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Abstract: The threats and challenges of unmanned aerial vehicle (UAV) invasion defense due to rapid UAV
development have attracted increased attention recently. One of the important UAV invasion defense methods
is radar network detection. To form a tight and reliable radar surveillance network with limited resources, it is
essential to investigate optimized radar network deployment. This optimization problem is difficult to solve due to
its nonlinear features and strong coupling of multiple constraints. To address these issues, we propose an improved
firefly algorithm that employs a neighborhood learning strategy with a feedback mechanism and chaotic local search
by elite fireflies to obtain a trade-off between exploration and exploitation abilities. Moreover, a chaotic sequence
is used to generate initial firefly positions to improve population diversity. Experiments have been conducted on
12 famous benchmark functions and in a classical radar deployment scenario. Results indicate that our approach
achieves much better performance than the classical firefly algorithm (FA) and four recently proposed FA variants.
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1 Introduction

In recent years, unmanned aerial vehicles
(UAVs) have experienced rapid development and
show an explosive growth in both civilian and mil-
itary applications. However, the explosive growth
of UAVs has caused severe flight security issues and
widespread concern. For example, UAV invasion of
airport clearance protection areas has occurred fre-
quently at large airports in China, and has seriously
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affected the normal operation of airports and air-
plane flight safety. Therefore, UAV invasion defense
is an important issue for airspace security that re-
quires great attention.

Radar network detection plays a significant
role in UAV invasion defense. The calculation of
the detection range of a single radar instance has
been intensely studied (Difranco and Kaiteris, 1981;
Blake, 1986; Srinivasan, 1986; Baker and Hume,
2003; Zheng and Zheng, 2011). In Blake (1986), the
radar range equation and the significance of each of
the parameters were reviewed. The single process
method plays a significant role in radar detection
performance, as discussed in Difranco and Kaiteris
(1981). For a radar network, the combination of
different radar types is essential to form a seamless
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surveillance coverage (Baker and Hume, 2003). Fur-
thermore, to form a tight and reliable surveillance
network with limited resources, it is essential to de-
termine an optimal radar deployment strategy. The
main task of deployment optimization is to achieve
optimal network performance with a limited num-
ber of radar devices. Completeness and continuity
are two important objectives of radar network de-
ployment optimization. Through deployment opti-
mization, the radar network must form a seamless
coverage area that includes high, medium, and low
altitudes, and must have an appropriate overlap to
cover the main height layer. This is a multi-objective
optimization problem with strong coupling of multi-
ple constraints and nonlinear character, and is diffi-
cult to solve by conventional optimization methods,
such as the simplex method and gradient descent
method.

Building a mathematical model of the deploy-
ment problem and applying an efficient optimization
algorithm have attracted great attention. Yang et al.
(2013) proposed a hexagonal radar network deploy-
ment strategy and a diamond strategy. Yang et al.
(2009) formulated a decision-making model based
on the detection probability. The decision-making
model was solved by the genetic algorithm (GA).
Kurdzo and Palmer (2011, 2012) applied GA to op-
timize the deployment of radar netting (Zhao et al.,
2007; Gao, 2008; Yoon and Kim, 2013). Hu et al.
(2010) proposed an improved continuous ant algo-
rithm for deployment optimization of a sensor net-
work. An ant colony optimization with three classes
of ant transitions was proposed in Liu (2012) to solve
the sensor deployment problem. Lian et al. (2012)
studied an improved particle swarm optimization al-
gorithm for sensor network deployment optimization
(Liu and Fan, 2011). Most of these works built a
simple deployment model with only one type of radar
and one height detection level, and the applied op-
timization algorithms, such as GA and ant colony
algorithms, have poor performance when it comes to
generating a suitable deployment solution in compli-
cated scenarios.

To address these issues, we build a more com-
plicated model with multiple radar types and multi-
ple height-detection levels, and propose an improved
firefly algorithm (IFA) to generate satisfactory solu-
tions. The firefly algorithm (FA) is a new swarm in-
telligence optimization algorithm proposed by Yang

(2008), which takes inspiration from the flashing be-
havior of fireflies. In the classical FA, fireflies move
toward more attractive fireflies in the whole pop-
ulation according to a movement equation in each
iteration. The brighter firefly does not conduct any
search, which may reduce the population diversity
and cause the algorithm to be easily trapped in lo-
cal optima. To solve these problems, our proposed
IFA employs three strategies: (1) position initializa-
tion of fireflies in a chaotic sequence; (2) a neighbor-
hood learning strategy with a feedback mechanism;
(3) a chaotic local search by elite fireflies. The first
strategy aims to improve the diversity of the firefly
population compared to random initialization. The
second is helpful in enhancing the exploitation ability
and improving the convergence speed of the firefly al-
gorithm. The last strategy helps the algorithm jump
out of local optima.

2 Problem description and formulation

2.1 Problem description

Suppose that a surveillance network is com-
posed of L radars of N types. Its responsibility area
A is defined as the monitoring area of the surveil-
lance network. The task of the surveillance network
is to monitor air targets flying into the heights of the
M layers in the area of responsibility. In particular,
the surveillance network should focus on typical air
targets in the main height layer.

To meet the mission requirements of the surveil-
lance network, deployment optimization is employed
to achieve the following objectives:
Objective 1 Maximize the possible detection
range of the M height levels, which can be described
by the airspace-covering coefficient ρ.
Definition 1 The proportion of the area of effective
zones covered by all radars at height level k in the
surveillance network to the area of the whole zone
of responsibility is defined as ρk. Obviously, ρk is in
the range [0, 1].

ρk =

⋃L
i=1 (Aik ∩A)

A
, (1)

where Aik indicates the area of the zone detected by
radar i at height level k and A represents the area
of the zone of responsibility. As shown in Fig. 1, the
rectangular block represents the responsibility area
and black dots are the radars. The corresponding
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detection area is represented as a circle. The dashed
area is the airspace-covering area. Therefore, ρk at
height level k is the proportion of the shaded area to
the rectangular area.

The weighted sum of ρk across all M airspace
layers is defined as the airspace-covering coefficient
of the surveillance network, which is denoted by ρ:

ρ =

M∑

k=1

ωkρk,

M∑

k=1

ωk = 1, (2)

where ωk is the weight coefficient. It is set according
to the importance of the surveillance height level
generally.

Airspace-covering area

Responsibility area (the whole rectangle)

Fig. 1 Airspace-covering coefficient at level k

Objective 2 Have an appropriate airspace cov-
erage redundancy to ensure continuity of airspace
target tracking and avoid wasting resources due to
excessive unnecessary coverage redundancy. This ob-
jective can be represented by the airspace-overlap
coefficient μ.
Definition 2 μk is defined as the proportion of the
effective area covered by two radars at height level k
in the surveillance network to the area of the whole
zone of responsibility, with the value in the range
[0, 1]:

μk =

(⋃L
i,j=1 (Aik ∩ Ajk)

)
∩ A

A
, (3)

where Ajk indicates the area of the zone detected by
radar j at level k. As shown in Fig. 2, the shaded
area represents the airspace-overlap area. Therefore,
μk at height level k is the proportion of the shaded
area to the rectangular area.

The weighted sum of μk across all M airspace
layers is the indicator of the airspace-overlap coeffi-
cient of the surveillance network, denoted by μ:

μ =

M∑

k=1

ωkμk,

M∑

k=1

ωk = 1. (4)

Area of effective zone covered by two radars concurrently

Responsibility area (the whole rectangle)

Fig. 2 Airspace-overlap coefficient at level k

2.2 Problem formulation

To maximize ρ while achieving sufficient μ, the
objective function is formulated as follows:

max F = λ1ρ+ λ2μ

= λ1

M∑

k=1

ωkρk + λ2

M∑

k=1

ωkμk,
(5)

where F represents the comprehensive detection per-
formance of the surveillance network, and λ1 and λ2

are the weights of the airspace-covering and airspace-
overlap coefficients, respectively (λ1 + λ2 = 1).

For better coverage of the main height level and
utilization of resources, two constraints must be met,
defined as follows:
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ρ0 > ρ1,

τ=1−

⎛

⎜
⎝

L⋃

i,j,l,t=1,
i�=j �=l �=t

(A0i∩A0j∩A0l∩A0t)

⎞

⎟
⎠∩A

A
≥τ1.

(6)

The optimized results must achieve the basic
requirement to maintain sufficient surveillance cov-
erage of the main level. The main height level is
usually the height of the network’s focus. In the
first constraint, the airspace-covering coefficient at
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the main height level should be greater than or equal
to ρ1 to reach a certain level.

On the other hand, the surveillance network
should have the appropriate airspace-overlap coeffi-
cient at the main height level. Generally, it is reason-
able that the effective area is covered by two radars
simultaneously. However, it is considered to be a
waste of resources if the surveillance airspace cover-
age has quadruple (or more) overlap. In the second
constraint, A0i, A0j , A0l, and A0t indicate the area
of the zone detected by radars i, j, l, and t at the
main height level respectively, and τ describes the
resource utilization which should not be less than τ1
to reach a certain level.

3 Firefly algorithm and its variants

3.1 Firefly algorithm

The firefly algorithm (FA), which was inspired
by the flashing patterns and behavior of fireflies, was
first proposed by Yang (2008).

The FA is governed by the following three ide-
alized rules:

1. All fireflies are unisex, so one firefly will be
attracted to other fireflies regardless of sex.

2. Firefly attractiveness is proportional to
brightness, and both attractiveness and brightness
decrease with increased distance. For any two fire-
flies, the one with lower brightness will move to-
ward the brighter one, and the brightest will move
randomly.

3. The brightness of a firefly is determined by
the landscape of the objective function.

In the FA, a group of N fireflies Xi (i =

1, 2, . . . , N) is generated in the search space to find
the optimal area. Each firefly has its own light inten-
sity proportional to the value of the fitness function.
The attractiveness β between two fireflies can be de-
fined with distance r as

β = β0 · e−γ·r2ij , (7)

where β0 is the attractiveness at r = 0 and γ is the
light absorption coefficient which is usually set to 1.

The distance rij between any two fireflies Xi

and Xj is expressed as the Euclidean distance as

rij = ||Xi −Xj || =
√
√
√
√

D∑

d=1

(xid − xjd)2, (8)

where D is the dimension of firefly Xi or Xj .
The movement of firefly Xi attracted to another

brighter firefly Xj , is determined by the following
updating equation:

Xi(t+1)=Xi(t)+β(Xj(t)−Xi(t))+α(rand−0.5),

(9)
where Xi and Xj are the positions of fireflies in
the search space, rand is a D-dimensional vector
of random numbers that obeys uniform distribution
over [0, 1], α is the step length factor, and t is the
current number of iterations.

The framework of the FA is presented in Algo-
rithm 1.

Algorithm 1 Framework of the basic firefly
algorithm
1: Require: population size N , maximum number of itera-

tions MAX_G, step length factor α, attractiveness co-
efficient β, light absorption coefficient γ, and objective
function f(x),x = (x1, x2, . . . , xD)

2: Initialize the population of fireflies Xi (i = 1, 2, . . . , N)
3: while t < MAX_G do
4: for i = 1 to N do
5: for j = 1 to N do
6: if f(Xi) < f(Xj) then
7: Move Xi towards Xj according to Eq. (9)
8: end if
9: end for

10: end for
11: Calculate the light intensity in the new place
12: t++;
13: end while

3.2 Firefly algorithm variants

Because the firefly algorithm literature is
rapidly expanding, several variants of the FA have
been proposed in recent years. A brief review of FA
variants is presented below.

3.2.1 Standard FA with adaptive parameter

To improve the solution quality of the classical
firefly algorithm, an improvement on the convergence
of the algorithm is to decrease the step length factor
α gradually as the optimum is approached. The
new updating equations proposed by Yang (2010)
are shown as

Xi(t+ 1) =Xi(t)+β(Xj(t)−Xi(t))

+α(t)sd(rand−0.5), (10)

β = βmin + (β0 − βmin)e−γ·r2ij , (11)
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α(t+ 1) = α0θ
t, (12)

sd = Xmax
id −Xmin

id , (13)

where θ is the step length reduction constant in range
(0, 1), βmin is the minimum value of attractiveness β,
sd is the scale of each design variable, and Xmax

id and
Xmin

id are the upper and lower bounds of firefly Xi in
the dth dimension respectively.

3.2.2 Wise step strategy FA (WSSFA)

In Yu et al. (2014), a wise step strategy was pro-
posed to effectively improve the search ability of the
classical firefly algorithm. This strategy considers
the information of both firefly’s historical best and
population’s global best solutions. The step length
factor is calculated separately for each firefly at each
iteration, and the updating formula is presented as

αi(t+1)=αi(t)−(αi(t)−αmin)·e−|Gbest−Pbesti|t/MAX_G,

(14)
where t represents the current step, MAX_G is the
maximum number of iterations of the algorithm,
Gbest is the global best solution at the tth iteration,
Pbesti is Xi’s historical best solution searched, and
αmin is the minimum step length in the range [0, 1].

3.2.3 FA with chaos (CFA)

In Gandomi et al. (2013), chaotic parameter
tuning was introduced into FA to enhance its global
search ability for robust global optimization. Three
tuning strategies, including tuning light absorption
coefficient γ, attractiveness coefficient β, and both
coefficients γ and β, were proposed to verify the
efficiency of tuning different attraction parameters.
Twelve different chaotic maps were investigated to
tune the attraction parameters in the classical firefly
algorithm:

Xi(t+ 1) =Xi(t) + cs(t)(Xj(t)−Xi(t))

+ α(t)sd(rand− 0.5),
(15)

where cs(t) represents the chaotic sequence generat-
ing function.

By comparing different chaotic FAs, the algo-
rithm that uses the Gauss map as its attractiveness
coefficient is the best chaotic FA. Experiments reveal
that the chaotic FA can clearly improve the quality
of the optimization results.

3.2.4 FA with neighborhood search and random at-
traction (NSRaFA)

Although the classical FA has been empirically
demonstrated to perform well on many optimization
problems, it may get trapped in local optima when
solving complex optimization problems. Recently, in
Wang et al. (2017), an FA with a random attraction
model and three neighborhood search strategies was
proposed to improve the solution quality with a bal-
ance between algorithm exploration and exploitation
abilities.

Dynamic parameter adjustment with step
length factor α and attractiveness β was also used.
The updating equations are presented as

β = (βmin+(βmax − βmin)e−γr2ij)
t

MAX_G
, (16)

α(t+ 1) = 0.99α(t), (17)

where βmin and βmax are the minimum and maxi-
mum values of β respectively, and t is the current
iteration number in the range of maximum iteration
number MAX_G.

In the random attraction model, each firefly Xi

communicates only with another randomly selected
fireflyXj , and thus it requires less computation time.
For fireflies in each iteration, there are three different
neighborhood search strategies, presented as

X1
i = r1Xi + r2Pbesti + r3(Xi1 −Xi2), (18)

X2
i = r4Xi + r5Gbest+ r6(Xi3 −Xi4), (19)

X3
i = Xi + cauchy(), (20)

where Xi1 and Xi2 are two fireflies randomly se-
lected from the k-neighborhood of Xi, Xi3, and Xi4,
which are randomly selected from the whole popula-
tion, r1, r2, and r3 (r4, r5, and r6) are three uniform
random numbers in the range (0, 1) that sum to 1,
and cauchy() is a random number that obeys the
Cauchy distribution with a unity scale factor.

3.2.5 Other FA variants

In addition to the FA variants presented above,
there are several modifications and hybridizations
applied to the classical firefly algorithm for solving
various complex optimization problems. Readers can
access a comprehensive review of these FA variants
in Fister et al. (2012).
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The efficiency of the firefly algorithm primarily
depends on the variation of the step length factor
and the formulation of attractiveness. Therefore,
the main directions of modifications are the devel-
opment of elitist and binary firefly algorithms (Fara-
hani et al., 2012), Lévy flight based firefly algorithms
(Yang, 2011), and parallel firefly algorithms (Subutic
et al., 2012).

Heuristics can also be incorporated into an FA
to improve its ability to solve specific problems. The
following hybridizations have been applied to the
classical firefly algorithm: genetic algorithm (Luthra
and Pal, 2011), differential evolution, neural net-
work (Hassanzadeh et al., 2012), and ant colony
(Aruchamy and Vasantha, 2011).

4 Our proposed improved firefly algo-
rithm

In this section, a new FA variant is proposed
to improve the quality of complicated optimization
problem solutions. The improved firefly algorithm
applies mainly three strategies: chaotic firefly posi-
tion initialization, a neighborhood learning strategy
with a feedback mechanism, and elite firefly chaotic
local search.

4.1 Firefly position initialization with chaotic
sequence

The FA is a population-based swarm intelli-
gence method, and thus the initial firefly positions
have a significant impact on its performance. In the
classical FA, firefly positions are initialized by ran-
dom generation methods. This may generate an ex-
tremely uneven distribution of the firefly population
in which the results fall into local optima. Chaos, on
the other hand, has the characteristics of random-
ness, regularity, and boundedness (Gandomi et al.,
2013). Its sensitivity to the initial values can make
the variable traverse all states without repeat in a
certain range. Therefore, using the chaotic sequence
to initialize firefly positions can improve the diver-
sity of the population and enhance the global search
ability.

In this study, the logistic chaotic map (Gandomi
et al., 2013) is applied to generate the initial firefly
positions. Its iteration equation is presented as

xk+1 = μ · xk · (1− xk), (21)

where μ is the control parameter and xk is the
chaotic variable. When μ = 4 and 0 < x0 < 1

(x0 /∈ {0, 0.25, 0.50, 0.75, 1.00}), the generated se-
quence presents chaotic characteristics.

We use the following equation to map the gen-
erated chaotic variables to the search space:

Xid = Ld + xid(Ud− Ld), (22)

where Ud and Ld are the upper and lower bounds
of the dth dimension in the search space respectively,
and Xid is the dth dimension coordinate of the ith

firefly.

4.2 Neighborhood learning strategy with
feedback mechanism

To enhance the exploitation ability and the con-
vergence speed of the firefly algorithm, a neighbor-
hood learning strategy with a feedback mechanism
is applied for a specific percentage of fireflies in each
iteration.

Assume that firefly population G consists of N
fireflies {Xi} (i = 1, 2, . . . , N) in the search space.
The k-neighborhood of a specific firefly Xi can be
defined as the group of (2k + 1) fireflies that are
closer to Xi according to their indices. The bound-
ary of firefly indices is periodic, which means that
the distance between X1 and XN is 1. For example,
the two-neighborhood of X1 consists of five fireflies,
XN−1,XN ,X1,X2, and X3. A visual depiction of
the k-neighborhood is shown in Fig. 3.

 
The 2-neighborhood of X1

X3

X2

X1

XN-1

XN-2

Fig. 3 Circular topology and k-neighborhood of Xi

In each iteration, a specific percentage pn of fire-
flies will apply a neighborhood learning strategy to
update their positions. A feedback mechanism is
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introduced to choose the learning objective in the k-
neighborhood of each firefly. In detail, firefly Xi will
learn from firefly Xj who is in Xi’s k-neighborhood
and has the highest score Sij as

Sij =
LEij

Lij + 1
, (23)

where Lij represents the number of times that firefly
Xi has learned from Xj so far and LEij represents
the number of effective learning times that firefly
Xj can lead Xi to a better solution. This feedback
mechanism could enhance the ability to learn from
well-performing neighbors and give opportunities to
others.

The movement equation of firefly Xi learning
from Xj is presented as

Xi = r1Xi + r2(Xj −Xi) + r3(Xi1 −Xi2), (24)

where r1, r2, and r3 are three uniform random num-
bers in the range (0, 1) that sum to 1, Xi1 and Xi2

are two fireflies that are randomly selected from the
k-neighborhood of Xi, and the value of Xi1 minus
Xi2 represents a randomization item in the neigh-
borhood region.

4.3 Chaotic local search of elite fireflies

In the standard FA, fireflies move toward the
more attractive individuals as the equation is up-
dated in each iteration. The movement of each firefly
is determined by other brighter fireflies’ positions in
the whole population. This may reduce the popula-
tion diversity and easily get trapped in local optima.

To address the above issue, a chaotic local search
by elite fireflies for a better solution among the global
best solutions is integrated in our FA. A visual depic-
tion of elite fireflies’ chaotic local search is shown in
Fig. 4. In each iteration, we select a specific percent-
age pe of best fireflies as an elite group E. Then a
chaotic sequence initialization group Gl around each
firefly in E is generated for further local search. As-
suming that elite firefly Xi is selected for chaotic
local search, Gl = {Xli} can be generated by the
following equations:

Xli = Ld(t) + xli(Ud(t) − Ld(t)), (25)

Ld(t) =max(Ld0,Xi − pS), (26)

Ud(t) =min(Ud0,Xi + pS), (27)

p =
1

1 + e0.004t+1
, (28)

where xli is a chaotic sequence with a logistic map,
Eq. (25) maps the chaotic sequence to the search
space around elite firefly Xi, p is a scale factor to
make the local search region decrease gradually as
the optima are approached, and S is the scale of
the search space. This could enhance exploration by
providing an ability to jump out of the local optima
in the early stage and improve the solution quality
by local search in a relatively small area in the final
stage.

Global search space
Firefly selected
for local search

Local search space

Fig. 4 Chaotic local search of Xi (the large red node),
where the small red nodes represent the generated
fireflies in the local space. References to color refer
to the online version of this figure

For each elite firefly Xi, the best solution in the
chaotic local search group Gli will be selected as the
new Xi.

4.4 Framework of the improved firefly algo-
rithm

The main steps of the IFA are described in Al-
gorithm 2, where N is the firefly population size,
FE is the number of calculated fitness function,
and MAX_FEs is the maximum number of function
evaluations.

In firefly attraction movement, a self-adaptive
parameter of movement equation is adopted and a
step length reduction constant is adjusted as follows:

α(t) = α0

(
1

9000

)t/MAX_G

. (29)

This reduces the step length α from α0 to 10−4

exponentially.
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Algorithm 2 Proposed improved firefly algorithm
1: Require: objective function f(x),x = (x1, x2, . . . , xD)

2: Initialize the population of fireflies Xi (i = 1, 2, . . . , N)

with chaotic sequence
3: while FE<MAX_FEs do
4: for i = 1 to N do
5: for j = 1 to N do
6: if f(Xi) < f(Xj ) then
7: Move firefly Xi towards Xj according to

Eq. (9)
8: end if
9: end for

10: end for
/* Neighborhood learning strategy with feedback */
/* mechanism */

11: for i = 1 to N do
12: if r < pn then
13: Move firefly Xi with neighborhood learning

strategy
14: FE++
15: end if
16: end for

/* Elite fireflies’ chaotic local search */
17: Select pe of best fireflies as an elite group E

18: for i = 1 in E do
19: Apply chaotic search to firefly Xi

20: Replace Xi with the best solution of chaotic local
search

21: FE++
22: end for
23: Calculate the light intensity in the new place
24: FE++
25: end while

In each iteration, the neighborhood learning
strategy and chaotic local search by elite fireflies are
combined to achieve a better trade-off between ex-
ploration and exploitation.

5 Experiments

5.1 Algorithm performance on benchmark
functions

To evaluate the performance of the proposed
IFA, we compared the solution quality on 12 stan-
dard benchmark functions listed in Table 1. Among
these functions, f1 (sphere), f2, f3, f4 (Schwefel),
and f5 (Rosenbrock) are unimodal functions, f6 is
a step function with one global minimum, f7 is a
noisy quartic function including a stochastic term,
and f8–f12 are multimodal functions with many lo-
cal minima. The dimensions of all these benchmark
functions were set to 30. These diverse characteris-
tics allow us to comprehensively test the performance
of the proposed IFA.

We compared the performance of the IFA, the
classical FA, and four other recently proposed vari-
ants (Table 2). To have a fair comparison, the popu-
lation size N and MAX_FEs of all algorithms were
set to 20 and 5.0e + 05, respectively. The remain-
ing parameters were set based on the information in

Table 1 Benchmark functions

Name Function Search range Global optimum

Sphere f1(x) =
∑D

i=1 x
2
i [−100, 100] 0

Schwefel 2.22 f2(x) =
∑D

i=1 |xi|+
∏D

i=1 |xi| [−10, 10] 0

Schwefel 1.2 f3(x) =
∑D

i=1(
∑i

j=1 xj)2 [−100, 100] 0

Schwefel 2.21 f4(x) = maxi=1,2,...,D |xi| [−100, 100] 0

Rosenbrock f5(x) =
∑D

i=1[100(xi+1 − x2
i )

2 + (1− xi)
2] [−30, 30] 0

Step f6(x) =
∑D

i=1�|xi|+ 0.5� [−100, 100] 0

Quartic with noise f7(x) =
∑D

i=1(i · x4
i ) + random[0, 1) [−1.28, 1.28] 0

Schwefel 2.26 f8(x) = −∑D
i=1(xi sin

√|xi|) [−500, 500] 0

Rastrigin f9(x) = −∑D
i=1[x

2
i − 10 cos(2πxi) + 10] [−5.12, 5.12] 0

Ackley f10(x) = −20 exp

(

−0.2
√

1
D

∑D
i=1 x

2
i

)

[−32, 32] 0

− exp
(

1
D

∑D
i=1 cos(2πxi)

)
+ 20 + e

Griewank f11(x) = 1 +
∑D

i=1 x
2
i /4000 −∏D

i=1 cos(xi/
√
i) [−600, 600] 0

Penalized f12(x) =
π
D

(
10 sin2(πy1) + (yn − 1)2 [−50, 50] 0

+
∑D−1

i=1 (yi − 1)2(1 + 10 sin2(πyi+1))
)

+
∑D

i=1 u(xi, 10, 100, 4),

yi = 1 + 1
4
(xi + 1),

u(xi, a, k,m) =

⎧
⎨

⎩

k(xi − a)m, xi > a,

0, −a ≤ xi ≤ a,

k(−xi − a)m, xi < a.



Zhang et al. / Front Inform Technol Electron Eng 2019 20(3):425-437 433

the literature listed in Table 2. Specifically, α was
set to 0.2 for the classical FA (Yang, 2008). In the
standard FA (Yang, 2010), βmin was set to 0.2, and
α0 and θ were set to 0.9 and 0.95, respectively. For
WSSFA (Yu et al., 2014), αmin was set to 0.04. For
CFA (Gandomi et al., 2013), the Gauss map was
used to update parameter β. For NSRaFA (Wang
et al., 2017), α0, βmax, and βmin were set to 0.5,
0.9, and 0.3, respectively. For the proposed IFA, the
percentage for neighborhood learning pn and chaotic
local search pe were set to 0.2 and 0.1 respectively,
the chaotic search group was set to 10, and α0, βmax,
and βmin were set to 0.5, 0.9, and 0.1, respectively.
All the experiments were repeated 30 times, and the
results are presented in Tables 3 and 4.

In Table 3, the experimental results are illus-
trated for the classical FA, standard FA, WSSFA,
CFA, NSRaFA, and the proposed IFA. The compar-
ison results are summarized as w/t/l, which means
that our proposed IFA wins in w functions, ties in t

functions, and loses in l functions compared with the
other algorithms.

The experimental results indicate that the pro-
posed IFA can obtain the best solution on almost all

Table 2 FA variants used for comparison

Algorithm Year Reference

Classical FA 2008 Yang (2008)
Standard FA 2010 Yang (2010)
WSSFA 2014 Yu et al. (2014)
CFA 2013 Gandomi et al. (2013)
NSRaFA 2017 Wang et al. (2017)
Our proposed IFA 2018 –

functions; only on f8 does NSRaFA perform better
than IFA. From the deviation results in Table 4, IFA
is more stable than the other algorithms.

All the results above indicate that the perfor-
mance of IFA is better than those of the other re-
cently proposed FA variants on benchmark func-
tions. The good performance of IFA demonstrates
that it achieves a better balance between exploration
and exploitation with integrated strategies, espe-
cially on multimodal functions. Because the problem
of radar network deployment optimization is nonlin-
ear and complicated, IFA could be more suitable for
working on this problem.

5.2 IFA for deployment optimization of the
radar network

5.2.1 Scenario description

Assume that there is a surveillance network
whose area of responsibility is a square with side
length 400 km. It includes two types of radar, A and
B, whose numbers are equal. There are four height
levels, i.e., 500 m, 3000 m, 5000 m, and 10 000 m.

The maximum detection distances of type-A
and type-B radars at the above-mentioned four alti-
tudes are shown in Table 5.

Without considering the effect of terrain mask-
ing and other factors, the detection range of a radar
at any height level can be represented as a circle
whose radius is the maximum detection distance of
the radar at that height level. As the height in-
creases, the maximum detection distance of the radar

Table 3 Experimental results of the mean value on benchmarks

Function
Mean value

Classical FA Standard FA WSSFA CFA NSRaFA Our proposed IFA

f1 6.87e + 04 6.89e − 03 7.11e + 04 3.07e + 04 8.55e − 91 0.00e+ 00

f2 1.72e + 03 2.31e + 00 3.31e + 05 8.67e + 10 4.56e − 47 0.00e+ 00

f3 1.51e + 05 3.63e + 03 1.58e + 05 8.45e + 04 6.49e − 89 0.00e+ 00

f4 8.40e + 01 6.76e + 00 8.74e + 01 6.78e + 01 2.90e − 46 0.00e+ 00

f5 1.79e + 08 6.07e + 02 2.79e + 08 6.61e + 07 2.89e + 01 4.87e− 09

f6 1.25e + 03 6.20e + 00 1.19e + 03 8.09e + 02 0.00e+ 00 0.00e+ 00

f7 3.01e + 01 4.13e − 01 3.82e + 01 2.72e + 01 6.44e − 02 5.32e− 02

f8 −1.94e + 03 −6.32e + 03 −1.98e + 03 −2.38e + 03 −9.21e+ 03 −5.46e + 03

f9 2.95e + 02 5.50e + 01 3.40e + 02 3.53e + 02 0.00e+ 00 0.00e+ 00

f10 2.00e + 01 7.21e − 01 2.04e + 01 1.88e + 01 4.44e− 16 4.44e− 16

f11 6.31e + 02 2.25e − 02 6.25e + 02 2.82e + 02 0.00e+ 00 0.00e+ 00

f12 4.51e + 08 1.33e + 00 6.35e + 08 1.26e + 08 6.92e − 01 1.31e− 03

w/t/l 12/0/0 12/0/0 12/0/0 12/0/0 7/4/1 –

Boldface indicates the best results among the algorithms
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Table 4 Experimental results of the standard deviation value on benchmarks

Function
Standard deviation value

Classical FA Standard FA WSSFA CFA NSRaFA Our proposed IFA

f1 6.66e + 03 5.68e − 03 6.83e + 03 1.42e + 04 4.60e − 90 0.00e+00
f2 6.97e + 03 1.63e + 00 5.75e + 05 4.62e + 11 2.46e − 46 0.00e+ 00

f3 3.96e + 04 1.67e + 03 6.05e + 04 5.59e + 04 3.49e − 88 0.00e+ 00

f4 1.40e + 00 2.84e + 00 3.90e + 00 1.02e + 01 1.56e − 45 0.00e+ 00

f5 1.75e + 07 1.16e + 03 3.91e + 07 5.86e + 07 5.56e − 02 2.61e− 08

f6 5.39e + 01 6.20e + 00 5.35e + 01 2.23e + 02 0.00e+ 00 0.00e+ 00

f7 6.83e + 00 1.43e − 01 2.11e + 01 2.23e + 01 4.89e − 02 3.95e− 02

f8 4.74e + 02 1.13e + 03 4.63e + 02 5.04e + 02 5.35e+ 02 8.87e + 02

f9 1.10e + 01 1.61e + 01 1.13e + 01 4.03e + 01 0.00e+ 00 0.00e+ 00

f10 1.09e − 01 5.29e − 01 7.32e − 02 9.53e − 01 0.00e+ 00 0.00e+ 00

f11 7.81e + 01 2.43e − 02 7.77e + 01 1.22e + 02 0.00e+ 00 0.00e+ 00

f12 6.98e + 07 8.93e − 01 1.19e + 08 1.62e + 08 2.26e − 01 2.62e− 03

w/t/l 12/0/0 12/0/0 12/0/0 12/0/0 7/4/1 –

Boldface indicates the best results among the algorithms

Table 5 Maximum detection distances of type-A and
type-B radars

Type
Maximum detection distance (km)

500 m 3000 m 5000 m 10 000 m

A 90 200 220 250
B 30 210 270 360

shows an increasing trend. Assume that the surveil-
lance network focuses on the height of 500 m and
that its airspace coverage is required to be more than
50%. Thus, ρ0 was set to be greater than 0.5. The
detection range of the type-A radar is a circle with a
radius of 90 km. The detection range of the type-B
radar is circular with a radius of 30 km. The sum of
the two circular areas is about 28 000 km2. Although
the area of responsibility is 160 000 km2, there are a
total of 10 radars in the surveillance network, 5 type-
A radars and 5 type-B radars.

To avoid wasting resources, the proportion of
the area covered by more than four layers to the area
of the whole zone of responsibility should be less than
20%. Parameter τ was set to be larger than 0.8. The
weight values at the four altitudes are 0.4, 0.2, 0.2,
and 0.2, respectively.

In objective function (5), λ1 and λ2 were set
to 0.7 and 0.3 respectively, and constraints ρ1 and
τ1 were set to 0.5 and 0.2 respectively according to
usual practice.

5.2.2 Experimental results comparison

Based on the simple radar deployment optimiza-
tion problem described above, the algorithms listed

in Table 2 were applied to generate better radar de-
ployment strategies. The parameters of the algo-
rithms were the same as in the experiment on bench-
mark functions. For the classical GA (Srinivas and
Patnaik, 1994), the cross probability and mutation
probability were set to 0.4 and 0.1, respectively. For
ant colony optimization (ACO) (Yu et al., 2007), the
coefficient of the intensity of the trail was set to 0.9
and the heuristic coefficient was set to 1. All the
experiments were repeated 30 times. Table 6 de-
scribes the performance of the surveillance network
after optimization.

First, we used a two-sample t-test to compare
the results of different algorithms. The two-sample
t-test is a parametric test that compares the location
parameter of two independent data samples. It can
be used to determine if two sets of data are signif-
icantly different from each other. The test statistic
is

t = (x̄ − ȳ)
/
√

S2
x

n
+

S2
y

m
, (30)

where x̄ and ȳ are the sample means, Sx and Sy are
the sample standard deviations, and n and m are the
sample sizes. For simplicity, we used the following
formula to do t-test in MATLAB:

h = ttest2(x, y), (31)

where x and y represent two sets of data from the
results of different algorithms and h is the hypothesis
test result. If h equals 1, it indicates that x and y

are from different distributions at the statistical sig-
nificance level of 5%. If h equals 0, the conclusion is
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the opposite. After we did the two-sample t-test be-
tween the algorithms listed in Table 2 in pairs, all of
the outputs h equal 1. Therefore, the results show a
significant difference between the chosen algorithms
for comparison. From the maximum, minimum, and
mean results in Table 6, we can see that the pro-
posed IFA has better performance than the other
algorithms. Moreover, the experimental variance of
IFA is 5.9443e− 06, which indicates that the robust-
ness of IFA is significantly better than that of the
other seven algorithms.

Table 6 Results of different algorithms

Algorithm
F

Mean Maximum Minimum Variance

Classical GA 0.8085 0.8216 0.8070 1.7636e − 05

ACO 0.8220 0.8245 0.8067 2.6027e − 05

Classical FA 0.7879 0.8012 0.7776 2.9275e − 05

Standard FA 0.8243 0.8272 0.8106 1.2849e − 05

WSSFA 0.7874 0.8005 0.7788 2.7269e − 05

CFA 0.7964 0.8137 0.7819 3.3682e − 05

NSRaFA 0.8281 0.8304 0.8242 8.0651e − 06

Proposed IFA 0.8380 0.8392 0.8355 5.9443e− 06

F : comprehensive detection performance of the surveillance
network. Boldface indicates the best results among the
algorithms

Fig. 5 presents the average evolution curves of
eight algorithms. The proposed IFA has a longer
period of continuous evolution to search for a better
solution, while NSRaFA and the standard FA con-
verge too quickly and fall into local optima at an
early stage. For the classical FA, WSSFA, and CFA,

0.84

0.83

0.82

0.81

0.80

0.79

0.78

F

0 20 000 40 000 60 000 80 000
Number of fitness evaluations

Classical GA
ACO

Classical FA
Standard FA

WSSFA
CFA

NSRaFA
Proposed IFA

Fig. 5 Average evolution curves under different algo-
rithms. References to color refer to the online version
of this figure

their exploration ability is too weak for continuous
evolution to find better solutions. Therefore, we can
conclude that our proposed IFA strategies play a
significant role in obtaining a trade-off between ex-
ploration and exploitation.

5.2.3 Analysis of the IFA-optimized radar network
deployment strategy

In this subsection, the IFA optimized radar net-
work deployment strategy is analyzed. First, the
detection ranges of the radar at 500 m and 3000 m
height are shown in Figs. 6 and 7, respectively. At
the height of 500 m, type-A and type-B radars cover

Fig. 6 Radar detection scope at the height of 500 m.
Red dots: locations of type-A radars; green dots:
locations of type-B radars; solid circles: detection
ranges of type-A radars; dotted circles: detection
ranges of type-B radars. References to color refer
to the online version of this figure

Fig. 7 Radar detection scope at the height of 3000 m.
Red dots: locations of type-A radars; green dots:
locations of type-B radars; solid circles: detection
ranges of type-A radars; dotted circles: detection
ranges of type-B radars. References to color refer
to the online version of this figure
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more than half of the area of responsibility, but the
airspace overlap is very small. At the height of
3000 m, type-A and type-B radars cover the entire
area of responsibility, and there is also a considerable
overlap in airspace. Experimental data are listed in
Table 7.

As shown in Table 7, the airspace-covering coef-
ficient and the airspace-overlap coefficient are both
1 at the 5000 m and 10 000 m height layers. This in-
dicates that the network has achieved seamless cov-
erage and continuous tracking.

Table 7 Performance parameters at different heights
after optimization

Height (m) ρ μ

500 0.8453 0.0336
3000 1 0.9999
5000 1 1

10 000 1 1

6 Conclusions

Radar network detection is an important ap-
proach for defending against UAV invasion. In
this paper, a more complicated radar deployment
optimization model with multiple radar types and
multiple height detection levels has been described.
We converted it into a single-objective optimization
problem by introducing the airspace-covering coeffi-
cient and airspace-overlap coefficient in an objective
function. To solve this problem, an improved fire-
fly algorithm has been proposed. It employs three
strategies: (1) position initialization of fireflies in a
chaotic sequence; (2) a neighborhood learning strat-
egy with a feedback mechanism; (3) chaotic local
search by elite fireflies. Experimental results on
12 famous benchmark functions and in a classical
radar deployment scenario indicated that our ap-
proach achieves a good trade-off between exploration
and exploitation and has much better performance
than the classical FA and four recently proposed FA
variants.
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