisi−gi0(qi,pi)−gi(qi,pi)θ̂i−Diηi+q̈ri,
˙̂
θi = −Λig

T
i (qi,pi)si,

η̇i=Sηi+L
∑

j∈Ni
aij(qj−qi), i = 1, 2, . . . , N,

(9)
where θ̂i ∈ R

np , Ki ∈ R
n×n and Λi ∈ R

np×np are
positive definite matrices.

Under the distributed control law (9), the
closed-loop system can be put as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

q̇i =pi,

ṗi =−Kisi − gi(qi,pi)θ̃i −Diη̃i + q̈ri,

˙̂
θi =−Λig

T
i (qi,pi)si,

η̇i =Sηi +L
∑
j∈Ni

aij(qj − qi), i = 1, 2, . . . , N,

(10)
where η̃i = ηi − v and θ̃i = θ̂i − θi, i = 1, 2, . . . , N .

We are ready to present the solution to the con-
sensus problem. The main result is given in the
following theorem:
Theorem 1 Given Assumptions 1 and 2, leader-
following consensus for the multi-agent system con-
sisting of Eqs. (1) and (2) can be achieved by the
adaptive distributed control law of the form (9).
Proof By Eqs. (1) and (8), we have

ṡi =fi(qi,pi, t) + di + ui − q̈ri
=−Kisi − gi(qi,pi)θ̃i −Diη̃i, i = 1, 2, . . . , N.

(11)

Let

V1 =
1

2

N∑
i=1

(sT
i si + θ̃

T
i Γ

−1
i θ̃i). (12)

Then, the time derivative of V1 satisfies

V̇1 =

N∑
i=1

(sT
i ṡi + θ̃

T
i Γ

−1
i

˙̃
θi)

=
N∑
i=1

(sT
i (−Kisi − gi(qi,pi)θ̃i −Diη̃i)

+ θ̃T
i Γ

−1
i (−Γig

T
i (qi,pi)si))

=

N∑
i=1

(−sT
iKisi − sT

iDiη̃i).

(13)
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Let {
η0 =v,

q̃i =qi − Fηi, i = 0, 1, . . . , N.
(14)

Then, we have η̃0 = 0, q̃0 = 0, and

˙̃ηi =η̇i − v̇
=Sηi +L

∑
j∈Ni

aij(qj − qi)− Sv

=Sη̃i +L
∑
j∈Ni

aij(qj − qi)

=Sη̃i +LF
∑
j∈Ni

aij(η̃j − η̃i)

+L
∑
j∈Ni

aij(q̃j − q̃i). (15)

Associated with the graph G, define a matrix
H = [hij ] ∈ R

n×n, where hij = −aij , i �= j, and
hii =

∑N
j=0,1 aij .

Denote η̃ = col(η̃1, η̃2, . . . , η̃N), q̃ =

col(q̃1, q̃2, . . . , q̃N ). Then, Eq. (15) can be put in
compact form as follows:

˙̃η =(IN ⊗ S −H ⊗LF )η̃ − (H ⊗L)q̃. (16)

By Eq. (8), we have

si =q̇i − FSηi + α(qi − Fηi)
=q̇i − F

(
η̇i −L

∑
j∈Ni

aij(qj − qi)
)
+ α(qi − Fηi).

(17)

Thus,

q̇i − F η̇i + α(qi − Fηi)
=− FL

∑
j∈Ni

aij(qj − qi) + si

=− FL
∑
j∈Ni

aij(q̃j − q̃i)− FLF
∑
j∈Ni

aij(η̃j − η̃i)

+ si, i = 1, 2, . . . , N.

(18)

It follows that

˙̃qi =− αq̃i − FL
∑
j∈Ni

aij(q̃j − q̃i)

− FLF
∑
j∈Ni

aij(η̃j − η̃i) + si, i = 1, 2, . . . , N.

(19)

System (19) can be written in the following com-
pact form:

˙̃q =− (αI −H ⊗ FL)q̃ + (H ⊗ FLF )η̃ + s.

(20)

Denote x̃ = col(η̃, q̃). Then, the system com-
posed of Eqs. (16) and (20) can be put into the form

˙̃x = Ãx̃+ B̃s, (21)

where⎧⎪⎪⎪⎨
⎪⎪⎪⎩
Ã =

[
(IN ⊗ S −H ⊗LF ) −(H ⊗L)

(H ⊗ FLF ) −(αI −H ⊗ FL)
]
,

B̃ =

[
0

1

]
.

(22)
Let

L = νQF T, (23)

where ν ≥ 1
δ with δ = mini=1,2,...,N{Re{λi(H)}},

and Q is the solution to the Riccati equation:

SQ+QST + I −QF TFQ = 0. (24)

In view of the observability of (F,S), Eq. (24)
indeed has a unique solution Q and it satisfies Q =

QT > 0.
Let P be such that

(IN ⊗ S −H ⊗LF )

=(P−1 ⊗ Im)(IN ⊗ S − JH ⊗LF )(P ⊗ Im),

(25)

where JH is the Jordan form of H .
Under Assumption 2, by Lemma 1 of Su and

Huang (2012), the matrix −H is Hurwitz. Then,
by Lemma 1 of Tuna (2008), for i = 1, 2, . . . , N ,
(ST − λi(H)νF TFQ) are all Hurwitz and thus
(S − λi(H)νQF TF ) are all Hurwitz. Therefore, by
Eq. (25), we have that (IN⊗S−H⊗LF ) is Hurwitz.

Furthermore, it can be verified that the matrix
Ã is Hurwitz for a sufficiently large positive real num-
ber α. Thus, there exists a unique P̃ ∈ R

N(m+n),
P̃ = P̃ T > 0 such that

ÃTP̃ + P̃ Ã = −2I. (26)

Define V2 = x̃TP̃ x̃. Then, we have

V̇2 =− 2x̃Tx̃+ 2x̃TP̃ B̃s. (27)
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Let V = V1 + γV2, where γ is a positive real
number. Then, we have

V̇ =

N∑
i=1

(−sT
iKisi − sT

iDiη̃i)− 2γx̃Tx̃+ 2γx̃TP̃ B̃s

≤
N∑
i=1

(−sT
iKisi + s

T
i si + η̃

T
i D

T
iDiη̃i)− 2γx̃Tx̃

+ γx̃Tx̃+ γsTB̃TP̃ TP̃ B̃s

≤
N∑
i=1

(−sT
iKisi + s

T
i si + η̃

T
i D

T
iDiη̃i)− γx̃Tx̃

+ γ||P̃ ||2||s||2

=

N∑
i=1

(−sT
iKisi + s

T
i si + η̃

T
i D

T
iDiη̃i − γη̃T

i η̃i

− γq̃T
i q̃i + γ||P̃ ||2sT

i si)

=

N∑
i=1

((−sT
iKisi + s

T
i si + γ||P̃ ||2sT

i si)

+ (−γη̃T
i η̃i + η̃

T
i D

T
i Diη̃i)− γq̃T

i q̃i)

≤
N∑
i=1

(−(λm(Ki)− 1− γ||P̃ ||2)||si||2

− (γ − ||Di||2)||η̃i||2 − γq̃T
i q̃i).

(28)

Choosing{
γ ≥ ||Di||2 + 1,

λm(Ki) ≥ 2 + γ||P̃ ||2, (29)

yields

V̇ ≤
N∑
i=1

(−||si||2 − ||η̃i||2 − γ||q̃i||2)

≤0. (30)

Since V (t) ≥ 0, inequality (30) means that V (t)

is lower bounded, which implies the boundedness
of si, θ̃i, η̃i, and q̃i. Under Assumption 1, v is
bounded. Thus, ηi is bounded, which implies that
qi is bounded. By Eq. (5), η̇i is bounded. Further-
more, ˙̃ηi is bounded. By Eq. (19), ˙̃qi is bounded,
which together with the boundedness of η̇i implies
that q̇i is bounded. By Eq. (11), ṡi is bounded.

By (28), we have

V̈ =
N∑
i=1

(−2sT
iKiṡi − ṡT

iDiη̃i − sT
iDi

˙̃ηi)− 4γx̃T ˙̃x

+ 2γ ˙̃xTP̃ B̃s+ 2γx̃TP̃ B̃ṡ.

(31)

Since si, ṡi, η̃i, ˙̃ηi, q̃i, and ˙̃qi are all bounded, V̈
is bounded. Therefore, by Barbalat’s lemma (Slotine
and Li, 1991), we obtain limt→∞ V̇ (t) = 0. Thus, by
inequality (30), limt→∞ si(t) = 0, limt→∞ η̃i(t) = 0,
and limt→∞ q̃i(t) = 0.

Since limt→∞ η̃i(t) = 0, we have

lim
t→∞(Fηi(t) − q0(t)) = 0. (32)

Note that

qi − q0 =(qi − Fηi) + (Fηi − q0) = q̃i + (Fηi − q0).
(33)

By Eq. (32), we obtain limt→∞(qi(t)− q0(t)) =
0.

By Eq. (18), it is easy to verify that

lim
t→∞(q̇i(t)− F η̇i(t)) = 0. (34)

By Eqs. (2) and (5),

F η̇i − q̇0 =FSηi + FL
∑
j∈Ni

aij(qj − qi)− FSv

=FSη̃i + FL
∑
j∈Ni

aij(qj − qi)

=FSη̃i+FL
∑
j∈Ni

aij((q̃j−q̃i)+(η̃j−η̃i)).

(35)

Thus, we have limt→∞(F η̇i(t)− q̇0(t)) = 0.
Note that

pi − q̇0 =(pi − F η̇i) + (F η̇i − q̇0). (36)

In view of Eqs. (34) and (35), we conclude
limt→∞(pi(t) − q̇0(t)) = 0, i = 1, 2, . . . , N . The
proof is thus completed.

4 An example

In this section, one example is given to illustrate
the effectiveness of our main result. In particular,
consider four Van der Pol oscillators in the following
form:{

q̇i =pi,

ṗi =θi(1−q2i )pi −qi +di +ui, i =1,2,3,4,
(37)

where qi, pi ∈ R are the system states, ui ∈ R is
the control input, θi ∈ R is the unknown system
parameter, and di is the disturbance.



Lu and Liu / Front Inform Technol Electron Eng 2019 20(1):88-94 93

The reference signal and the disturbance are
generated by the leader system as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
v̇1
v̇2

]
=

[
0 1

−1 0

] [
v1
v2

]
,

d1 =2v2,

d2 =v2,

d3 =v1 + v2,

d4 =v1 − 2v2,

q0 =v1.

(38)

It can be found that Assumption 1 holds. Fig. 1
depicts the network topology of the five agents. It
can be verified that Assumption 2 is satisfied. Then,
the distributed control law (9) can be designed as
follows:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ui=−Kisi−gi0(qi, pi)−gi(qi, pi)θ̂i−Diηi+q̈ri,

˙̂
θi =− Γig

T
i (qi,pi)si,

η̇i =Sηi +L
∑
j∈Ni

aij(qj − qi),

(39)
where gi0(qi, pi) = −qi, gi(qi, pi) = (1− q2i )pi, D1 =

[0 2], D2 = [0 1], D3 = [1 1], D4 = [1 − 2],
F = [1 0], α = 30, L = [5.4088 1.6569], Ki = 40,
and Γi = 1, i = 1, 2, 3, 4.

0

1 2

4 3

Fig. 1 Network topology G

A simulation was conducted, where the actual
values of θi were θ1 = 4, θ2 = 1, θ3 = 2, and θ4 = 4.5,
and they were unknown to the controller. The ini-
tial condition for the leader system was chosen as
v0(0) = col(1,−1) and all the other initial condi-
tions were chosen randomly from the interval [−2, 2].
From Figs. 2 and 3, it can be seen that the state
of the dynamic compensator tends to the state of
the leader system asymptotically. Furthermore, the
tracking errors of all followers are shown in Figs. 4
and 5, respectively. From the simulation results,
we can conclude that the leader-following consensus
problem of this example is solved under the proposed
adaptive distributed control law.
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Fig. 2 Observer error (ηi1 − v1) of all followers
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Fig. 3 Observer error (ηi2 − v2) of all followers
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Fig. 4 Tracking error (qi − q0) of all followers
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Fig. 5 Tracking error (pi − q̇0) of all followers

5 Conclusions

In this study, we have investigated the leader-
following consensus problem of heterogeneous multi-



94 Lu and Liu / Front Inform Technol Electron Eng 2019 20(1):88-94

agent systems with second-order nonlinear uncer-
tain dynamics and disturbances. With the system
uncertainty being linearly parameterized, we have
proposed a distributed control law by adopting the
adaptive control approach. We have shown that
the consensus problem can be solved by the pro-
posed distributed control law. The results have been
demonstrated by one application to the consensus
problem of multiple Van der Pol oscillators. In the
future, we will focus on the similar problem for high-
order nonlinear multi-agent systems under switching
networks.
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