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1 Introduction

In 1982, Kosko furnished answers to an inter-
esting question concerning data-association storage
and recall in a dynamic system with nonlinear feed-
back and two layers (Kosko, 1988). He managed to
find a network of neurons that realizes this, known
as the bidirectional associative memory neural net-
works (BAMNNs). This kind of neural network (NN)
has been proved to have wide applications in various
fields such as medical image edge detection, medical
event detection in electronic health records, diag-
nosis prediction in health care, pattern recognition,
and robotics. These applications heavily depend on
the dynamic behaviors of bidirectional associative
memory (BAM), and the analysis of these dynamic
behaviors is a prerequisite for practical design of this
kind of NN, because the success of these applications
relies on understanding of the underlying dynamic
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behavior of the model. For this reason, there have
been extensive results on the problem of dynamic
analysis of BAM (Balasubramaniam et al., 2011; Li
HF et al., 2016; Xu and Li, 2016; Aouiti and As-
sali, 2019). Because neurons cannot communicate
instantly, it is important to consider NNs with time
delays (M’Hamdi et al., 2016; Aouiti et al., 2017,
2018; Alimi et al., 2018; Aouiti, 2018; Aouiti and
Miaadi, 2018, 2019).

Researchers have also investigated NNs by
adding an inertial term. This model was first in-
troduced by Wheeler and Schieve (1997). Recently,
inertial NNs with a delay have been widely inves-
tigated by many researchers because of their role
in generating complicated bifurcation behavior and
chaos. Ke and Miao (2017) considered a class of in-
ertial BAMNNs (IBAMNNs) and a time delay with
constant coefficients. They demonstrated the ex-
istence and exponential stability of the suggested
NNs, using a Lyapunov function, the Halanay in-
equality, and the fundamental solution of the coef-
ficient matrix. Xu and Zhang (2015) modified the
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system studied in Ke and Miao (2011). They used
variable coefficients for the strong points of the con-
nection and external inputs. Using the Lyapunov
method and inequality techniques, they showed the
uniqueness, existence, and exponential stability of
anti-periodic solutions of IBAMNNs. Ke and Miao
(2017) discussed the exponential stability of anti-
periodic solutions for inertial NNs with time delays,
presented hypotheses that help show the existence
and exponential stability of anti-periodic solutions
for this type of NN, and used the Lyapunov method,
uniform convergence, and so on (Ke and Miao, 2011,
2013a, 2017; He et al., 2012; Qi et al., 2015; Xu and
Zhang, 2015; Zhang and Quan, 2015; Tu et al., 2016;
Liao et al., 2017; Li YK and Xiang, 2019).

The mathematical modeling of various physical
processes gives rise to anti-periodic solutions (Batch-
elor et al., 1995). Okochi (1990) studied the first
anti-periodic solutions for nonlinear evolution equa-
tions. The investigation of anti-periodic solutions is
an important subject because of their applications
in engineering, physics, and control theory. In NN
theory, much attention has been paid to the study of
anti-periodic oscillations of different types of NNs (Li
YK et al., 2015; Xu and Zhang, 2015; Li HF et al.,
2016; Long, 2016; Xu and Li, 2016; Ke and Miao,
2017; Zhou QY and Shao, 2018; Li YK and Xiang,
2019).

The conditions of numerous current studies
on optimal control, science, mechanics, medica-
tion, gadgets, and financial matters are susceptible
to immediate problems and experience unexpected
changes. The term of these progressions is excep-
tionally short and irrelevant to the duration of the
process considered, and can be thought of as mo-
mentary changes or impulses. In NN theory, sys-
tems with short-term perturbations are naturally de-
scribed by impulsive differential equations; we refer,
for example, to Liu BW (2007), Li YK (2008), Liu
B et al. (2008), Zhou JW and Li (2009), Stamova
et al. (2014), Li XD and Wu (2016), Li XD and Song
(2017), Aouiti and Assali (2019), Aouiti and Dridi
(2019a, 2019b), and Li XD et al. (2019).

However, few researchers have been interested
in the dynamics of anti-periodic solutions for in-
ertial NNs, in particular IBAMNNs. Also, as far
as we know, there is no article that has studied
the existence and exponential stability of IBAMNNs
with impulsive effect. In this study, we establish

new results concerning the existence, uniqueness,
and global exponential stability of anti-periodic
IBAMNN solutions with mixed delays and impulsive
effects defined by the following equations:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d2xi(t)

dt2
=− αi

xi(t)

dt
− aixi(t) +

m∑

j=1

cji(t)

· fj(yj(t)) +
m∑

j=1

dji(t)fj

(

yj(t− τji(t))

)

+
m∑

j=1

hji(t)

∫ +∞

0

Kji(u)

· fj
(

yj(t− u)

)

du+ Ii(t),

d2yj(t)

dt2
=− βj

yj(t)

dt
− bjyj(t) +

n∑

i=1

pij(t)

· gi(xi(t)) +
n∑

i=1

qij(t)gi

(

xi(t− σij(t))

)

+

n∑

i=1

oij(t)

∫ +∞

0

Nij(u)

· gi
(

xi(t− u)

)

du+ Jj(t).

(1)
Herein n ≥ 2; t ≥ 0; i = 1, 2, . . . , n; j = 1, 2, . . . ,m;

the second derivative is called an inertial term of
system (1); αi and βj are positive constants; xi(·)
and yj(·) are the external inputs of the ith neuron
in the X layer and the external inputs of the jth

neuron in the Y layer, respectively; ai > 0 and bj > 0

denote the rate at which the ith neuron and the jth

neuron will reset their potential to the resting state in
isolation when disconnected from the networks and
external inputs, respectively; functions cji(·), dji(·),
hji(·), pij(·), qij(·), and oij(·) denote the connection
strengths of the NN; Kji(·) and Nij(·) are the delay
kernels; fj(·) and gi(·) are the activation functions of
the jth and ith neurons, respectively; τji(·) and σij(·)
are the external inputs on the ith neuron in the X
layer and the jth neuron in the Y layer, respectively;
Ii(·) and Jj(·) are the external biases of the X layer
and Y layer, respectively.

The initial conditions of system (1) are given by

⎧
⎪⎨

⎪⎩

xi(s) = ϕxi(s),
dxi(s)

dt
= ψxi(s),

yj(s) = ϕyj(s),
dyj(s)

dt
= ψyj(s),

(2)
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where s ∈ (−∞, 0] and ϕxi(·), ψxi(·), ϕyj(·), and
ψyj(·) are bounded and continuous functions.

Let
(
x(t), y(t)

)T be a solution of system (1) with
initial values (2). Let

⎧
⎪⎨

⎪⎩

ui(t) =
dxi(t)

dt
+ xi(t),

vj(t) =
dyj(t)

dt
+ yj(t),

for i = 1, 2, . . . , n and j = 1, 2, . . . ,m. We can
rewrite system (1) as

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dxi(t)

dt
=− xi(t) + ui(t),

dui(t)

dt
=− (

ai − αi + 1
)
xi(t)−

(
αi − 1

)
ui(t)

+

m∑

j=1

cji(t)fj(yj(t))

+

m∑

j=1

dji(t)fj

(

yj(t− τji(t))

)

+

m∑

j=1

hji(t)

∫ +∞

0

Kji(u)

· fj
(

yj(t− u)

)

du+ Ii(t),

dyj(t)

dt
=− yj(t) + vj(t),

dvj(t)

dt
=− (

bj − βj + 1
)
yj(t)−

(
βj − 1

)
vj(t)

+

n∑

i=1

pij(t)gi(xi(t))

+

n∑

i=1

qij(t)gi

(

xi(t− σij(t))

)

+
n∑

i=1

oij(t)

∫ +∞

0

Nij(u)

· gi
(

xi(t− u)

)

du+ Jj(t).

(3)

By adding the impulsive effects, we consider
the following IBAMNN:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dxi(t)

dt
=− xi(t) + ui(t),

dui(t)

dt
=− (

ai − αi + 1
)
xi(t)−

(
αi − 1

)
ui(t)

+

m∑

j=1

cji(t)fj(yj(t))

+

m∑

j=1

dji(t)fj

(

yj(t− τji(t))

)

+
m∑

j=1

hji(t)

∫ +∞

0

Kji(u)

· fj
(

yj(t− u)

)

du+ Ii(t),

dyj(t)

dt
=− yj(t) + vj(t),

dvj(t)

dt
=− (

bj − βj + 1
)
yj(t)−

(
βj − 1

)
vj(t)

+

n∑

i=1

pij(t)gi(xi(t))

+
n∑

i=1

qij(t)gi

(

xi(t− σij(t))

)

+

n∑

i=1

oij(t)

∫ +∞

0

Nij(u)

· gi
(

xi(t− u)

)

du+ Jj(t),

xi(t
+
k ) =ϑ

x
ik(xi(tk)) = (1 + ϑ̃xik)xi(tk),

ui(t
+
k ) =ϑ

u
ik(ui(tk)) = (1 + ϑ̃uik)ui(tk),

yj(t
+
k ) =ϑ

y
jk(yj(tk) = (1 + ϑ̃yjk)yj(tk),

vj(t
+
k ) =ϑ

v
jk(vj(tk)) = (1 + ϑ̃vjk)vj(tk).

(4)
The impulsive times tk satisfy: t0 < t1 < . . . <

tk < . . ., limt→+∞ tk = +∞.
Remark 1 The facts that our model can have many
applications in the scientific and technical fields (we
talked about this in the introduction), and that these
applications can be successful by taking into account
a good understanding of the dynamic behavior of the
model, are motivations to study this model. The in-
vestigation of an anti-periodic solution for system (4)
does not exist as of this writing. Consequently, the
principal reason for this study is to give new condi-
tions to demonstrate the existence, uniqueness, and
global exponential stability of anti-periodic solutions
for a class of impulsive BAMNNs using differential
inequality techniques.
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Remark 2 Our principal contributions are as
follows:

1. We establish new conditions to prove the
existence and uniqueness of anti-periodic solutions
for model (4).

2. We prove the global exponential stability of
anti-periodic solutions for model (4). Note that our
approach for proving the global exponential stability
of the anti-periodic solution of system (4) is different
from the solutions in other studies (Li YK et al.,
2015; Xu and Zhang, 2015; Long, 2016; Xu and Li,
2016; Ke and Miao, 2017; Zhou QY and Shao, 2018;
Li YK and Xiang, 2019).

3. We take into account impulsive effects, so
our results are more general than the results in Ke
and Miao (2013b, 2017), Xu and Zhang (2015), Liao
et al. (2017), and Li YK and Xiang (2019).

2 Preliminaries

For convenience, we introduce some notations
and define the following class of spaces:

cji = max
t∈[0,ω]

|cji(t)|, dji = max
t∈[0,ω]

|dji(t)|,

hji = max
t∈[0,ω]

|hji(t)|, pij = max
t∈[0,ω]

|pij(t)|,

qij = max
t∈[0,ω]

|qij(t)|, oij = max
t∈[0,ω]

|oij(t)|,

Ii = max
t∈[0,ω]

|Ii(t)|, Jj = max
t∈[0,ω]

|Jj(t)|.

| · | and ‖ · ‖ represent the norm of R and R
n (n > 1),

respectively.

‖xxx‖ =

( n∑

i=1

x2i

) 1
2

, for xxx = (x1, x2, . . . , xn)
T.

Definition 1 A solution xxx(t) of system (4) is said
to be ω-anti-periodic, if

xxx(t+ ω) = −xxx(t), t �= tk,

xxx(tk + ω) = −xxx(tk), k = 1, 2, . . . ,

where ω is a nonnegative small number and it is
called the anti-periodic of function xxx(t).

In addition, for i = 1, 2, . . . , n and j =

1, 2, . . . ,m, the following hypotheses are given:
Hypothesis 1 There exist nonnegative constants
Lfj , Lgi, M

f , and Mg such that for all u, v ∈ R,

|fj(u)− fj(v)| ≤ Lfj|u− v|,
|gi(u)− gi(v)| ≤ Lgi|u− v|,

|fj(u)| ≤Mf , |gi(u)| ≤Mg.

Hypothesis 2 cji(·), dji(·), pij(·), qij(·), Ii(·),
Jj(·), τji(·), σij(·), hji(·), and oij(·) are continuous
functions. They satisfy

cji(t+ ω)fj(u) = −cji(t)fj(−u),
dji(t+ ω)fj(u) = −dji(t)fj(−u),
pij(t+ ω)gi(u) = −pij(t)gi(−u),
qij(t+ ω)gi(u) = −qij(t)gi(−u),

Ii(t+ ω) = −Ii(t), Jj(t+ ω) = −Jj(t),
τji(t+ ω) = τji(t), σij(t+ ω) = σij(t),

hji(t+ ω)

∫ +∞

0

Kji(u)fj(yi(t− u))du

= −hji(t)
∫ +∞

0

Kji(u)fj(−yi(t− u))du,

oij(t+ ω)

∫ +∞

0

Nij(u)gi(xi(t− u))du

= −oij(t)
∫ +∞

0

Nij(u)gi(−xi(t− u))du.

Hypothesis 3 The kernelsKji, Nij : [0,+∞) −→
[0,+∞) satisfy

∫ +∞

0

Kji(s)ds = 1,

∫ +∞

0

Nij(s)ds = 1.

Hypothesis 4 There exists a positive integer q,
such that for all k ∈ N,

tk+q = tk + q,

ϑ̃xi(k+q) = ϑ̃xik, ϑ̃
u
i(k+q) = ϑ̃uik,

ϑ̃yj(k+q) = ϑ̃yjk, ϑ̃
v
j(k+q) = ϑ̃vjk,

and { |1 + ϑ̃xik| ≤ 1, |1 + ϑ̃uik| ≤ 1,

|1 + ϑ̃yjk| ≤ 1, |1 + ϑ̃vjk| ≤ 1.
(5)

Now, we give a few lemmas that serve us later
in the proofs of the main theorems.
Lemma 1 Suppose that Hypotheses 1–4 hold.
If ZZZ(t) = (xi(t), ui(t), yj(t), vj(t))

T is a solution of
system (4) and

αi > 1, βj > 1,

|ai − αi + 1|
αi − 1

< 1,
|bj − βj + 1|

βj − 1
< 1,

for all i = 1, 2, . . . , n and j = 1, 2, . . . ,m, then for all
t ≥ 0 and k ∈ N we have
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⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

|xi(t)| < γ̃1, |ui(t)| < γ̃2,

|yj(t)| < γ̃3, |vj(t)| < γ̃4,

|xi(t+k )| < γ̃1, |ui(t+k )| < γ̃2,

|yj(t+k )| < γ̃3, |vj(t+k )| < γ̃4,

(6)

where

γ̃1 >
1

αi − 1

⎡

⎣
m∑

j=1

(
cji + dji + hji

)
Mf + Ii

⎤

⎦

·
(

1− |ai − αi + 1|
αi − 1

)−1

,

(7)

γ̃2 >
1

αi − 1

[ |ai − αi + 1|
(αi − 1)− |ai − αi + 1| + 1

]

·
[ m∑

j=1

(
cji + dji + hji

)
Mf + Ii

]

,

(8)

γ̃3 >
1

βj − 1

[ n∑

i=1

(
pij + qij + oij

)
Mg + Jj

]

·
(

1− |bj − βj + 1|
βj − 1

)−1

,

(9)

γ̃4 >
1

βj − 1

[ |bj − βj + 1|
(βj − 1)− |bj − βj + 1| + 1

]

·
[ n∑

i=1

(
pij + qij + oij

)
Mg + Jj

]

.

(10)

Proof We note that Hypothesis 1 assures the exis-
tence and uniqueness of the solution (noted ZZZ(t)) of
system (4) in [0,+∞) for any given initial condition.

Assume by way of contradiction that inequal-
ity (6) is not verified. From Hypothesis 4, we obtain

|xi(t+k )| = |(1 + ϑ̃xik)xi(tk)| ≤ |xi(tk)|,
|ui(t+k )| = |(1 + ϑ̃uik)ui(tk)| ≤ |ui(tk)|,
|yj(t+k )| = |(1 + ϑ̃yjk)yj(tk)| ≤ |yj(tk)|,
|vj(t+k )| = |(1 + ϑ̃vjk)vj(tk)| ≤ |vj(tk)|.

If

|xi(t+k )| > γ̃1, |ui(t+k )| > γ̃2,

|yj(t+k )| > γ̃3, |vj(t+k )| > γ̃4,

then

|xi(tk)| > γ̃1, |ui(tk)| > γ̃2,

|yj(tk)| > γ̃3, |vj(tk)| > γ̃4.

Thus, there must exist i ∈ {1, 2, . . . , n}, j ∈
{1, 2, . . . ,m}, and � ∈ (tk, tk+1] such that for all
t ∈ (−∞,�), s = 1, 2, . . . , n, and l = 1, 2, . . . ,m,

{
|xi(�)| = γ̃1, |ui(�)| = γ̃2,

|yj(�)| = γ̃3, |vj(�)| = γ̃4,
(11)

and
{
|xs(t)| < γ̃1, |us(t)| < γ̃2,

|yl(t)| < γ̃3, |vl(t)| < γ̃4.
(12)

By directly computing the upper left derivative
of |xi(t)|, |ui(t)|, |yj(t)|, and |vj(t)| with Hypothe-
sis 1, inequalities (7)–(10), and Eqs. (11) and (12),
we have

0 ≤D+(|ui(�)|)
≤|ai − αi + 1||xi(�)| −

(
αi − 1

)|ui(�)|

+

∣
∣
∣
∣

m∑

j=1

cji(�)fj(yj(�)) +

m∑

j=1

dji(�)

· fj
(

yj(�− τji(�))

)

+

m∑

j=1

hji(�)

∫ +∞

0

Kji(u)

· fj
(

yj(�− u)

)

du+ Ii(�)

∣
∣
∣
∣

≤− (
αi − 1

)|ui(�)|+ |ai − αi + 1||xi(�)|

+

∣
∣
∣
∣

m∑

j=1

cji(�)fj(yj(�)) +

m∑

j=1

dji(�)

· fj
(

yj(�− τji(�))

)

+

m∑

j=1

hji(�)

∫ +∞

0

Kji(u)

· fj
(

yj(�− u)

)

du+ Ii(�)

∣
∣
∣
∣

≤− (
αi − 1

)
γ̃2 + |ai − αi + 1|γ̃1 +

m∑

j=1

cjiM
f

+

m∑

j=1

djiM
f +

m∑

j=1

hjiM
f + Ii. (13)

Thus, we have

γ̃2 ≤ 1

αi − 1
|ai − αi + 1|γ̃1 + 1

αi − 1

( m∑

j=1

cjiM
f

+

m∑

j=1

djiM
f +

m∑

j=1

hjiM
f + Ii

)

. (14)

On the other hand, from inequality (14) we
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obtain

0 ≤D+(|xi(�)|) ≤ −|xi(t)|+ |ui(t)|
≤ − γ̃1 + γ̃2

≤
( |ai − αi + 1|

αi − 1
− 1

)

γ̃1 +
1

αi − 1

( m∑

j=1

cjiM
f

+

m∑

j=1

djiM
f +

m∑

j=1

hjiM
f + Ii

)

. (15)

Then

γ̃1 ≤ 1

αi − 1− |ai − αi + 1|
( m∑

j=1

cjiM
f

+

m∑

j=1

djiM
f +

m∑

j=1

hjiM
f + Ii

)

. (16)

Using inequalities (13) and (16) we obtain

0 ≤D+(|ui(�)|)

≤− (
αi − 1

)
γ̃2 +

|ai − αi + 1|
(αi − 1)− |ai − αi + 1|

·
( m∑

j=1

cjiM
f +

m∑

j=1

djiM
f +

m∑

j=1

hjiM
f

+ Ii

)

+

m∑

j=1

cjiM
f +

m∑

j=1

djiM
f

+

m∑

j=1

hjiM
f + Ii < 0. (17)

Similarly, by inequalities (15) and (16) we obtain

0 ≤D+(|xi(�)|)

≤−
(

1− |ai − αi + 1|
αi − 1

)

γ̃1 +
1

αi − 1

( m∑

j=1

cjiM
f

+

m∑

j=1

djiM
f +

m∑

j=1

hjiM
f + Ii

)

< 0.

(18)

Similarly, we have

0 ≤D+(|vj(�)|)

≤− (
βj − 1

)
γ̃4 +

|ai − αi + 1|
(βj − 1)− |bj − βj + 1|

·
( n∑

i=1

pijM
g +

m∑

i=1

qijM
g +

n∑

i=1

oijM
g + Jj

)

+
n∑

i=1

pijM
g +

m∑

i=1

qijM
g +

n∑

i=1

oijM
g + Jj

< 0,

(19)

and

0 ≤D+(|yj(�)|) ≤ −
(

1− |bj − βj + 1|
βj − 1

)

γ̃3

+
1

βj − 1

( n∑

i=1

pijM
g +

m∑

i=1

qijM
g

+

n∑

i=1

oijM
g + Jj

)

< 0, (20)

which is a contradiction and implies that inequality
(6) holds.
Lemma 2 (Aouiti, 2018) Let τ ≥ 0 be a given real
constant. We suppose that p(t) and qi(t) (i = 1, 2)

are continuous functions on [0,+∞) and that k(s)
on [0,+∞) satisfies the following:

1.

∫ +∞

0

k(s)ds ≤ k.

2.

∫ +∞

0

k(s)eμτds < +∞, μ ≥ 0.

In addition, supposing that there exist nonneg-
ative constants η and M which satisfy

p(t)− q1(t)− kq2(t) ≤ η, η > 0, 0 ≤ q1(t) ≤M,

0 ≤ q2(t) ≤M, ∀t ≥ 0,

then we have

λ∗ = inf
t≥0

{

λ > 0, λ− p(t) + q1(t)e
λτ

+ q2(t)

∫ +∞

0

k(s)eλs ds = 0

}

> 0.

We also give the following assumption:
Hypothesis 5 Assume that there exist nonnega-
tive constants ps, s ∈ N (N = {1, 2, . . . , 2(n+m)}),
such that for t ∈ [0,+∞), i = 1, 2, . . . , n, and
j = 1, 2, . . . ,m,

pi − pn+i > 0,

pn+i

∣
∣αi − 1

∣
∣+ pi

∣
∣ai − αi + 1

∣
∣+

m∑

j=1

p2n+j |cji(t)|Ljf

+
m∑

j=1

p2n+j |dji(t)|Ljf +
m∑

j=1

p2n+j |hji(t)|

·
∫ ∞

0

|Kji(s)|Ljfds > 0,

p2n+j − p2n+m+j > 0,
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p2n+m+j

∣
∣βj − 1

∣
∣+ p2n+j

∣
∣bj − βj + 1

∣
∣

+

n∑

i=1

pi|pij(t)|Lig +

n∑

i=1

pi|qji(t)|Lig +

m∑

j=1

pi|oij(t)|

·
∫ ∞

0

|Nij(s)|Ligds > 0.

Assume that there exist nonnegative vector
functions

(
V1(t), V2(t), . . . , Vn(t), Vn+1(t), . . . ,

V2n(t), V2n+1(t), . . . , V2n+m(t), . . . , V2(n+m)(t)
)T ∈

C(−∞,R2(n+m)), where Vs(t) is continuous at t �= tk
(k ∈ N

∗), t > 0, s ∈ N , and satisfies the following:

D−Vi(t−) ≤ −Vi(t−) + Vn+i(t
−), (21)

D−Vn+i(t
−) ≤ −∣

∣αi − 1
∣
∣Vn+i(t

−)− ∣
∣ai − αi + 1

∣
∣

· Vi(t−) +
m∑

j=1

|cji(t)|LjfV2n+j(t
−) +

m∑

j=1

|dji(t)|

· LjfV 2n+j(t
−) +

m∑

j=1

|hji(t)|Ljf

∫ +∞

0

|Kji(s)|

· V2n+j(t
− − s)ds, (22)

D−V2n+j(t
−) ≤ −V2n+j(t

−) + V2n+m+j(t
−), (23)

D−V2n+m+j(t
−) ≤ −∣

∣βj − 1
∣
∣V2n+m+j(t

−)

− ∣
∣bj − βj + 1

∣
∣V2n+j(t

−) +
n∑

i=1

|pij(t)|LigVi(t
−)

+

n∑

i=1

|qij(t)|LigV i(t
−) +

m∑

j=1

|oij(t)|Lig

∫ +∞

0

|Nij(s)|

· Vi(t− − s)ds, (24)
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Vi(t
+
k ) ≤ LxVi(tk),

Vn+i(t
+
k ) ≤ LuVn+i(tk),

V2n+j(t
+
k ) ≤ LyV2n+j(tk),

V2n+m+j(t
+
k ) ≤ LvV2n+m+j(tk),

(25)

where Lx < 1, Lu < 1, Ly < 1, Lv < 1.
Thus, for all t ≥ 0 and s ∈ N , there exists a

nonnegative constant M such that

Vs(t) ≤M
2(n+m)∑

l=1

V l(0)e
−λ∗t,

λ∗ =min{λ∗s|s ∈ N}, (26)

where

λ∗i = inf
t≥0

{

λ(t) > 0, λ(t)− 1 +
pn+i

pi
= 0

}

> 0,

(27)

λ∗n+i = inf
t≥0

{

λ(t) > 0, λ(t)− ∣
∣αi − 1

∣
∣

− pi
pn+i

∣
∣ai − αi + 1

∣
∣+

m∑

j=1

p2n+j

pn+i
|cji(t)|Ljf

+

m∑

j=1

p2n+j

pn+i
|dji(t)|Ljf e

λ(t)τ +

m∑

j=1

p2n+j

pn+i

· |hji(t)|
∫ ∞

0

|Kji(s)|Ljf e
λ(t)sds = 0

}

>0, (28)

λ̂∗2nj = inf
t≥0, 1≤j≤m

{

λ(t) > 0, λ(t)− 1

+
p2n+m+j

p2n+j
= 0

}

>0, (29)

λ∗2n+m+j = inf
t≥0,1≤j≤m

{

λ(t) > 0, λ(t)− ∣
∣βj − 1

∣
∣

− p2n+j

p2n+m+j

∣
∣bj − βj + 1

∣
∣+

n∑

i=1

pi
p2n+m+j

· |pij(t)|Lig +
n∑

i=1

pi
p2n+m+j

|qji(t)|

· Lige
λ(t)τ +

m∑

j=1

pi
p2n+m+j

|oij(t)|

·
∫ ∞

0

|Nij(s)|Lige
λ(t)sds = 0

}

>0. (30)

Proof Using an analysis similar to that in
Lemma 2, we show that there exists a unique λ∗s
(λ∗s > 0).

Choose a nonnegative constant θ > 0 that satis-
fies min

s∈N
{ps}θ > 1. Let Φs(t) = Vs(t)/ps, s ∈ N . We

have

Ψ(t) = θ
∑

l∈N

V l(0)e
−λ∗t. (31)

Then for all t ∈ (−∞, 0] and γ > 1, we have

γΨ(t) = γθ
∑

l∈N

V l(0)e
−λ∗t > Φs(t). (32)

As a consequence,

Φs(t) < γΨ(t), t ∈ [0,∞), s ∈ N. (33)
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By contradiction, suppose that there exist s ∈ N and
t > 0 such that

Φs(t
+
) ≥γΨ(t), Φs∗(t) < γΨ(t),

for t ∈ [0, t), s∗ ∈ N. (34)

Based on what has been proved above, two cases
can be distinguished:

(I) t �= tk, tk ∈ N
∗. So, Vs(t) is continuous at t.

By inequality (34), we have

1

ps
Vs(t) = γΨ(t),

1

ps
D−Vs(t) > γΨ ′(t). (35)

From Hypothesis 5, inequality (34), and the def-
inition of λ∗, we have

1

pi
D−Vi(t)− γΨ ′(t) ≤ 1

pi

(−Vi(t−) + Vn+i(t
−)

)

+ λ∗γΨ(t) ≤ γΨ(t)

(

−1 +
pn+i

pi
+ λ∗

)

< 0, (36)

1

pn+i
D−Vn+i(t)− γΨ ′(t) ≤ 1

pi

(

− ∣
∣αi − 1

∣
∣

· Vn+i(t
−)− ∣

∣ai − αi + 1
∣
∣Vi(t

−) +
m∑

j=1

|cji(t)|

· LjfV2n+j(t
−) +

m∑

j=1

|dji(t)|LjfV 2n+j(t
−)

+
m∑

j=1

|hji(t)|Ljf

∫ +∞

0

|Kji(s)|2n+j(t
− − s)ds

)

+ λ∗γΨ(t)

≤γΨ(t)
(

− ∣
∣αi − 1

∣
∣− pi

pn+i

∣
∣ai − αi + 1

∣
∣

+
m∑

j=1

p2n+j

pn+i
|cji(t)|Ljf +

m∑

j=1

p2n+j

pn+i
|dji(t)|

· Ljfe
λ(t)τ +

m∑

j=1

p2n+j

pn+i
|hji(t)|

∫ ∞

0

|Kji(s)|

· Ljfe
λ(t)sds+ λ∗

)

<0, (37)

1

p2n+j
D−V2n+j(t)− γΨ ′(t) ≤ 1

p2n+j
(−V2n+j(t

−)

+ V2n+m+j(t
−)) + λ∗γΨ(t)

≤ γΨ(t)

(

− 1 +
p2n+m+j

p2n+j
+ λ∗

)

< 0, (38)

and

1

p2n+m+j
D−V2n+m+j(t)− γΨ ′(t) ≤ 1

p2n+m+j

·
(

− ∣
∣βj − 1

∣
∣V2n+m+j(t

−)− ∣
∣bj − βj + 1

∣
∣V2n+j(t

−)

+

n∑

i=1

|pij(t)|LigVi(t
−) +

n∑

i=1

|qij(t)|LigV i(t
−)

+

m∑

j=1

|oij(t)|Lig

∫ +∞

0

|Nij(s)|Vi(t− − s)ds

)

+ λ∗γΨ(t) ≤ γΨ(t)

(

− ∣
∣βj − 1

∣
∣− p2n+j

p2n+m+j

· ∣∣bj − βj + 1
∣
∣+

n∑

i=1

pi
p2n+m+j

|pij(t)|Lig

+
n∑

i=1

pi
p2n+m+j

|qji(t)|Lige
λ(t)τ +

m∑

j=1

pi
p2n+m+j

· |oij(t)|
∫ ∞

0

|Nij(s)|Lige
λ(t)sds+ λ∗

)

< 0, (39)

which contradict Eq. (35).
(II) ∃ k0 ∈ N

∗ and t = tk, inequality (34)
involves

1

ps
Vs(t) ≤ γΨ(t) ≤ 1

ps
Vs(t

+
). (40)

Given Vs(t
−
)/ps �= Vs(t

+
)/ps, we have

Vs(t
−
)/ps < γΨ(t) or γΨ(t) < Vs(t

+
)/ps. We as-

sume that γΨ(t) < Vs(t
+
)/ps. From inequalities (25)

and (40) we have

γΨ(t) <
1

pi
Vi(t

+
) ≤ γLxΨ(t), (41)

γΨ(t) <
1

pn+i
Vn+i(t

+
) ≤ γLuΨ(t), (42)

and

γΨ(t) <
1

p2n+j
V2n+j(t

+
) ≤ γLyΨ(t), (43)

γΨ(t) <
1

p2n+m+j
V2n+m+j(t

+
) ≤ γLvΨ(t). (44)

Simplifying inequalities (41)–(44) we obtain
Lx > 1, Lu > 1, Ly > 1, and Lv > 1, which contra-
dict Lx < 1, Lu < 1, Ly < 1, and Lv < 1.

From (I) and (II), inequality (33) holds. Letting
γ → 1+ in inequality (33), we have

Φs(t) ≤ γΨ(t), t ∈ [0,∞), s ∈ N. (45)
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Consequently, Vs(t)/ps ≤ Ψ(t) for all t ∈ [0,∞),

s ∈ N . Let L̃ = max
s∈N

{psθ}. Then for t ≥ 0 and

s ∈ N , we have

Vs(t) ≤ L̃
∑

l∈N

V l(0)e
−λ∗t. (46)

3 Main results

In this section we present new conditions that
demonstrate the uniqueness, existence, and global
exponential stability of anti-periodic solutions for
system (4).
Theorem 1 Assume that Hypotheses 1–5 hold.
Let ZZZ∗(t) = (x∗(t), u∗(t), y∗(t), v∗(t)) be a so-
lution of system (4) with initial value φφφ∗(t) =

(ϕ∗
x(t), ϕ

∗
u(t), ϕ

∗
y(t), ϕ

∗
v(t))

T. Then ZZZ∗(t) is globally
exponentially stable.
Proof We denote ZZZ(t) = (x(t), u(t), y(t), v(t))T as
an arbitrary solution of system (4) with the initial
value φφφ(t) = (ϕx(t), ϕu(t), ϕy(t), ϕv(t))

T.

Let

Vi(t) = |xi(t)− x∗i (t)|,
Vn+j(t) = |un+j(t)− u∗n+j(t)|,
V2n+j(t) = |y2n+j(t)− y∗2n+j(t)|,

V2n+m+j(t) = |v2n+m+j(t)− v∗2n+m+j(t)|,
for t ∈ R+, i = 1, 2, . . . , n and j = 1, 2, . . . ,m. Then,
we have

D−Vi(t−) ≤ −Vi(t−) + Vn+i(t
−), (47)

D−Vn+i(t
−) ≤ −∣

∣αi − 1
∣
∣Vn+i(t

−)− ∣
∣ai − αi + 1

∣
∣

· Vi(t−) +
m∑

j=1

|cji(t)|LjfV2n+j(t
−) +

m∑

j=1

|dji(t)|

· LjfV 2n+j(t
−) +

m∑

j=1

|hji(t)|Ljf

∫ +∞

0

|Kji(s)|

· V2n+j(t
− − s)ds, (48)

D−V2n+j(t
−) ≤ −V2n+j(t

−) + V2n+m+j(t
−), (49)

D−V2n+m+j(t
−) ≤ −∣

∣βj − 1
∣
∣V2n+m+j(t

−)

− ∣
∣bj − βj + 1

∣
∣V2n+j(t

−) +
n∑

i=1

|pij(t)|LigVi(t
−)

+

n∑

i=1

|qij(t)|LigV i(t
−) +

m∑

j=1

|oij(t)|Lig

∫ +∞

0

|Nij(s)|

· Vi(t− − s)ds, (50)

Vi(t
+
k ) ≤ LxVi(tk), i = 1, 2, . . . , n, (51)

Vn+i(t
+
k ) ≤ LuVn+i(tk), i = 1, 2, . . . , n, (52)

V2n+j(t
+
k ) ≤ LyV2n+j(tk), j = 1, 2, . . . ,m, (53)

V2n+m+j(t
+
k ) ≤ LvV2n+m+j(tk), j = 1, 2, . . . ,m.

(54)
By inequalities (47)–(54) and Hypotheses 1–5,

there exists a nonnegative constant M that verifies

Vs(t) ≤M

2(n+m)∑

l=1

V l(0)e
λ∗t, (55)

where λ∗ is defined in Eq. (26).
Theorem 2 Assume that Hypotheses 1–5 are sat-
isfied. Then system (4) has a unique T -anti-periodic
solution that is also globally exponentially stable.
Proof We denote

xxx(t) =

(

x1(t), x2(t), . . . , xn(t)

)T

,

uuu(t) =

(

u1(t), u2(t), . . . , un(t)

)T

,

yyy(t) =

(

y1(t), y2(t), . . . , yn(t)

)T

,

vvv(t) =

(

v1(t), v2(t), . . . , vn(t)

)T

.

Let
(
xxx(t), uuu(t), yyy(t), vvv(t)

)T be a solution of
system (4) with initial conditions xi(s) = ϕxi(s),
ui(s) = ϕui(s), yj(s) = ϕyj (s), vj(s) = ϕvj (s),
|ϕxi(s)| < γ̃1, |ϕui(s)| < γ̃2, |ϕyj (s)| < γ̃3, |ϕvj (s)| <
γ̃4, for s ∈ (−∞, 0], i = 1, 2, . . . , n, j = 1, 2, . . . ,m.
It follows from system (4) and Hypothesis 2 that for
all p ∈ N, we have

d

dt
[(−1)p+1xi(t+ (p+ 1)T )]

=(−1)p+1 d

dt
[xi(t+ (p+ 1)T )]

=(−1)p+1[−xi(t+ (p+ 1)T ) + ui(t+ (p+ 1)T )]

=− (−1)p+1xi(t+ (p+ 1)T )

+ (−1)p+1ui(t+ (p+ 1)T ), t �= tk, (56)

d

dt
[(−1)p+1xi(tk + (p+ 1)T )+]

=(−1)p+1ϑxi(k+(p+1)q)(xi(tk + (p+ 1)T ))

=ϑxik((−1)p+1(xi(tk + (p+ 1)T ))), k = 1, 2, . . . ,

(57)
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d

dt
[(−1)p+1ui(t+ (p+ 1)T )]

=(−1)p+1

[

− (
ai − αi + 1

)
xi(t+ (p+ 1)T )

− (
αi − 1

)
ui(t+ (p+ 1)T ) +

m∑

j=1

cji(t+ (p+ 1)T )

· fj(yj(t+ (p+ 1)T )) +

m∑

j=1

dji(t+ (p+ 1)T )

· fj(yj(t+ (p+ 1)T )− τji(t+ (p+ 1)T ))

+

m∑

j=1

hji(t+ (p+ 1)T )

∫ +∞

0

Kji(u)

· fj(yj(t+ (p+ 1)T )− u)du+ Ii(t+ (p+ 1)T )

]

=− (
ai − αi + 1

)
(−1)p+1xi(t+ (p+ 1)T )

− (
αi − 1

)
(−1)p+1ui(t+ (p+ 1)T )

+

m∑

j=1

cji(t)fj((−1)p+1yj(t+ (p+ 1)T ))

+
m∑

j=1

dji(t)fj((−1)p+1yj(t+ (p+ 1)T )− τji(t))

+

m∑

j=1

hji(t)

∫ +∞

0

Kji(u)fj(yj(t+ (p+ 1)T )

− u)du+ Ii(t), (58)

d

dt
[(−1)p+1ui(tk + (p+ 1)T )+] = ϑuik((−1)p+1

· (ui(tk + (p+ 1)T ))), k = 1, 2, . . . . (59)

Similarly, we have
d

dt
[(−1)p+1yj(t+ (p+ 1)T )] = −(−1)p+1

·yj(t+ (p+ 1)T ) + (−1)p+1vj(t+ (p+ 1)T ), (60)

d

dt
[(−1)p+1yj(tk + (p+ 1)T )+] = ϑyjk((−1)p+1

·(yj(tk + (p+ 1)T ))), k = 1, 2, . . . , (61)

d

dt
[(−1)p+1vj(t+ (p+ 1)T )] = −(

bj − βj + 1
)

· (−1)p+1yj(t+ (p+ 1)T )− (
βj − 1

)
(−1)p+1

· vj(t+ (p+ 1)T ) +

n∑

i=1

pij(t)gi((−1)p+1

· xi(t+ (p+ 1)T )) +

n∑

i=1

qij(t)gi((−1)p+1

· xi(t+ (p+ 1)T − σij(t))) +

n∑

i=1

oij(t)

·
∫ +∞

0

Nij(u)gi((−1)p+1xi(t+ (p+ 1)T

− u))du + Jj(t), (62)

and

d

dt
[(−1)p+1vj(tk + (p+ 1)T )+] = ϑvjk((−1)p+1

· (vj(tk + (p+ 1)T ))), k = 1, 2, . . . . (63)

Let

x̆xx(t) =

⎛

⎜
⎜
⎜
⎝

(−1)p+1x1(t+ (p+ 1)T )

(−1)p+1x2(t+ (p+ 1)T )
...

(−1)p+1xn(t+ (p+ 1)T )

⎞

⎟
⎟
⎟
⎠
,

ŭuu(t) =

⎛

⎜
⎜
⎜
⎝

(−1)p+1u1(t+ (p+ 1)T )

(−1)p+1u2(t+ (p+ 1)T )
...

(−1)p+1un(t+ (p+ 1)T )

⎞

⎟
⎟
⎟
⎠
,

y̆yy(t) =

⎛

⎜
⎜
⎜
⎝

(−1)p+1y1(t+ (p+ 1)T )

(−1)p+1y2(t+ (p+ 1)T )
...

(−1)p+1ym(t+ (p+ 1)T )

⎞

⎟
⎟
⎟
⎠
,

v̆vv(t) =

⎛

⎜
⎜
⎜
⎝

(−1)p+1v1(t+ (p+ 1)T )

(−1)p+1v2(t+ (p+ 1)T )
...

(−1)p+1vm(t+ (p+ 1)T )

⎞

⎟
⎟
⎟
⎠
.

Thus, for any k ∈ N,
(
x̆xx(t), ŭuu(t), y̆yy(t), v̆vv(t)

)T is
likewise a solution of system (4). If the initial values
(2) are bounded, from Theorem 1, we can deduce
that there exists a positive constant γ that verifies

|(−1)p+1xi(t+ (p+ 1)T )− (−1)pxi(t+ pT )|
=|xi(t+ pT )− (−xi(t+ pT + T ))|

≤Me−γ(t+pT ) sup
−∞≤s≤0

n∑

i=1

|xi(s+ T ) + xi(s)|2

≤2Mγ̃1e
−γ(t+pT )

≤�e−γ(t+pT ), (64)
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|(−1)p+1xi((tk + (p+ 1)T )+)− (−1)kxi((tk + pT )+)|
=|xi((tk + pT )+) + xi((tk + pT + T )+)|
=|1 + ϑ̃xik||xi(tk + (p+ 1)T ) + xi(tk + pT )|
≤2Mγ̃1e

−γ(t+pT )

≤�e−γ(tk+pT ), (65)

|(−1)p+1ui(t+ (p+ 1)T )− (−1)pui(t+ pT )|
=|ui(t+ pT )− (−ui(t+ pT + T ))|

≤Me−γ(t+pT ) sup
−∞≤s≤0

n∑

i=1

|ui(s+ T ) + ui(s)|2

≤2Mγ̃2e
−γ(t+pT )

≤�e−γ(t+pT ), (66)

|(−1)p+1ui((tk + (p+ 1)T )+)− (−1)kui((tk + pT )+)|
=|ui((tk + pT )+) + ui((tk + pT + T )+)|
=|1 + ϑ̃uik||ui(tk + pT + T ) + ui(tk + pT )|
≤2Mγ̃2e

−γ(tk+pT )

≤�e−γ(tk+pT ), (67)

|(−1)p+1yj(t+ (p+ 1)T )− (−1)pyj(t+ pT )|
=|yj(t+ pT )− (−yj(t+ pT + T ))|

≤Me−γ(t+pT ) sup
−∞≤s≤0

m∑

j=1

|yj(s+ T ) + yj(s)|2

≤2Mγ̃3e
−γ(t+pT )

≤�e−γ(t+pT ), (68)

|(−1)p+1yj((tk + (p+ 1)T )+)− (−1)kyj((tk + pT )+)|
=|yj((tk + pT )+) + yj((tk + pT + T )+)|
=|1 + ϑ̃yjk||yj(tk + pT + T ) + yj(tk + pT )|
≤2Mγ̃3e

−γ(tk+pT )

≤�e−γ(tk+pT ), (69)

|(−1)p+1vj(t+ (p+ 1)T )− (−1)pvj(t+ pT )|
=|vj(t+ pT )− (−vj(t+ pT + T ))|

≤Me−β(t+pT ) sup
−∞≤s≤0

m∑

j=1

|vj(s+ T ) + vj(s)|2

≤2Mγ̃4e
−γ(t+pT )

≤�e−γ(t+pT ), (70)

|(−1)p+1vj((tk + (p+ 1)T )+)− (−1)kvj((tk + pT )+)|
=|vj((tk + pT )+) + vj((tk + pT + T )+)|
=|ϑ̃vjk||vj(tk + pT + T ) + vj(tk + pT )|
≤2Mγ̃4e

−γ(tk+pT ), (71)

where t + kT > 0, i = 1, 2, . . . , n, j = 1, 2, . . . ,m.
For any k ∈ N and t �= tk, we have
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(−1)p+1xi(t+ (p+ 1)T ) = xi(t) +

p∑

z=0

[(−1)z+1

· xi(t+ (z + 1)T )− (−1)zxi(t+ zT )],

(−1)p+1ui(t+ (p+ 1)T ) = ui(t) +

p∑

z=0

[(−1)z+1

· ui(t+ (z + 1)T )− (−1)zui(t+ zT )],

(−1)p+1yj(t+ (p+ 1)T ) = yj(t) +

p∑

z=0

[(−1)z+1

· yj(t+ (z + 1)T )− (−1)zyj(t+ zT )],

(−1)p+1vj(t+ (p+ 1)T ) = vj(t) +

p∑

z=0

[(−1)z+1

· vj(t+ (z + 1)T )− (−1)zvj(t+ zT )].

Then, we have

(−1)p+1xi(t+ (p+ 1)T )

≤|xi(t)|+
p∑

z=0

|(−1)z+1xi(t+ (z + 1)T )

− (−1)zxi(t+ zT )|,
(−1)p+1xi((tk + (p+ 1)T )+)

=|ϑxik((−1)p+1xi(tk + (p+ 1)T ))|
≤|1 + ϑ̃xik(−1)p+1xi(tk + (p+ 1)T )|
≤|(−1)p+1xi(tk + (p+ 1)T )|,

(−1)p+1ui(t+ (p+ 1)T )

≤|ui(t)|+
p∑

z=0

|(−1)z+1ui(t+ (z + 1)T )

− (−1)zui(t+ zT )|,
(−1)p+1ui((tk + (p+ 1)T )+)

=|ϑuik((−1)p+1ui(tk + (p+ 1)T ))|
≤|1 + ϑ̃uik(−1)p+1ui(tk + (p+ 1)T )|
≤|(−1)p+1ui(tk + (p+ 1)T )|,

(−1)p+1yj(t+ (p+ 1)T )

≤|yj(t)|+
p∑

z=0

|(−1)z+1yj(t+ (z + 1)T )

− (−1)pyj(t+ zT )|,
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(−1)p+1yj((tk + (p+ 1)T )+)

=|ϑyjk((−1)p+1yj(tk + (p+ 1)T ))|
≤|1 + ϑ̃yjk(−1)p+1yj(tk + (p+ 1)T )|
≤|(−1)p+1yj(tk + (p+ 1)T )|,

(−1)p+1vj(t+ (p+ 1)T )

≤|vj(t)|+
p∑

z=0

|(−1)z+1vj(t+ (z + 1)T )

− (−1)zvj(t+ zT )|,
(−1)p+1vj((tk + (p+ 1)T )+)

=|ϑvjk((−1)p+1vj(tk + (p+ 1)T ))|
≤|1 + ϑ̃vjk(−1)p+1vj(tk + (p+ 1)T )|
≤|(−1)p+1vj(tk + (p+ 1)T )|, (72)

where i = 1, 2, . . . , n, j = 1, 2, . . . ,m. In view of
Lemma 1, the solutions of system (4) are bounded.
By inequalities (64)–(72), we can deduce that{

(−1)k+1xi(t+ (k + 1)T ), (−1)k+1ui(t+ (k+ 1)T ),

(−1)k+1yj(t+(k+1)T ), (−1)k+1vj(t+(k+1)T )

}

is a

fundamental sequence on any compact set ofR+. Ev-
idently, (−1)kxxx(t+ kT ), (−1)kuuu(t+ kT ), (−1)kyyy(t+

kT ), and (−1)kvvv(t+kT ) uniformly converge to piece-
wise continuous functions xxx∗(t), uuu∗(t), yyy∗(t), and
vvv∗(t) on any compact set of R+, respectively.

Thus, we can show that ZZZ∗(t) is a T -anti-
periodic solution of system (4). As

ZZZ∗(t+ T ) = lim
k→∞

(−1)kZZZ(t+ T + kT )

=− lim
k+1→∞

(−1)k+1ZZZ(t+ (k + 1)T )

=−ZZZ∗(t),

and

ZZZ∗((tk + T )+) = lim
k→∞

(−1)kZZZ((tk + T + kT )+)

=− lim
k+1→∞

(−1)k+1ZZZ((tk + (k + 1)T )+)

=−ZZZ∗(tk),

ZZZ∗(t) =
(
xxx∗(t),uuu∗(t), yyy∗(t), vvv∗(t)

)T is T -anti-
periodic.

Next, we prove that ZZZ∗(t) =
(
xxx∗(t), uuu∗(t), yyy∗(t), vvv∗(t)

)
is a solution of

system (4). Because the right-hand side of sys-
tem (4) is piecewise continuous, we can conclude
that ((−1)k+1xi(t + (k + 1)T ))′, ((−1)k+1ui(t +

(k + 1)T ))′, ((−1)k+1yj(t + (k + 1)T ))′, and

((−1)k+1vj(t + (k + 1)T ))′ uniformly converge to
piecewise continuous functions on any compact
subset of R+, respectively. Therefore, letting
p→ +∞ on Eqs. (56)–(63), we obtain

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dx∗i (t)
dt

= −x∗i (t) + u∗i (t), t �= tk,

du∗i (t)
dt

= −(
ai − αi + 1

)
x∗i (t)

− (
αi − 1

)
u∗i (t) +

m∑

j=1

cji(t)fj(y
∗
j (t))

+

m∑

j=1

dji(t)fj(y
∗
j (t− τji(t)))

+

m∑

j=1

hji(t)

∫ +∞

0

Kji(u)

· fj(y∗j (t− u))du+ Ii(t), t �= tk,

dy∗j (t)
dt

= −y∗j (t) + v∗j (t), t �= tk,

dv∗j (t)
dt

= −(
bj − βj + 1

)
y∗j (t)

− (
βj − 1

)
v∗j (t) +

n∑

i=1

pij(t)gi(x
∗
i (t))

+
n∑

i=1

qij(t)gi(x
∗
i (t− σij(t)))

+

n∑

i=1

oij(t)

∫ +∞

0

Nij(u)

· gi(x∗i (t− u))du + Jj(t), t �= tk,

Δx∗i (t = tk) = x∗i (tk)− x∗i (t
−
k )

= ϑxik(x
∗
i (tk)), k = 1, 2, . . . ,

Δu∗i (t = tk) = u∗i (tk)− u∗i (t
−
k )

= ϑuik(u
∗
i (tk)), k = 1, 2, . . . ,

Δy∗j (t = tk) = y∗j (tk)− y∗j (t
−
k )

= ϑyjk(y
∗
j (tk)), k = 1, 2, . . . ,

Δv∗j (t = tk) = v∗j (tk)− v∗j (t
−
k )

= ϑvjk(v
∗
j (tk)), k = 1, 2, . . . .

(73)

Thus, ZZZ∗(t) =
(
xxx∗(t), uuu∗(t), yyy∗(t), vvv∗(t)

)T

is the T -anti-periodic solution of system (4). Fi-
nally, results in Theorem 1 affirm that ZZZ∗(t) =
(
xxx∗(t), uuu∗(t), yyy∗(t), vvv∗(t)

)T is globally exponen-
tially stable.
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4 Examples and comparisons

In this section, we present an example to show
the effectiveness of the results given in the previous
section. Let n = m = 2. Then N = 1, 2, . . . , 8. We
have
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dxi(t)

dt
= −xi(t) + ui(t),

dui(t)

dt
= −(

ai − αi + 1
)
xi(t)−

(
αi − 1

)
ui(t)

+
2∑

j=1

cji(t)fj(yj(t)) +
2∑

j=1

dji(t)fj(yj(t− τji(t)))

+

2∑

j=1

hji(t)

∫ +∞

0

Kji(u)fj(yj(t− u))du+ Ii(t),

dyj(t)

dt
= −yj(t) + vj(t),

dvj(t)

dt
= −(

bj − βj + 1
)
yj(t)−

(
βj − 1

)
vj(t)

+

2∑

i=1

pij(t)gi(xi(t)) +

2∑

i=1

qij(t)gi(xi(t− σij(t)))

+

2∑

i=1

oij(t)

∫ +∞

0

Nij(u)gi(xi(t− u))du+ Jj(t),

Δx1(t = tk) = ϑ̃x1kx1(tk), k = 1, 2, . . . ,

Δx2(t = tk) = ϑ̃x2kx2(tk), k = 1, 2, . . . ,

Δu1(t = tk) = ϑ̃u1ku1(tk), k = 1, 2, . . . ,

Δu2(t = tk) = ϑ̃u2ku2(tk), k = 1, 2, . . . ,

Δy1(t = tk) = ϑ̃y1ky1(tk), k = 1, 2, . . . ,

Δy2(t = tk) = ϑ̃y2ky2(tk), k = 1, 2, . . . ,

Δv1(t = tk) = ϑ̃v1kv1(tk), k = 1, 2, . . . ,

Δv2(t = tk) = ϑ̃v2kv2(tk), k = 1, 2, . . . ,

(74)
where for all u ∈ R, i = j = 1, 2, we have

fj(u) =gi(u) =
1

2

(|u+ 1| − |u− 1|),
⇒ Lfj = Lgi = 1,

Kji(u) =Nij(u) = e−u.

For k = 1, 2, we give

ϑ̃x1k = ϑ̃x2k = −0.4, ϑ̃u1k = ϑ̃u2k = −0.7,

ϑ̃y1k = ϑ̃y2k = −0.5, ϑ̃v1k = ϑ̃v2k = −0.4.

Thus, Lx = 0.4 < 1, Lu = 0.7 < 1, Ly = 0.5 <

1, and Lv = 0.4 < 1. Let

(cji(t))1≤i,j≤2 =

(
0.51| sin t| 0.62| sin t|
0.35| cos t| 0.54| cos t|

)

,

⇒ (cji)1≤i,j≤2 =

(
0.51 0.62

0.35 0.54

)

.

(dji(t))1≤i,j≤2 =

(
0.44| sin t| 0.52| sin t|
0.34| cos t| 0.70| cos t|

)

,

⇒ (dji)1≤i,j≤2 =

(
0.44 0.52

0.34 0.70

)

.

(hji(t))1≤i,j≤2 =

(
0.75| sin t| 0.54| sin t|
0.15| cos t| 0.44| cos t|

)

,

⇒ (hji)1≤i,j≤2 =

(
0.75 0.54

0.15 0.44

)

.

(pij(t))1≤i,j≤2 =

(
0.27| sin t| 0.39| sin t|
0.59| cos t| 0.21| cos t|

)

,

⇒ (pij)1≤i,j≤2 =

(
0.27 0.39

0.59 0.21

)

.

(qij(t))1≤i,j≤2 =

(
0.75| sin t| 0.63| sin t|
0.35| cos t| 0.55| cos t|

)

,

⇒ (qij)1≤i,j≤2 =

(
0.75 0.63

0.35 0.55

)

.

(oij(t))1≤i,j≤2 =

(
0.25| sin t| 0.68| sin t|
0.14| cos t| 0.53| cos t|

)

,

⇒ (oij)1≤i,j≤2 =

(
0.25 0.68

0.14 0.53

)

.

(
α1 α2

a1 a2

)

=

(
3.1 3

3.1 3.2

)

.

(
β1 β2
b1 b2

)

=

(
2.85 3

3 3

)

.

(τji(t))1≤i,j≤2 =

(
0.50 sin(2t) 0.50 sin(2t)

0.63 sin(2t) 0.36 sin(2t)

)

,

⇒ (τ ji)1≤i,j≤2 =

(
0.50 0.50

0.63 0.36

)

.

(σij(t))1≤i,j≤2 =

(
0.72| sin t| 0.61| sin t|
0.53| sin t| 0.51| sin t|

)

,

⇒ (σij)1≤i,j≤2 =

(
0.72 0.61

0.53 0.51

)

.

(Ii(t))1≤i≤2 =

(
0.45 sin t

0.59 cos t

)

⇒ Ii =

(
0.45

0.59

)

.

(Jj(t))1≤j≤2 =

(
0.32 sin t

0.52 cos t

)

⇒ Jj =

(
0.32

0.52

)

.
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Thus, we have

|a1 − α1 + 1|
α1 − 1

= 0.5 < 1,
|a2 − α2 + 1|

α2 − 1
= 0.45 < 1,

|b1 − β1 + 1|
β1 − 1

= 0.6 < 1,
|b2 − β2 + 1|

β2 − 1
= 0.5 < 1.

Thus, Hypotheses 1–4 are satisfied.
Let p1 = 10.5, p2 = 9.25, p3 = 8.75, p4 =

8, p5 = 6.85, p6 = 6.25, p7 = 5.25, p8 = 4.75.
From the above assumption, Hypothesis 5 is

satisfied.
Therefore, all conditions from Theorems 1 and

2 are satisfied, and the IBAMNN with time-varying
delay and impulsive effect (74) has a unique π-anti-
periodic solution, which is globally exponentially sta-
ble. A numerical simulation is given in Figs. 1–4 to
check these results.

Aouiti (2018) obtained some new sufficient con-
ditions that ensure the existence and exponential sta-
bility of periodic solutions for IBAMNNs with time
delay using the Weierstrass criteria, the bounded-
ness of solutions, and the Lyapunov function. A
constant coefficient was considered without impul-
sive effect. Zhang and Quan (2015) investigated the
global exponential stability of an equilibrium point
for inertial delayed BAMNNs with constant coef-
ficients (for example, the connection strengths cji,
dji, hji, pij , qij , and oij are all constants) using in-
equality techniques. In our model we use variable
coefficients for the strong points of the connection
and external inputs, because our model is more gen-
eral than the models in Zhang and Quan (2015) and
Aouiti (2018). Liao et al. (2017) investigated the
same model as in Zhang and Quan (2015) with a
variable coefficient. By combining Mawhin’s contin-
uation theorem of coincidence degree theory with the
Lyapunov functional method and using inequality
techniques, the existence and global exponential sta-
bility of periodic solutions for NNs were established.
The models in Zhang and Quan (2015) and Liao
et al. (2017) are not concerned with the impulsive
effect and distributed delays. Besides, our approach
for demonstrating the global exponential stability is
different from the models in these studies. Xu and
Zhang (2015) gave some conditions to demonstrate
the existence and global exponential stability of an
anti-periodic solution for a BAMNN with the iner-
tial term and delay using the inequality technique
and Lyapunov method. The model in Xu and Zhang

(2015) is not concerned with impulsive effect and
time-varying delays. Our results on the exponential
stability for impulsive BAMNNs with mixed delays
and the inertial term are essentially new, and the in-
vestigation methods used in this study can be used to
study the piecewise anti-periodic solutions for some
other types of NNs.

5 Conclusions

In this study, we consider a class of IBAMNNs
with time-varying delays and distributed delays.
First, we have transformed the second-order inertial
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NNs into a first-order differential system and applied
the Lyapunov method and differential inequality
techniques to present new conditions that ensure the
existence and exponential stability of anti-periodic
solutions of model (4). Note that our results are new
and that the system studied is more general than
the system in Xu and Zhang (2015). In addition, we
have used a technique different from the one used
in Xu and Zhang (2015) to show the exponential
stability of the anti-periodic solution, which can be
applied to many concrete examples of NNs. At last,
we have detailed some open issues. We might want
to stretch our results to examine the global stability
criteria for impulsive IBAMNNs with unbounded
delays (Ke and Miao, 2013c) and the dynamics of
Clifford-valued IBAMNNs with impulsive effect (Li
YK and Xiang, 2019). These topics will be our main
focus in the future.

Contributors
Yang CAO processed the conceptualization. Chaouki

AOUITI and Mahjouba Ben REZEG conducted the analysis

and validation, and drafted the manuscript. Yang CAO

polished the paper.

Compliance with ethics guidelines
Chaouki AOUITI, Mahjouba Ben REZEG, and Yang

CAO declare that they have no conflict of interest.

References
Alimi AM, Aouiti C, Chérif F, et al., 2018. Dynamics and

oscillations of generalized high-order Hopfield neural
networks with mixed delays. Neurocomputing, 321:274-
295. https://doi.org/10.1016/j.neucom.2018.01.061

Aouiti C, 2018. Oscillation of impulsive neutral delay gen-
eralized high-order Hopfield neural networks. Neur
Comput Appl, 29(9):477-495.
https://doi.org/10.1007/s00521-016-2558-3

Aouiti C, Assali EA, 2019. Stability analysis for a class
of impulsive bidirectional associative memory (BAM)
neural networks with distributed delays and leakage
time-varying delays. Neur Process Lett, 50(1):851-885.
https://doi.org/10.1007/s11063-018-9937-y

Aouiti C, Dridi F, 2019a. New results on impulsive
Cohen–Grossberg neural networks. Neur Process Lett,
49(3):1459-1483.
https://doi.org/10.1007/s11063-018-9880-y

Aouiti C, Dridi F, 2019b. Piecewise asymptotically almost
automorphic solutions for impulsive non-autonomous
high-order Hopfield neural networks with mixed delays.
Neur Comput Appl, 31(9):5527-5545.
https://doi.org/10.1007/s00521-018-3378-4

Aouiti C, Miaadi F, 2018. Finite-time stabilization of neutral
Hopfield neural networks with mixed delays. Neur
Process Lett, 48(3):1645-1669.
https://doi.org/10.1007/s11063-018-9791-y

Aouiti C, Miaadi F, 2019. Pullback attractor for neutral
Hopfield neural networks with time delay in the leakage
term and mixed time delays. Neur Comput Appl, 31(8):
4113-4122. https://doi.org/10.1007/s00521-017-3314-z

Aouiti C, Coirault P, Miaadi F, et al., 2017. Finite time
boundedness of neutral high-order Hopfield neural net-
works with time delay in the leakage term and mixed
time delays. Neurocomputing, 260:378-392.
https://doi.org/10.1016/j.neucom.2017.04.048

Aouiti C, Abed Assali E, Cao JD, et al., 2018. Global expo-
nential convergence of neutral-type competitive neural
networks with multi-proportional delays, distributed de-
lays and time-varying delay in leakage delays. Int J Syst
Sci, 49(10):2202-2214.
https://doi.org/10.1080/00207721.2018.1496297

Balasubramaniam P, Kalpana M, Rakkiyappan R, 2011.
Global asymptotic stability of BAM fuzzy cellular neu-
ral networks with time delay in the leakage term, dis-
crete and unbounded distributed delays. Math Comput
Model, 53(5-6):839-853.
https://doi.org/10.1016/j.mcm.2010.10.021

Batchelor M, Baxter R, O’Rourke M, et al., 1995. Exact
solution and interfacial tension of the six-vertex model
with anti-periodic boundary conditions. J Phys A,
28(10): 2759-2770.
https://doi.org/10.1088/0305-4470/28/10/009

He X, Li CD, Shu Y, 2012. Bogdanov-Takens bifurcation in
a single inertial neuron model with delay. Neurocom-
puting, 89:193-201.
https://doi.org/10.1016/j.neucom.2012.02.019

Ke YQ, Miao CF, 2011. Stability analysis of BAM neural
networks with inertial term and time delay. WSEAS
Trans Syst, 10(12):425-438.

Ke YQ, Miao CF, 2013a. Stability analysis of inertial Cohen-
Grossberg-type neural networks with time delays. Neu-
rocomputing, 117:196-205.
https://doi.org/10.1016/j.neucom.2013.01.026

Ke YQ, Miao CF, 2013b. Stability and existence of periodic
solutions in inertial BAM neural networks with time
delay. Neur Comput Appl, 23(3-4):1089-1099.
https://doi.org/10.1007/s00521-012-1037-8

Ke YQ, Miao CF, 2013c. Exponential stability of periodic
solutions in inertial neural networks with unbounded
delay. Int J Math Comput Phys Electr Comput Eng,
7(3):477-486.

Ke YQ, Miao CF, 2017. Anti-periodic solutions of inertial
neural networks with time delays. Neur Process Lett,
45(2):523-538.
https://doi.org/10.1007/s11063-016-9540-z

Kosko B, 1988. Bidirectional associative memories. IEEE
Trans Syst Man Cybern, 18(1):49-60.
https://doi.org/10.1109/21.87054

Li HF, Jiang HJ, Hu C, 2016. Existence and global expo-
nential stability of periodic solution of memristor-based
BAM neural networks with time-varying delays. Neur
Netw, 75:97-109.
https://doi.org/10.1016/j.neunet.2015.12.006

Li XD, Song SJ, 2017. Stabilization of delay systems:
delay-dependent impulsive control. IEEE Trans Au-
tom Contr, 62(1):406-411.
https://doi.org/10.1109/TAC.2016.2530041



Aouiti et al. / Front Inform Technol Electron Eng 2020 21(2):324-339 339

Li XD, Wu JH, 2016. Stability of nonlinear differential
systems with state-dependent delayed impulses. Auto-
matica, 64:63-69.
https://doi.org/10.1016/j.automatica.2015.10.002

Li XD, Ho DWC, Cao JD, 2019. Finite-time stability and
settling-time estimation of nonlinear impulsive systems.
Automatica, 99:361-368.
https://doi.org/10.1016/j.automatica.2018.10.024

Li YK, 2008. Positive periodic solutions of nonlinear differ-
ential systems with impulses. Nonl Anal Theory Meth
Appl, 68(8):2389-2405.
https://doi.org/10.1016/j.na.2007.01.066

Li YK, Xiang JL, 2019. Existence and global exponen-
tial stability of anti-periodic solution for Clifford-valued
inertial Cohen-Grossberg neural networks with delays.
Neurocomputing, 332:259-269.
https://doi.org/10.1016/j.neucom.2018.12.064

Li YK, Yang L, Wu WQ, 2015. Anti-periodic solution
for impulsive BAM neural networks with time-varying
leakage delays on time scales. Neurocomputing, 149:536-
545. https://doi.org/10.1016/j.neucom.2014.08.020

Liao HY, Zhang ZQ, Ren L, et al., 2017. Global asymptotic
stability of periodic solutions for inertial delayed BAM
neural networks via novel computing method of degree
and inequality techniques. Chaos Sol Fract, 104:785-
797. https://doi.org/10.1016/j.chaos.2017.09.035

Liu B, Teo KL, Liu XZ, 2008. Robust exponential stabiliza-
tion for large-scale uncertain impulsive systems with
coupling time-delays. Nonl Anal Theory Meth Appl,
68(5):1169-1183.
https://doi.org/10.1016/j.na.2006.12.025

Liu BW, 2007. Almost periodic solutions for Hopfield neural
networks with continuously distributed delays. Math
Comput Simul, 73(5):327-335.
https://doi.org/10.1016/j.matcom.2006.05.027

Long ZW, 2016. New results on anti-periodic solutions for
SICNNs with oscillating coefficients in leakage terms.
Neurocomputing, 171:503-509.
https://doi.org/10.1016/j.neucom.2015.06.070

M’Hamdi MS, Aouiti C, Touati A, et al., 2016. Weighted
pseudo almost-periodic solutions of shunting inhibitory
cellular neural networks with mixed delays. Acta Math

Sci, 36(6):1662-1682.
https://doi.org/10.1016/S0252-9602(16)30098-4

Okochi H, 1990. On the existence of anti-periodic solutions
to a nonlinear evolution equation associated with odd
subdifferential operators. J Funct Anal, 91(2):246-258.
https://doi.org/10.1016/0022-1236(90)90143-9

Qi JT, Li CD, Huang TW, 2015. Stability of inertial BAM
neural network with time-varying delay via impulsive
control. Neurocomputing, 161:162-167.
https://doi.org/10.1016/j.neucom.2015.02.052

Stamova I, Stamov T, Li XD, 2014. Global exponential
stability of a class of impulsive cellular neural networks
with supremums. Int J Adapt Contr Signal Process,
28(11):1227-1239. https://doi.org/10.1002/acs.2440

Tu ZW, Cao JD, Hayat T, 2016. Global exponential stability
in Lagrange sense for inertial neural networks with time-
varying delays. Neurocomputing, 171:524-531.
https://doi.org/10.1016/j.neucom.2015.06.078

Wheeler DW, Schieve WC, 1997. Stability and chaos in an
inertial two-neuron system. Phys D, 105(4):267-284.
https://doi.org/10.1016/S0167-2789(97)00008-0

Xu CJ, Li PL, 2016. Existence and exponentially stability of
anti-periodic solutions for neutral BAM neural networks
with time-varying delays in the leakage terms. J Nonl
Sci Appl, 9(3):1285-1305.
https://doi.org/10.22436/jnsa.009.03.52

Xu CJ, Zhang QM, 2015. Existence and global exponential
stability of anti-periodic solutions for BAM neural net-
works with inertial term and delay. Neurocomputing,
153:108-116.
https://doi.org/10.1016/j.neucom.2014.11.047

Zhang ZQ, Quan ZY, 2015. Global exponential stability via
inequality technique for inertial BAM neural networks
with time delays. Neurocomputing, 151:1316-1326.
https://doi.org/10.1016/j.neucom.2014.10.072

Zhou JW, Li YK, 2009. Existence and multiplicity of solu-
tions for some Dirichlet problems with impulsive effects.
Nonl Anal Theory Meth Appl, 71(7-8):2856-2865.
https://doi.org/10.1016/j.na.2009.01.140

Zhou QY, Shao JY, 2018. Weighted pseudo-anti-periodic
SICNNs with mixed delays. Neur Comput Appl, 29(10):
865-872. https://doi.org/10.1007/s00521-016-2582-3


	Introduction
	Preliminaries
	Main results
	Examples and comparisons
	Conclusions

