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Abstract: KeJia is a domestic service robot, consisting of a mobile base, an arm, two cameras, and a set of software
components for perception, manipulation, natural language understanding, motion and task planning, and decision
making. With on-line running of these functions, a robot can adapt to dynamic environments which may have
unexpected changes. In this paper, we propose a novel hierarchical method which combines motion planning with
a neural network, so that the robot can tolerate errors from sensors, wear of parts, and human disturbances during
motion execution. We evaluate our work on KeJia that cooks popcorn using a microwave oven, where humans try
to disturb KeJia during the operation.
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1 Introduction

Robotics is a cross-disciplinary technology in-
volving mechanical design, hardware control, sens-
ing, artificial intelligence, etc. In recent years, do-
mestic service robots have received much attention
from researchers. A classic task for service robots is
receiving commands from users (e.g., grasp the cof-
fee from the dining table for me). Compared with
traditional industrial robots, domestic service robots
in home scenarios have significant differences:

1. The operating environment for industrial
robots is highly structured and customized. In op-
eration, a vast majority of industrial robots pro-
hibit persons or unrelated objects from entering the
workspace to avoid accidents. This is different from
the environment in home scenarios, where the envi-
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ronment may be affected by persons or pets at any
time. Domestic service robots are autonomously re-
quired to sense the environmental changes.

2. Industrial robots are generally designed to
interact with professional operators through teach
pendants, while service robots in home scenarios in-
teract with normal users using touch screens on the
robots or natural language in daily life.

3. Industrial robots often ensure high preci-
sion through strict customized environmental ar-
rangements, sophisticated instruments, and regular
professional maintenance. However, normal users
do not have the ability to professionally maintain
service robots. Service robots have the ability to
autonomously tolerate errors caused by the accu-
mulated use of the process, such as deformation of
joint and looseness of screw, using devices with lower
precision.

In this study, we present the KeJia service robot
designed for home applications and focus on the ef-
fort to ensure that the robot is tolerant of unex-
pected changes. We use an answer set programming
(ASP) (Lifschitz, 2008) based integrated decision-
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making strategy, which enables KeJia to work in
an unstructured and constantly changing environ-
ment. KeJia can continuously sense the environ-
ment, verify the effectiveness of actions, and replan
when the environmental changes affect the execution
of the tasks. We also propose a hierarchical method
for KeJia’s manipulation, combining traditional mo-
tion planning methods with a learning-based end-to-
end approach using a convolutional neural network
(Krizhevsky et al., 2012) which allows the robot to
tolerate errors in sensors, link joint clearance, and
human disturbances during motion execution.

2 Related works

In the past decade, one of the most popular
robots was Honda’s humanoid service robot Asimo
(Sakagami et al., 2002), which can autonomously
walk in an indoor environment, detect people, un-
derstand instructions, and carry out tasks (such as
pouring coffee). Willow Garage’s PR2 robot was a
domestic service robot platform on which researchers
around the world have carried out significant re-
search, such as folding clothes. KAIST’s Hubo
robot won the 2015 DARPA Robotics Challenge,
which was focused on robot control and manipu-
lation. Works focus on one aspect of the robot’s
functions, but it is essential to integrate those basic
functions into a robotic system.

For integration, the state machine
(Bohren and Cousins, 2010) is one of the most
classic methods. However, in complex and variable
environments, state machine methods are difficult to
extend. Using the task planning module is a general
approach (Chen et al., 2010; Erdem et al., 2012).
Chen et al. (2016) used a continuous observation
mechanism that allows the robot to handle error
messages.

For manipulation, under the assumption of
the ideal geometric model, the robot has mature
control systems based on dynamics and kinemat-
ics (Vannoy and Xiao, 2008; Murray, 2017). How-
ever, an accurate model of the robot, which di-
rectly affects the execution result of actions, incurs
a high maintenance cost. In a learning-based ap-
proach, Pinto and Gupta (2016) and Levine et al.
(2018) used neural networks to learn strategies of
grasping. However, data collection cost a lot, and
generally took months. Mahler et al. (2017) and

Popov et al. (2017) trained robots using simulators,
but strategies cannot be directly ported to physical
robots.

3 Scenario features

Compared with traditional industrial scenarios,
home scenarios are unstructured, where the robot
and human live in the same environment. Based
on our years of experience in domestic service robot
research, service robots with the characteristics of
adaptation to a dynamic environment and error tol-
erance perform better in home scenarios than robots
that do not have.

3.1 Adaptation to a dynamic environment

Distinct from industrial robots which have isola-
tion zones separated by isolation belts, service robots
in home scenarios share the same workspace with
operators. While a robot is completing its tasks,
people may disturb or assist the robot, making the
environment different from the robot’s belief. If the
robot can adapt to environmental changes in the
workspace, it will have better performance in home
scenarios.

3.2 Error tolerance

Ordinary users do not have the ability to operate
the internal program of robot, nor do they have the
ability to provide regular maintenance. During daily
use, there are unexpected errors of slight looseness
and misalignment on hardware, especially on the
structure of the robot’s arm and the pre-calibrated
position of sensors. If the robot cannot deal with
those errors by itself, a calibration process operated
by professionals is required to re-program parame-
ters of the robot’s model. However, if the robot’s
service quality is not affected by these anomalies, it
will perform better in home scenarios than robots
that require regular maintenance.

4 Framework overview

4.1 Hardware structure of KeJia

KeJia is a domestic service robot designed
for home scenarios, and has shown its accom-
plishment in the RoboCup@Home Competition
(Wisspeintner et al., 2009; Chen et al., 2014). The



Shuai and Chen / Front Inform Technol Electron Eng 2019 20(3):307-317 309

hardware structure of KeJia is shown in Fig. 1a.
A differential wheel drive chassis installed on the
middle axis is responsible for movement. KeJia is
equipped with a five-degree-of-freedom (5-DOF) arm
for manipulation and a two-DOF head for percep-
tion in vision. For real-time perception, KeJia is
equipped with a Kinect camera which can detect
depth information, a high-resolution CCD camera
for objects’ details, a macro camera attached to a
gripper, a large-range HOKUYO UTM-30LX laser
scanner which can provide information about walls
and furniture for mapping and self-locating, and a
microphone.

(a)

(b) 

HRI NLU

World states Task planning

Continuous monitor

Vision SLAM Motion

Decision making

Perception

Fig. 1 Hardware and software architectures of KeJia:
(a) hardware structure; (b) software architecture

4.2 System architecture of KeJia

KeJia adopts a distributed structure, and all
modules in KeJia communicate with each other by
the robot operating system (ROS) (Quigley et al.,
2009; Chen et al., 2014). In general service scenarios,
KeJia takes natural language commands in English

as inputs. Once a command is given, the human
robot dialogue module will analyze the command
and translate it into a proper goal representation
in answer set programming (ASP) form (Lifschitz,
2008). As for the task planning module, a solver is
used to generate plans with atomic actions and pre-
dict states for each step of the actions. Those states
are fed into the motion module and the continuous
monitor, while the monitor continuously senses world
states of the environment using the information from
sensors. Every time the robot finishes executing the
trajectory obtained from the manipulation module
or detects a failure flag from the manipulation mod-
ule, the continuous monitor will check whether world
states and predicted states are consistent. Once a
difference is detected, the current plan is aborted
and a replanning process is performed. The system
architecture of KeJia is shown in Fig. 1b.

4.3 Function modules

4.3.1 Mapping, locating, and navigation

KeJia’s navigation module can be divided into
three parts: mapping, locating, and navigation. The
mapping part maintains information about obstacles
in the scene through a prior exploration by profes-
sional operators. The locating part informs the robot
where it is located. The navigation part is used to
control the robot to move to its goal without contact-
ing the obstacles. Both lasers and the depth camera
are used in these modules. Particle filter GMap-
ping (Grisetti et al., 2007) is used for mapping and
locating. Instead of traditional representation of a
two-dimensional (2D) grid map, we use a quadtree-
structed map (Chen et al., 2015), which can save
a lot of memory space, meaning that the modules
can process more particles at the same time when
mapping and locating to obtain accurate map infor-
mation. Two planners are employed for navigation.
A global planner uses the A* algorithm to roughly
plan way points, and a local planner uses the VFH*
(Ulrich and Borenstein, 1998) algorithm to obtain
the exact direction along which the robot needs to
move.

4.3.2 Dialogue understanding

Dialogue understanding is used for human-robot
interaction, including speech recognition (SPR) and
natural language understanding (NLU). SPR is



310 Shuai and Chen / Front Inform Technol Electron Eng 2019 20(3):307-317

responsible for converting the voice information cap-
tured by the microphone into strings, and NLU is
used to translate strings into semantic representa-
tion and output formal representation in the ASP
language format. There are three types of com-
mands from users in dialogue understanding: tasks
that the robot is about to perform (e.g., grasping the
cup), constraints needed to be observed in the robot’s
movement (e.g., don’t enter the bedroom), and sup-
plements to the world state (e.g., drinks are on the
dinning table). In the process of semantic parsing,
we first use the Stanford parser (Klein and Manning,
2003) to obtain the syntax tree structure, and then
use λ-calculus (Blackburn and Bos, 2005) to calcu-
late the semantics of the sentence.

4.3.3 Vision

KeJia’s vision module can sense the position and
the types of objects which have been pre-trained
through template matching with high accuracy in
real time. A Kinect depth camera and a high-
resolution color camera are invoked as visual sensors,
which enable KeJia to obtain real-time depth point
clouds for objects’ positions and shapes and high-
resolution images for texture features of the objects’
surfaces. After calibration, a transformation matrix
can be established between point clouds and images.
While detecting objects, it uses point clouds with
the Point Cloud Library (Rusu and Cousins, 2011)
to extract the largest horizontal plane and cluster
point clouds above it into different pieces, which are
possible candidates of objects. Then, KeJia maps
the corresponding areas of the high-resolution image
from candidates of point clouds and extracts SURF
features, HSV color features, size features, etc. Af-
ter a comparison with the existing features, the vi-
sion module can obtain the objects’ categories and
positions.

5 Integrated decision making

KeJia’s decision-making strategy is based on the
ASP, representing the transformation about world
states which can describe the environmental informa-
tion and belief states which can describe the robot’s
beliefs. An ASP solver generates a sequence of ac-
tions and states from the initial state to the target
state, and drives the robot to complete the specified
tasks step by step.

An ASP program consists of a set of ASP rules,
expressed as

H ← p1, . . . , pk, not q1, . . . , not qm.

Different from classical negation “¬” in classical
logic, not q means that q cannot be deduced from
the ASP program. The ASP rule is equal to the
following logical expression:

H ∨ ¬p1, . . . ,∨¬pk,∨¬not q1, . . . ,∨¬notqm.

It is an ASP fact if the ASP rule has only H in its
expression. An action is represented by occurs(a, t),
where a is the action’s name, and t is the time when
the action occurs. The ASP fact occurs(a, t) is true
only if action a occurs at time step t. A state is
represented as h(s(x), t), where x means an object, s
the state of the object, and t the time when the state
occurs. The ASP fact h(s(x), t) is true only if entity
x has state s at time step t. For tasks and constraints
from the dialogue understanding module, semantics
will be translated into non-monotonous ASP repre-
sentations (e.g., ← not goal(A) ← constranint(A)).
For information about the states of the environment,
the semantics are converted to the world state, such
as obj(A).

The depiction of the knowledge can be divided
into three parts: action’s conditions, action’s influ-
ences, and inertia rules. State inertia indicates what
happens when the time elapses from t to t+ 1. The
action preposition describes the premise that an ac-
tion is allowed to occur. The action effect represents
the transformation of world states when an action
successfully runs without any fault.

For example, as shown in Fig. 2, knowledge
about action open can be described in the follow-
ing rules:

1. Influences: If A is an oven and the action open
occurs in step t, A will has the state door_open. It
means the oven’s door will be opened if the action
open occurs.

2. Conditions: If A is an oven and the ac-
tion open occurs in step t, A should have a state
door_close in step t − 1. It means the oven’s door
must be closed before the action open occurs.

3. Conditions: If A is an oven, B is an object,
and the action open occurs in step t, B should have
a state outagent in step t − 1. It means the robot’s
gripper must be empty before the action open occurs.
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4. Inertia rules: If A is an oven, the action open
does not occur in step t, andA has a state door_close
in step t−1, A will have a state door_close in step t.
It means the door will stay closed if the action open
does not occur.

h(door_open(A), t) ← occurs(open(A), t), oven(A)
← occurs(open(A), t), oven(A), not h(door_close(A), t−1).
← occurs(open(A), t), oven(A), not h(outagent(B), t−1), object(B).
h(door_close(A), t)←h(door_close(A), t−1), not occurs(open(A), t), oven(A).

Fig. 2 Examples of ASP rules in the integrated
decision-making module

ASP solver’s work is to find the set of ASP facts,
which lets all of the ASP rules in the ASP program
be true. According to the solver and ASP rules, a se-
quence < s0, a0, s1, a1, . . . , an−1, sn > will be given,
where si is the set of belief states, and ai is the action
the robot plans to produce. Robots may fail in exe-
cuting such a sequence for two reasons: (1) si does
not match the actual world states (conditions are
not satisfied); (2) action ai fails during its execution
(si+1 cannot be reached). During the execution of
the sequence of actions and states, KeJia constantly
updates its world states through the perception mod-
ule, while the manipulation module is continuously
monitored for abnormalities, such as excessive joints’
current, which indicates that a collision may occur
during movement. When belief states that conflict
with world states sensing from perception or abnor-
malities are detected, the current sequence is con-
sidered illegal and will be replanned (Algorithm 1).

6 Manipulation

KeJia’s manipulation module is studied only
for grasping, placing, and touching operations. For
these operations, KeJia’s behavior can be split into
two parts: moving the end effector of the robot’s arm
to a certain pose, and closing or opening its paw at
the previous pose. Consequently, the grasping, plac-
ing, and touching operations are equivalent to driv-
ing the end effector to fall within a certain range and
not colliding with other obstacles during the move-
ment, if the execution probability of the gripper is
ignored.

When the position of the object sensed by the
sensor is X, and the transformation matrix from the
base of the arm to the camera is A, the position of the
target based on the arm’s base is Ysense = AX. The

Algorithm 1 Decision-making loop
Require: world_states, rules, goals
1: replan ← true
2: while replan = true do
3: states, actions ← solver(world_states, rules, goals)
4: replan ← false
5: if states = ∅ and actions = ∅ then
6: fail // no result
7: end if
8: if states �= ∅ and actions = ∅ then
9: task is finished

10: else
11: i← 0

12: while i <len(actions) do
13: belief_states ← states[i]
14: update percept_states from perception
15: if conflict(belief_states, percept_states) then
16: world_states ← update(percept_states)
17: replan ← true
18: break while
19: end if
20: result ← execute_action(actions[i])
21: if result = true then
22: world_states ← update(states[i + 1])

23: i← i+ 1

24: else
25: replan ← true
26: break while
27: end if
28: end while
29: if replan = false then
30: task is finished
31: end if
32: end if
33: end while

error caused by slight looseness and misalignment
of hardware is E, and the real position is Yreal =

AEX. Then the error matrix of the object sensed
by the sensor is

error_matrix = Y −1
senseYreal = X−1EX.

If error_matrix is represented by rotation matrix
RM and position matrix TM , the error related to
the pose of X is

error = ||TM ||2 = ||RT
X(RX − I)TX + TE ||2,

which means the error is related to the errors in
misalignment, especially in the error of rotation and
the distance between the camera and the sensed ob-
ject. However, when the robot senses the object
and the gripper at the same time, where the coor-
dinate position between the gripper and the object
is ΔX = X−1

objectXgripper, the error matrix of the
coordinate position based on the arm’s base is

related_error_matrix = ΔX,
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which means the error is the distance between the
gripper and the object, d(gripper, object). While
the operation is proceeding, related_error is always
smaller than the error. It leads to the result that the
perception of the coordinate position between the
gripper and the object is more accurate than the ab-
solute position of the object. Therefore, this feature
can be used to reduce errors in the operating process.
What is more, when the gripper is very close to the
object and the robot’s arm runs with local stability,
which means the joints remain stable in a localized
range where there is no applied load or a sudden
change in speed, the related_error is independent of
errors in misalignment and is too small to disturb
the operation.

6.1 Method

The manipulation method is shown in Algo-
rithm 2. When performing an object operation, Ke-
Jia first uses RRT (Kuffner and LaValle, 2000) to
plan the trajectory and check if the path is valid.
If it is, this trajectory will be executed; otherwise,
the location of the failure is detected. If the location
occurs near the target point, the robot executes the
partial trajectory to the blocking location and then
enters the end-to-end layer; otherwise, KeJia needs
to sense the distance between obstacles and the grip-
per to reduce the error of perception. Then a new

Algorithm 2 Manipulation
Require: obstacles, robot_model, retry_limit
1: retry ← 0
2: while retry < retry_limit do
3: trajactories ← planning(obstacles, robot_model)
4: if trajectories �= ∅ then
5: i_model← inflact(robot_model, error)

6: if isValid(obstacles, i_model) then
7: execute trajectories
8: else
9: execute trajectories to blocking location p

10: if inRange(p) then
11: enter the end-to-end control loop
12: else
13: percept again and reduce error
14: error ← new_error
15: retry ← retry + 1
16: end if
17: end if
18: else
19: fail
20: break while
21: end if
22: end while

error model is updated and a replan occurs. If the
error cannot be reduced to make KeJia have an effec-
tive motion planning solution or enter the end-to-end
layer, the operation fails.

6.2 End-to-end layer

In the end-to-end layer, a CNN-structured net-
work g(It, at−1) is used to evaluate the moving direc-
tion of the robot’s arm from calibrated images in the
micro camera. It is the calibrated image collected
from the micro camera, which is attached to KeJia’s
gripper, and at−1 is the action which the robot chose
in the last controlling loop. This network is pro-
cessed in every control loop. Details are shown in
Algorithm 3.

Algorithm 3 End-to-end control loop
1: at−1 ← [1, 0, 0, 0, 0] // action: move forward
2: loop
3: obtain current image It
4: at ← g(It, at−1)

5: action ← max(at)

6: execute action
7: at ← at−1

8: if collision is detected then
9: stop

10: break loop
11: end if
12: end loop
13: if the target pose is reached then
14: close/open gripper
15: else
16: return fail
17: end if

The end-to-end layer has three assumptions: (1)
During the gripping process, both the object which is
being manipulated and the gripper are in the field of
view; (2) After the planning level is executed, a cer-
tain error exists between the gripper and the target
items; (3) The robot’s arm runs with local stability,
which means the joints remain stable in a localized
range where there is no applied load or a sudden
change in speed.

To ensure the real-time performance of closed-
loop operation, the network should not be too com-
plicated. An AlexNet-variant network is used. The
architecture of our network is shown in Fig. 3. The
output of the network is a 5D vector: [go, up, down,
left, right]. The loss function of the network is esti-
mated using cross entropy. The action which has the
highest score in the output is chosen as the moving
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direction to be executed in the current controlling
loop. When the gripper successfully presses the but-
ton, the electric current of each joint’s motor will
abruptly change. It is considered that the manipu-
lation phase is completed.

Input Conv1
Conv2

Conv3Conv4
Conv5

fc-s

fc-a

fc

fc2

 Action t−1

Action t 
227

3 96

256

256

256

256

384 384

512
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5
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Fig. 3 Network structure

6.3 Data collection

The data collection process is divided into two
parts: one for data about the influence of the robot’s
actions on the environment, and the other for data
about the correspondence between the environmen-
tal state and the sensor image. Data for these two
parts can be separately collected.

First, we use a reality-simulation-unified
method to collect data. In the real world, we let
the robot make movements on the empty ground,
while using motion capture devices (Corazza et al.,
2006) to capture the motion of the robot. In the
simulator, we maintain a virtual target object and a
virtual gripper with the same shape as KeJia’s end-
effector and the same motion of KeJia captured by
motion capture devices. In this way, the robot can
easily obtain enough motion data without objects.

Next, we simply capture images from the micro
camera on the gripper, and the positional relation-
ship between the object and the gripper is captured
by the motion capture device at the same time. Be-
cause of the extremely small range of motion (as-
sumption (3) in Section 6.2), it is easy to collect
enough image data.

Finally, the images are combined with the cor-
responding action positions to form training data.

7 Experiment

In this section, our experiment can be divided
into three parts: (1) We evaluated our end-to-end

layer’s performance by training networks to grasp
objects which are rendered in the simulator, and
evaluated network’s performance of grasp quality in
the simulator. (2) We evaluated our manipulation
method in the real world and compared it with three
other different methods. For each method, 45 at-
tempts were allowed to press the button of an oven.
(3) To evaluate the integration of the whole system
of KeJia, a case study was produced when cooking
popcorn using an oven.

7.1 Simulation of the end-to-end layer

We trained the end-to-end layer and eval-
uated the performance of the Gazebo simulator
(Koenig and Howard, 2004). To evaluate the three
assumptions made in Section 6.2, we tested the end-
to-end layer with the following six factors: (1) num-
bers of samples; (2) start position; (3) randomization
of the background and light; (4) changes of the cam-
era’s positions; (5) whether the gripper is in the field
of view; (6) use of the pre-trained weight.

Two types of targets were employed in the exper-
iment: one is a large object (such as an oven) which
can cover the field of view, and the other is a small
object (such as a bottle or a pen). The difference of
these two types of objects is that the background of
the environment can be seen through a bottle or a
pen, but not through a oven. The learning rate was
set as 1× 10−6 for fine-tuning.

The grasp position was set at the object’s center.
According to the distance between the final position
of the gripper and the grasp position, we divided the
performance of grasping into five levels: perfect (<
2 mm), good (2–3 mm), not bad (3–4 mm), pass (4–5
mm), and fail (>5 mm). We made 200 attempts for
each test.

The range of captured training data was 5 cm
around the target’s center.

Fig. 4 shows the relationship between the num-
ber of samples and grasp quality. The start positions
in this experiment were random locations within 5
cm around the target. We achieved a high grasp
feasibility with 3000 images, which means it takes
only a few minutes to collect enough data.

Fig. 5 shows that the network has a different
performance at different start positions. Grasp qual-
ity can be guaranteed in the range of training data.
A pre-trained model can achieve satisfactory results
in a wider range than the model without pre-trained
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Table 1 Grasp feasibility of different methods with 200 attempts

Method
Success times

Total success
d ∈ [0,2) mm d ∈[2,3) mm d ∈[3,4) mm d ∈[4,5) mm times

Full method 112 3 63 22 200
Without background randomization 101 0 0 92 193
Without gripper in the field of view 0 0 1 41 42
Without camera randomization 0 0 88 86 174
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Fig. 4 Relationship between the number of samples
and grasp quality
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Fig. 5 Relationship between grasp quality and the
start position with (a) or without (b) pre-trained
weights

weights.
Table 1 shows the importance of randomization

of the background and light, changes of camera’s
position, and whether the gripper is in the field of
view by removing these factors when capturing data.
Start positions in this experiment were random lo-
cations within 5 cm around the target, and the cam-
era’s position was changed when we evaluated the
performance of grasping. We found that randomiza-
tion was needed especially in the camera’s position.
The randomization of background slightly improved
the effect. It stemmed from the fact that most of

the view of the camera was covered by the target. In
addition, the gripper needed to be seen in the view
of the camera, and the network did not converge,
leading to a bad feasibility.

7.2 Manipulation in the real world

In this experiment, we let KeJia try to press the
button of the oven. KeJia was asked to navigate to
a random place 2 m around the oven and started its
attempts. If KeJia successfully pressed the button,
the GUI of the screen on the microwave oven will
change, allowing us to autonomously evaluate the
results of the operation by detecting if the screen
had changed after the robot finished its action.

Experimental results showed that the random
error of execution was ±3 cm, while the button’s
diameter was only 1 cm. If KeJia performed the
action of pressing the button under the influence of
various errors, depending on the visual result, the
gripper would randomly reach a position within 3 cm
of the button’s midpoint. It had a great probability
of failing in the action of pressing the button as the
button was too small.

We evaluated the performances of four different
methods, including the classical controlling method
and the end-to-end method. The first method is an
open-loop controlling method, recognizing the tar-
get using a depth camera and controlling its arm
to the calculated position. The next method is
a closed-loop controlling method of hand-eye cali-
brated (Cui et al., 2018), attaching a marker to the
gripper. The third method is a full end-to-end
method (Levine et al., 2018). Levine et al. (2018) let
the robot autonomously find the best way, which is
different from our work where the learning is super-
vised. As a result, instead of letting the robot explore
by itself, we simply generated the actions labels,
collected data under human control, and used the
network structure proposed by Levine et al. (2018).
The last one is our method, training the end-to-
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end layer’s network using the full method with pre-
trained weights, and the learning rate was set as
1 × 10−6 for fine-tuning. All methods were limited
to collecting data in 1 min.

For each method, 45 attempts were allowed. In
the first 15 attempts, we let the robot undisturbedly
press the button. In the next 15 attempts, we manu-
ally pushed the robot’s arm away from the target to
find out whether it can recover by itself. It must be
mentioned that the robot’s arm has gear clearance.
In the last 15 attempts, we changed the orientation
of the micro camera on the gripper and the depth
camera on the robot by several degrees, and evalu-
ated whether it can overcome this calibration error.
The results are shown in Table 2.

Table 2 Success times in attempts of pressing button

Method
Success times

First 15 Second 15 Third 15
attempts attempts attempts

Open-loop 15 3 7
Closed-loop 14 15 12
End-to-end – – –
Ours 15 14 15

Our method succeeded in 44 attempts. The
attempt that failed happened in the second 15 at-
tempts, during which we pushed the robot’s arm
when the robot moved too close to the oven, and
thus the robot did not have enough space to adjust
its gripper’s position. The open-loop method did
well in the first 15 attempts but badly in the other
30 attempts. In the closed-loop controlling method,
the robot could recover when errors occurred, but it
could not recover when it needs to calibrate itself. In
addition, a special marker was needed to recognize
the robot’s position. The failed attempts all occurred
in the situation where the marker was covered by the
robot’s body. As for the full end-to-end method, our
dataset was too small to grasp objects.

7.3 Case study

In this case study, KeJia was constantly affected
by the following uncertainties: errors in perception
(e.g., errors in detecting objects’ positions), changes
in the environment (e.g., human assistance and inter-
ference), and errors in hardware (e.g., errors in the
robot arm model and in the transform relationship
between the camera and arm’s base). In the exper-

iment, we used iclingo (Gebser et al., 2008) as our
solver. For each object (i.e., microwave oven, cup,
and button) used in the demonstration, we spent 1
min collecting data. For the task, KeJia needed to
put a cup of corn into the microwave oven and then
to press the button on the oven to make popcorn.

Our demo video (http://ai.ustc.edu.cn/media
/kejia_oven.mp4) shows how KeJia dealt with fail-
ures and errors occurring in the task of cooking a cup
of popcorn using a microwave oven (Fig. 6).

(a) (b) (c) 

(d) (e) (f) 

Fig. 6 Scenarios in demonstration: (a) scenario 1; (b)
scenario 2; (c) scenario 3; (d) scenario 4; (e) scenario
5; (f) scenario 6

Scenario 1 The operator wanted to heat popcorn.
While the robot was preparing for the first action
occurs(open(1),1), it noticed that the oven’s door
was closed, corn was on the top of the oven, and its
gripper was empty.
Scenario 2 For the action occurs(grasp(2),2), Ke-
Jia planed its motion using the RRT method and
noticed that it could execute actions.
Scenario 3 Before Kejia was going to put the cup
into the oven, it noticed that the door was closed and
its gripper was occupied. Therefore, KeJia replanned
its action. It decided to put the cup somewhere and
then opened the door again using its empty gripper.
Scenario 4 An extra change in state was detected.
The operator opened the oven’s door and adjusted
the position of the oven. KeJia replanned its action
again.
Scenario 5 For the action occurs(grasp(2),1), Ke-
Jia planned its motion using the RRT method and
noticed that it could execute actions. Then it contin-
ued its actions in the end-to-end layer using cameras
on the gripper and successfully pressed the heat but-
ton.
Scenario 6 KeJia failed in the action occurs(open



316 Shuai and Chen / Front Inform Technol Electron Eng 2019 20(3):307-317

(1),4) because of the operator’s disturbance. It is
noticed that it failed to open the door and tried the
action once again.

8 Conclusions

In this paper, the frame of service robot KeJia
which is aimed for home scenarios has been intro-
duced. Our work has focused on integrated decision
making and error-tolerant manipulation. We have
developed an intelligent service robot system which
can flexibly handle a dynamic environment and tol-
erate errors during manipulation.

Using the solver based on the ASP and contin-
uous observation, KeJia can adapt itself to some un-
expected changes in the environment. This method
does not need to program each possible situation by
hand to deal with all kinds of possible states, but
needs to describe only the condition and influence of
the action after the realization of functional modules.

We have also proposed a novel hierarchical
method which combines motion planning with neu-
ral network prediction to enable robots to use low-
precision equipment to complete high-precision ac-
tions. Instead of collecting a large amount of data
for a long time, only a simple one-minute data col-
lection is needed for each operating object, which
greatly reduces the cost of data collection in robotic
applications. We hope that our work will provide
some experience to similar robots.
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