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Abstract: In this study, we investigate the problem of multiple Mittag-Leffler stability analysis for fractional-order

quaternion-valued neural networks (QVNNs) with impulses. Using the geometrical properties of activation functions

and the Lipschitz condition, the existence of the equilibrium points is analyzed. In addition, the global Mittag-Leffler

stability of multiple equilibrium points for the impulsive fractional-order QVNNs is investigated by employing the

Lyapunov direct method. Finally, simulation is performed to illustrate the effectiveness and validity of the main

results obtained.

Key words: Mittag-Leffler stability; Fractional-order; Quaternion-valued neural networks; Impulse

https://doi.org/10.1631/FITEE.1900409

1 Introduction

Recently, neural networks (NNs) have attracted
attention from various fields due to their wide ap-
plications in image processing, system identification,
propagation, pattern recognition, associative mem-
ory, combinational optimization, etc. Most of these
applications depend on the dynamical properties of
NNs. Therefore, different kinds of stability analy-
sis and properties including bifurcation and chaos in
NNs have attracted much attention (Cao and Xiao,
2007; Rakkiyappan et al., 2014, 2015a, 2015b, 2016;
Stamova, 2014; Wang H et al., 2015; Li XD and Wu,
2016; Li XD and Ding, 2017; Li XD et al., 2017; Wu
and Zeng, 2017; Yang et al., 2018; Huang YJ and Li,
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2019; Khan et al., 2019; Li X et al., 2019; Nie et al.,
2019; Pang et al., 2019; Qi et al., 2019; Wang JJ
and Jia, 2019). Quaternion-valued NNs (QVNNs)
are a generic extension of real- and complex-valued
NNs (RVNNs and CVNNs), and they inhibit the
non-commutative property of the quaternion algebra
(Chen XF et al., 2017; Hu et al., 2017; Liu Y et al.,
2017, 2018; Song and Chen, 2018; Li N and Zheng,
2020). The quaternion problems are more difficult
than those in real- or complex-valued systems, which

is the reason for the slow development in quaternion
fields.

It is well known that two-dimensional data can
be processed well in CVNNs and many RVNNs. If
the data is three- or four-dimensional, such as in
the cases with body images, color images, and four-
dimensional signals, it can be directly encoded in
terms of quaternions in quaternion networks, show-
ing QVNNSs to be more important than CVNNs and
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RVNNs. Moreover, quaternions have attracted at-
tention in a wide range of applications, including
rotation, image comparison, and color night vision.
Recently, a few researchers have considered theo-
retical investigations of the dynamical properties of
QVNNs, concentrating mainly on the global behav-
ior such as global stability. Decomposition of quater-
nions is a useful method of dealing with the non-
commutativity of quaternion fields. Using plural de-
composition and the Lipschitz technique, the sta-
bility results of QVNNs were obtained in terms of
continuous and discrete time cases by Liu Y et al.
(2018). In the past decade, the incorporation of
fractional calculus into NNs has achieved better re-
sults than the integer-order NNs investigated by Cao
and Xiao (2007) and Abdurahman et al. (2015).
This is because the fractional-order derivatives in-
herently have excellent memory and hereditary prop-
erties in representing the network model. As is well
known, there are many advantages over the integer-
order NNs and the corresponding fractional-order
NNs. However, the main difference is that fractional-
order systems are more accurate than integer-order
systems; i.e, there are more degrees of freedom in
fractional-order systems. Moreover, compared with
classical integer-order systems, fractional-order sys-
tems are characterized by infinite memory. Con-
sidering all the above-mentioned reasons, the incor-
poration of a memory term into an NN model is
unavoidable. On the other hand, some researchers
have attempted to investigate the advantages of both
quaternions and fractional derivatives in NNs, and
proposed fractional-order QVNNs.

It is well known that, many factors such as
time delay, chaos, bifurcation, and system com-
plexities influence the fractional-order NNs, result-
ing in instability at certain time instants. There-
fore, the integration of impulsivity into the pro-
posed fractional-order QVNNs becomes essential.
Combining the memory and hereditary properties of
fractional-order systems and the impulsive effect, the
resulting impulsive fractional-order QVNNs guar-
antee better outcomes when compared with usual
integer-order NNs. As one of the classical phenom-
ena of dynamic NNs, multistability analysis has been
studied extensively by Zeng et al. (2010), Huang Y
et al. (2012), Zeng and Zheng (2012), Liu P et al.
(2017, 2018), and Zhang FH and Zeng (2018). In
Popa and Kaslik (2018), periodic solutions for the

Hopfield-type integer-order NNs were studied in the
presence of both time-dependent and distributed de-
lays, taking the impulsive effects into account. In
this study, we investigate the multistability problem
of impulsive fractional-order QVNNs in the Mittag-
Leffler sense. To the best of our knowledge, this
is the first time the Mittag-Leffler stability theory
has been developed thoroughly for the case of im-
pulsive fractional-order QVNNs. Mittag-Lefller sta-
bility analysis in fractional-order systems is still an
open problem.

Motivated by the above discussions, we con-
duct the study of multiple Mittag-Leffler stabil-
ity results on impulsive fractional-order QVNNs.
First, n-dimensional QVNNs are converted into a
4n-dimensional RVNN system using the decomposi-
tion and non-commutative properties of quaternions.
Then, sufficient conditions for Mittage-Leffler stabil-
ity are discussed for fractional-order nonlinear sys-
tems. Finally, two numerical examples are given
to demonstrate the effectiveness of the theoretical
results.

2 Preliminaries

In this section, we present some important defi-
nitions and lemmas of fractional calculus which help
prove the main results.

Definition 1 (Podlubny, 1998; Kilbas et al., 2006)
The Caputo fractional derivative of order 0 < « for
f() € C™([to, +<], R) is

t

_ L [ g tet) p ) g)ds
mr [ e s

to

L Df(t) =

where T'(+) is a Gamma function defined as I'(a)) =

fﬁ%dt(n—1<a<n). If we choose 0 < o < 1,
to

L DEf(t) =

to

For convenience, in the rest of this paper, we adopt
D“ to denote Caputo’s fractional derivative operator
CDa

to—t *

Definition 2 (Podlubny, 1998; Kilbas et al., 2006)
For any «a,8 > 0 and real number v, the Mittag-
Leffler function E, g(r) with two parameters is
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defined as

_QZ::O Mga+B)

If B = 1, we can obtain the one- parameter form of

the Mittag-Leffler function E(v) = Z M an), if

a =3 =1,then Ey1(v) = e”.
Consider the following fractional-order QVNNs
with impulses:

DOhy(t) =

t)+ Y apgfy (he(t) + R
q=1

‘Shp(tk) = hp(t;:) - hp(tg) = Bp (hp(tk)) )
(1)
where k =1,2,..., n, or, equiv-

alently, in the vector form

Dh(t) = —Ch(t) + Af (h(t)) + R,
Sh(tr) = h(ty) — h(ty) = Br(h(tr)),

where £ = 1,2,....m, 0 < a < 1, h(t) =
(hi(t), ha(t), .- -, hn(t))T € Q" is the state variable
at time t, C = diag(c1,c2,...,¢y) with ¢, > 0,
f(h(t)) denotes the neuron activation functions,
A € Q" " is the interconnection matrix, R =
(R1,Ra2,...,Rn)" € Q" is an external input, and Sy
denotes the impulsive operator. The time sequence
is represented by {tx} for all k¥ € Z and satisfies
0=ty <ty <...<tp<...limgpieotr = —o00.
Definition 3 If a vector h* € R" satisfies

{ —Ch* + Af(h*) + R =0,

mandp=1,2,...,

(2)

Br(h*) =0,

wherek =1,2,...
of NNs (2).
Definition 4 (Chen JJ et al., 2014)
librium point h* = (h}, h3,...,h%)7T of system (2)
is said to be globally Mittag-Leffler stable. There
exist positive constants U and G, such that for any
solution h(t) of system (2) with initial value hg, we
have

IR (t) =

—U(t —t0)?),
where ¢t > ty. If the equilibrium point h* of
system (2) is globally Mittag-Leffler stable, then
QVNNs (2) are globally Mittag-Leffler stable.

System (2) follows from the non-commutative
property of quaternion algebra, and uses the Hamil-

ij =k ji = -k jk =1 Kk = i,

,n, then h* is called an equilibrium

The equi-

Wl < Gllho — W™ Eq (

ton rules:

ki = j, ik = —j, ijk = i2 = 2 = k2 = —1, and
v € {R, I, J, K}; thus, we can rewrite NNs (2) as the
following four real-valued NNs:

DRt (t) = — Chf(t) + AR fE(RT (1)) — ATF(R1(1))

— ATFI(R (1)) — AR fE (R (1) + RE,
DK (t) = — ChI(t) + A f1 (W (1) + AT FE (T (1))

+ AT R () = AR (R (1) + R,
D*h7(t) = —Ch’(t) + A% £/ (h7 (1))

— ALFE (RS (1) + A7 PR (R (2))

+ AR I () + R,
DRI (t) = — Ch™ (t) + AR R (R5(2))

+ AL (0 (1) = AT FH (0 (1))

+ AK FE(R (1)) + RE,

Y (g ) =h" (t), 1 (t)) — h” (ty ) = By (h(te)),
(3)

where t Aty and p=1,2,...,n
Assumption 1 The impulsive operator [ =
[Br1, Br2s - - - Brn] T is defined on {¢ : (—oo,t] —

L"|p is piecewise continuous on (—oo,0], left con-
tinuous on [0, ¢x], with a first-kind discontinuity at
t., and differentiable on every interval (¢,_1,¢,),1 <
r < k}. This will require 8x () = 0 for any constant
function .

Assumption 2 G(1) = (1,00),G(-1) =
(=00, —1), and GL(h) = G(hT) +iG(h!) +iG(h’) +
kG (hE) for every ¢ € {£1, 4, £j, +k}", and we de-
fine the set @ = G(¢1) X GL(s2) X ... X GL(sy). For
example, we take Gp.(—1 +1—j+k) = (—o0,—1) +
(1,00)i+ (=00, —1)j + (1, 00)k.

Assumption 3 The components of the activation
functions ff, z{ 13] , and fzf{ are bounded and glob-
ally Lipschitz continuous; then, for any constants
ot grl 9r)and 905 v = R 1J K, |fY(h)] <
1 and | £ (L BE) — (RS D b )| <
19;3|hf/—h§|+19;I|h{—h£|+19;d|h'1]—hg|+19;K|h{(—
hi|.

Assumption 4  There exists an [ € (0,1) such
that functions f(h") satisty f/(h") > Lif h¥ > 1,
and fy(h”) < —lif h” < —1,forqg=1,2,...,
ve{R,I,J K}.

Assumption 5 The external input vector satisfies

n and
IRy ()] <afLl — dy = (lap,| + lag,| + lag,])

—Z a2 | + lal,| + lal,| + lak]) |

qa#p
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wheret€e Randp=1,2,...,n
For any k € Z% and ¢ €
,if o(t) € D, then o(ty) + k(o) €

Assumption 6
{1, i, +j, £k}"
b

For theoretical investigations, we need the fol-
lowing lemmas:
Lemma 1 (Wu and Zeng, 2017)  Let x1 > 0, x2 >
0, x3>1, xa > 1,and 1 + 1 = 1. Then for any
(X15)Xg +5 (X25)X4 The
inequality holds if and only if (x1 5)X3 = (x25)x
Lemma 2 (Popa and Kaslik, 2018)  Let Eq. (4)
(at the bottom of this page) hold, where M} =

1 n
2 (RGN + 32 (Jafy] + hafyl + la] + laf5]) ). » =
1,2,...,n,and v € {R,I,J, K}.

If Assumption 3 is satisfied, then the following
statements hold:

6 > 0, we have y1x2 <

1. There exists at least one equilibrium point of
QVNNs (1) corresponding to input vector R in set
DR

2. Every equilibrium point of QVNNs (1) be-
longs to set .

Lemma 3 (Popa and Kaslik, 2018)  Suppose that
Assumptions 1-5 hold. Then the following condi-
tions are true:

1. In every set &¢ (¢ € {£1, +i, +j, +k}"), there
exists at least one equilibrium point of QVNNs (1)
corresponding to the external input vector R.

2. If Assumption 6 is satisfied, then set &¢ (¢ €
{41, +i, £+j, £k}") is a positively invariant set.

3. If Assumption 3 holds, then the equilibrium
point of QVNNs (1) corresponding to input vector
R in set &. (¢ € {£1,=+i,+j, +k}") is unique and
exponentially stable.

Lemma 4 (Zhang XX et al., 2017) For the following
fractional-order impulsive system:

{ D®h(t) = —Ch(t) + Af(t,h(t)) + R,
Sh(ty) = h(t) — h(ty) = Br(h(tr)),

where k = 1,2, ..., m, assume that the following con-
ditions hold: (1) f(¢,0) =0 (t > 0); (2) B =0 (k =

(5)

P = ([ M7, M{']
([=Mg, M

1,2,...,m); (3) there exists a positive definite func-
tion V(t) that satisfies DV (¢, e(t)) < —EV (¢, e(t))
and V(tT,e(t) + Ex(h)) < V(t,e(t)), where t = tj,
and k = 1,2,...,m. Then the equilibrium point of
QVNNs (1) is Mittag-Leffler stable.

Remark 1 Based on Brouwer’s and Leray-
Schauder’s fixed point theories (Schauder, 1930),
Lemmas 1 and 2 can be easy to prove. For details,
see Lemma 2
(2018).

and Theorem 2 in Popa and Kaslik

3 Main results

In this section, the Mittag-Leffler stability anal-
ysis of multiple equilibrium points for the impulsive
fractional-order QVNNs is investigated. Consider
QVNNs (1) have the initial value k¥ (0) = h{. Let h*
be the equilibrium point of the impulsive fractional-
order QVNNs (1) and thus make the transformation

e’(t) = h"(t) -

h*. Then system (3) is transformed

into

Dl (t) = — Cef'(t) + AT fri(e (1) — AT f1 (N (1))
— AT (el (t) — AR R (R (1)),

D' (t) = —Ce' (t) + AT f1(e" (1)) + AT fR(eF(t))
+ AT R (1) = AR f (e J( ))

D’ (t) = = Ce’(t) + AT (e (1)) — AT R (" (1))
+A"fR( B(t) + A% (! ())

DY (t) = (t) + AR () + AT (e (1))

FHN (X)) + AR fR(R ))
e’(ty,) =e (fk)ae"(fZ)—e (ty ) =T¥ (e(tr)),

e(0) =eo,t £tg,p=1,2,...,n, (6)
where e(t) = (e1(t), ea(t),...,en(t)", f(t.e(t)) =
(f1(t, ex(t)), f2(t, ez(t))7-~-7fn(t en(t))", and
fo(tsep(t)) = fi(t, ep"’h*) fo(t, h*>( = XL
and eg = hg — h*).

Theorem 1 Assume that the conditions of Lemmas
2 and 3 hold, and T} (h"(tx)) = —n(h”(tx) — h*)
(k=1,2,....m,(>0,and v € {R,I,J, K}) where
h* is the steady state of the impulsive QVNNs (1).

+i =M, M)+ 5 [-M{ M)+ & [-MES M)
+i[-Mg, My +i[-My, M) +k [-MI, M)

+i[-M] M)+ k [-ME, ME]) . (4)
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If |1 - 5Zp|< < 1 and there exists inequality (7) (at
the bottom of this page), where

Apy = 93" — a3 — ap 0 = ap i,
Apg = ﬁzﬂéy + apqﬂgu + apqﬂéﬁl - az{fzﬂgy’
AZq = 2119;” - zliqﬂé(u + apqﬁqRy + aﬁzﬂéy’
Apy = ap 93"+ ap 07 — ap 05" — a9,

then the impulsive fractional-order QVNN (1) is
Mittag-LefHler stable.

Proof Consider the following Lyapunov function
candidate:

Vi(te(t)) =Vi+Vo+ Vs + Vi, (8)
where

¢, Vo=

Vi = Zg et ZC‘llefg(t)c
Vs = ZC Hey ()[°, V4—ZC Hey (

When t # t;, (k= 1,2,...,m), calculating the frac-

tional derivatives of V (¢, e(t)) along the trajectories

of NNs (3), we can find from Lemma 1 and NNs (3)

that inequality (9) (on the next page) is valid.
Using Lemma 1, we can obtain

A = min
1<p<n

iK R R
+Ap,(C—1)ey + Aje

A = min

i, {3 (a8 -

+AR (¢ —1)ef + AL eF

A = min
1<p<n

A K J
+A,,(¢ — ey + A7, S+ A7

A = min
1<p<n

i 1K .
+AJ (¢ — el + +AL + AX

=< iR _J'=¢ iR _K
1+ quel + qusl

- + Aéqsg - + fléqsf
{cpc > (47, ((4— Def +ed )+ AR (¢ = Ded) + AL, (¢ — 1]
q=1

pq3

pq

Substituting the above inequalities into inequal-
ity (9), then we have inequality (10) (on the next
page).

Similar to the proof of D*V;, we can estimate
D*Vy, D*V3, and D*Vy, which are omitted here to
save space. As for D*V;, we have inequalities (11)—
(13), shown on page 240.

Adding inequalities (10)—(13),
equality (14) (shown on page 241).

we obtain in-

From inequality (7), we can select a positive

{cpg Z( C((C= el 4 eT7) AL (C— DR + Agy(C — 1)ef

7<> } >0,

el + 52 ) + qu ((C — 1)51) + A‘] (¢ — )6§

H) } >0,

—¢ iJ K
+ quag

74) } >0,

{cpc Z(AK ((4—1>sf+af“<)+AZ((<—1>81)+A’ (SRIES

4 qu4 <)}>0.
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DV <Z|e (t)[°~ 1[ |C—|—Za <’L9RR|6 )|+19§I|eé(t)|+19§J|ej(t)|+19§K|ef(t)|)

— Za{,q <Q9£R|€5(f)| + 19£I|eé(t)| + 19£J|e )|+ 19IK|6 ) Zapq (19JR|6 t)| + 19;I|eé(t)|
g=1

+191{J|e ()|—|—19JK|6 ) Zapq<19KR|e )|+19£(I|eé(t)|+19£(J|ej(t)|+19£<K|e§<(t)|)}

3 e+ 33 a e ) 1(19RR|e (>|+193;‘f|e5<t>|+05J|eg<t>|+ﬁ§K|ef<t>|)

p=1 p=1¢g=1
S el l(ﬂ”‘we (>|+z9;f|e;<t>|+z9;J|e;<t>|+z9§K|e;<<t>|)
p=1qg=1
=2 S e O (701 + 05 ed(0)] + 037 ke 0] + 071k )
p=1qg=1
S S A e l(ﬂKﬂe (>|+0§f|e;<t>|+19§J|e;<t>|+z9§”<|e§<<t>|)
p=1g=1
=S (—ep)lef IC+ZZ< R GRE| o (1)< | ()] + af 97 |eF(1)|< el (1)] + aft 95 (1) <
p=1 p=1g=1
el (0] + al 0RE () ) Zz(amﬂgﬂf (O e (1)) + al 917 |eB (06 el (1)
p=1qg=1
a9 R (0[S el ()] 4+ al 9K B (1) ek ) Zz<apqﬂgR O]
p=1qg=1
a9 R () el (1) + al 027 e ()< el (8)] + . 975 | (1) e <t>|)

—ZZ( pa¥a leg 1T eg (O] + a9 e (0 eg (D] + apgdg ey (5] ey (¢)]

p=1qg=1
Tl K eg(t>|<—1|eg<(t>|>.
9)

Da‘/l SZ{( ﬁzﬁqRR éq,ﬂéR P{q,ﬂgR 1[)2,&;(R> (C_ 1)8{%4—( R,&RI I 19]] J 19JI K,ﬂK[)
q=1

qu qu qu qu

qu qu pa~q pa~q

(¢ —1)eg’ + ( O — a0 — ap, 077 — KW“)(Q — ey + ( 0 — a0 — ag 0%
pq-q pa-q

- R gRI I gl JI K qKI\_R'™¢ - R gRJ 1J JJ
+Z{<pq19q ApgVq _apqﬂq — ¥y )2 }‘/2+Z{<pql9q — ap ¥y’ — ap0

pa-q prqg-q

K gKJ )\ _R*~¢ - R gRK _ 1 gIK _  J gJK K KK \_R!'™¢
pqﬁq ) €3 }V3+Z{< pqﬁq pqﬁq pqﬁq pqﬁq )54 }V4'

1-¢
;;ogK)(g — 1)+ ( RgRR _ oI gIR _ oJ IR _ aKﬁKR) R c,,g}vl
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pev, <3 { (af’qﬂéR +al 9FR 4 ) gKR a{fqﬁjR) (-1l + (aR 91 4 al ORI 4 o KT a&w)

Ppg-q pa-gq Pa-q pg-q

I R oIJ I gRJ J oKJ K gJJ I R gIK I 9RK J gKK
(= Dey + (apqﬁq + apqﬂq + apqﬂq o apqﬂq )(C o 1)53 + (apqﬁq + apqﬂq + apqﬂq

pq-aq

1-¢ n
- a;,gagK) (C-1e+ (aﬁzﬁél Fal 08T 4 af 9KT agﬁgf)gf - c,,g}vQ iy { <aR o
q=1

n
I 9oRR J gKR K gJR\_I'"¢ R gIJ I gRJ J gKJ K gJJ\.I'7¢
+apq19q +apq19q apqﬁq )51 }V1+§: (amﬁq +apq19q +apq19q apqﬁq )e3 Vs
g=1

pa-q prqg-q pa-q

n
+ Z {(afqﬂéK +al 9RE 1 qf 9EK _ aK19']K)EfF< }V4.
q=1

(11)

Pa-gq Ppg-q pg-aq

D*Vs < Z { (aﬁﬁ;{R —a) 05"+ af 9IT 4 aﬁlﬁéR) (¢C—1)ef + (af’qﬁgl —al 9K +af 9B 4 aK19H)
g=1

J R oJJ I oKJ , J qRJ , J oIJ J R oJK I oKK , J oRK
(C—=1ey + <apql9q = ¥y 7+ apg0y7 + ayg0y >(< — ez + <apql9q — ¥y "+ apg0y

pqg-q

+ aﬁzﬁéK> (¢C—1)ef + (aﬁ‘zﬂg‘] —al 9K +al 98 + aﬁzﬁé‘]> el ™t~ CPC}Vg + Z { (aR 977
q=1

n
I gKR J qRR K IR\ _J'=¢ R qJI I gKI J qRI K qoIT \ _J*=¢
pg¥y "+ apg Vg + apy ¥y )61 }‘/1+§: apg¥y" — Opg¥y "+ apg 0" + apg¥y | €3 Va
qg=1

n e
Py { <a;§q@gf< al 9K o] 9P affqﬁéK)ai }v4.

qg=1
(12)

pa-q pq-q pq-q pa-q

DV, <Y { <a;§qﬂ§R Fal 97R al 9% agﬁfR) (€~ 1)k (aR KT 4l 97— ol 911 4 aK19F”>
q=1

(¢ -1k + <a§fqz9§< T +al 07 —al 91 + ol 19’”) (C—1)ek + (aR IEE ol 9lK o) 9Ik

pq-q pq-q pa~q pq-q pq-q

n

+afy ) (€ = et (ol 08+ af 9K — 91K el g0l e Y { (afo™
q=1

pq-q pa~q

af, 077 = af, 0+ alfof e Vi S0 { (a0l af 0" - a0l a0 )l b
g=1

n
1—-¢
'y { (agﬁy I aﬁﬂfJ>s§< }vg.

q=1

constant ¢ > 0 such that min(A®, A\ A7 AK) > ¢ > inequality (16) (on the next page).
0. This implies that
Therefore, as a consequence of Lemma 4 and
DOV (te(t)) < —€V(te(t)), for t # 4. (15) inequalities (15) and (16), it can be concluded that
the impulsive fractional-order QVNN as QVNNs (1)
When ¢t = ¢ (kK = 1,2...,m), we obtain is Mittag-Leffler stable.
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Remark 2 Theorem 1 gives the Mittag-Leffler
stability conditions for the impulsive fractional-order
QVNNs (1). This condition depends on the param-
eters of NNs and the activation functions.

Remark 3
been studied extensively for their wide applica-
tions. Mittag-Leffler stability analysis of RVNNs
and CVNNs has attracted the attention of many re-
searchers. Liu P et al. (2018) introduced a class of
integer-order recurrent NNs with unbounded time-

In the past few decades, NNs have

varying delays. Using the geometrical properties

of non-monotonic activation functions, they showed

(16)

that the addressed system has exactly (2K; + 1)"
equilibrium points, of which (K; + 1) were locally
asymptotically stable while others were unstable.
Tyagi et al. (2016) provided sufficient conditions for
Mittag-Lefller stability of the equilibrium points for
CVNNs. In this study, sufficient conditions are an-
alyzed to achieve the coexistence and Mittag-Leffler
stability of equilibrium points. The number of equi-
librium points of QVNNs is larger than that of
CVNNE.

Theorem 2 Assume that the conditions of Lemmas
2 and 3 hold, and By (h”(tx)) = —8(h”(tx) — h*)
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(k=1,2,...,m), where h* is the steady state of the
impulsive NNs (1). If [1 — 6 | < 1 and there exist

= iy (o3 (1o + laf + 1, + laf |)

q=1

. (af;R IR 4 9IR @gﬂ%ﬂ >0,

! —1ggn[cp—zl(|a [+ laky| +laf| + la5]
(gt ottt 4 05T)] >0,

o7 = i, o= 3= (1ol + el + 1t + ] )

. <195J 01 00 4 195])] >0,

o = iy [~ 3 (Il -+ lafyl + laf) + 1055

g=1
. (w;m LK I ﬁfKﬂ >0,
(17)

then the impulsive fractional-order QVNN (1) is
Mittag-LefHler stable.

Proof Consider the following Lyapunov function
candidate:

V(t,e(t)) = Vi + Vo + Vs + Vi, (18)
where

Vi=) lef)l, Vo= lep(t)
p=1 p=1
Vi =3"lel )], Va= I (1)

When ¢ # t, (k = 1,2,...,m), calculating the
fractional-order derivative of V' (¢, e(t)) along the tra-
jectories of Eq. (3), we obtain inequality (19) (on the
next page).

Similarly, we can obtain inequalities (20)—(22)
(on the next page). Adding inequalities (19)—(22),
we obtain inequality (23) (on the next page).

From inequality (17), we can select a positive
constant & > 0 such that min(y%, ! 7 &) >
& > 0. This implies that

DOV (te(t)) < —€V(te(t)), t £tr.  (24)

When t =t (k=1,2,...,m), we have

n

)=

p=1

(1) +nf (e (tk»\

+
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(1) + n,ip<e§<tk>>\

]
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+
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! () + i, (e <tk>>\

S
Il
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+
NE

(tx))

eff (tg) + n;ﬁ;(ef

Il
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>

hit(tr) — h* = 64 (hy(tr) — B*)

p=1

+ ) WL (tk) = b7 = 6, (hy(ts) — B7)
p=1

+ 3| () — B = 6, (B (1) — 1)
p=1

) |ha () = B = 55 (hy(te) — %)
p=1

=3 =6 |l tk) — b
p=1
+ |1 =0, |- | A (tk) = B

S
Il
—

+
NE

1—6{,| - |h)(te) — h*

p
p=1
+ 1 =of |- WK () — b

I
-

p

SV(tk, B(tk)).
(25)

Therefore, from Lemma 4 and inequalities (24)
and (25), it can be concluded that the impulsive
fractional-order QVNN as QVNNs (1) is Mittag-
Lefller stable.

Remark 4 In reviewing the existing works
(Wang F et al., 2015; Song et al., 2016a; Wang
LM et al., 2017), fractional-order CVNNs (Wang

F et al,
integer-order systems (Song et al.,

2015; Wang LM et al., 2017) and
2016a, 2016b)
have been studied extensively over the last few
decades. Recently, the Mittag-Leffler stability anal-
ysis of fractional-order QVNNs was investigated

by Yang et al. (2018). However, the results on
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impulsive fractional-order QVNNs have not been dis-
cussed to date. In light of this, we have analyzed
the Mittag-Leffler stability of multiple equilibrium
points for the impulsive fractional-order QVNNs us-
ing the Lyapunov direct method, which is much more
complicated than that of CVNNs.

4 Numerical simulations

In this section, simulation results are given to
illustrate the efficiency of the impulsive fractional-
order QVNNs.

Example 1 Consider the following impulsive
fractional-order QVNN:

DY hy(t) = —c1hy (t) + ary f1(ha(2))
+ a1z fa(ha(t)) + R,
Ahyp(tk) = d1(ha (k) — b7,
D%hy(t) = —caha(t) + a2 fi(hi(t))
+ aza f2(ha(t)) + Ra,
Ahy(ty) = dka(ha(ty) — h"),

where k = 1,2,...,m, p = 1,2,...,n, fi(hi(t)) =
fa(ha(t)) = tanh(t), a;; = 8.6 + 0.12i — 0.5 + 1.2k,
a1z = 0.4 + 0.361 + 0.5j + 0.04k, ag; = 0.3 —0.1i +
0.25] + 0.42k, a20 = 6 + 0.251 4+ 0.1 + 0.2k, Ry =
0.5+ 0.4i — 0.6j + 0.6k, Ro = 0.7 — 1.1i 4+ 0.4j — 1.4k,
c1 = cg = 4.5, 1911/11/2 = 19;1”2 = 0.01, and Vi,V €
{R,I,J,K}. Calculation shows that inequality (7)
in Theorem 1 is satisfied with p = 1,2 and ¢ = 1, 2.
Consequently, QVNN (26) is Mittag-Leffler stable.
Fig. 1 shows the trajectories of QVNN (26) with
different initial values.

Example 2 Consider the following impulsive
fractional-order QVNN:

(26)

D%"hy(t) = —erha(t) + ar f1(ha (1))
+ a1z fa(ha(t)) + Ra,
Ahy(te) = dp1(ha (k) — h"),
D%"hy(t) = —caha(t) + ag1 fi(ha (1))
+ a2 f2(ha(t)) + Ra,
Ahy(tk) = dka(ha(tk) — h"),
where k = 1,2,...,m, p = 1,2,...,n, fi(hi(t)) =
fa(ha(t)) = exp(—t?), a;1 = 6.3 + 0.1i — 0.2j + 1.4k,
a2 = 0.8 + 0.6i + 0.1j + 0.001k, ao; = 0.3 +

0.3i — 0.12j + 0.4k, ase = 4.9 — 0.32i + 0j + 0.25k,
Ry = 0.9 + 0.8i + 0.5) + 0.4k, Ry = 1.7 — 2.1i +

(27)

10 12 14 16 18 20
¢

Fig. 1 Trajectories of state variables h(t) (a), h!(t)
(b), h7(t) (c), and h¥(t) (d) in Example 1 with a =
0.9 and t; = 0.02k

0.4j + 1.4k, c; = ¢ = 5.5, 972 = 0.01
and v1,v5 € {R, I, J, K}. Calculation shows that in-
equality (7) in Theorem 1 is satisfied with p = 1,2
and ¢ = 1,2. Consequently, QVNN (27) is Mittag-
Leffler stable. Fig. 2 shows that the trajectories of
QVNN (27) are Mittag-LefHler stable with different
initial values.

— vivz
= 192

5 Conclusions

In this study, we investigated the Mittag-LefHer
stability analysis of multiple equilibrium points
for fractional-order QVNNs with an impulse term.
By employing the non-commutative property of
quaternion multiplication, QVNNs were converted
into four RVNNs. According to the definition of the
activation functions, the existence of equilibrium
points was also analyzed. Sufficient conditions were
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(a)

(b)4

(=)
Wibh o)

05

Fig. 2 Trajectories of state variables h®(t) (a), h!(t)
(b), 7 (t) (c), and h¥(t) (d) in Example 2 with o =
0.7 and t, = 0.02k

derived to assure the Mittag-Leffler stability of
multiple equilibrium points for QVNNs. Simulation
results validated our theoretical solutions.
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