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Abstract: This paper summarizes the autonomous guidance methods (AGMs) for pinpoint soft landing on celestial
surfaces. We first review the development of powered descent guidance methods, focusing on their contributions for
dealing with constraints and enhancing computational efficiency. With the increasing demand for reusable launchers
and more scientific returns from space exploration, pinpoint soft landing has become a basic requirement. Unlike the
kilometer-level precision for previous activities, the position accuracy of future planetary landers is within tens of
meters of a target respecting all constraints of velocity and attitude, which is a very difficult task and arouses renewed
interest in AGMs. This paper states the generalized three- and six-degree-of-freedom optimization problems in the
powered descent phase and compares the features of three typical scenarios, i.e., the lunar, Mars, and Earth landing.
On this basis, the paper details the characteristics and adaptability of AGMs by comparing aspects of analytical
guidance methods, numerical optimization algorithms, and learning-based methods, and discusses the convexification
treatment and solution strategies for non-convex problems. Three key issues related to AGM application, including
physical feasibility, model accuracy, and real-time performance, are presented afterward for discussion. Many space
organizations, such as those in the United States, China, France, Germany, and Japan, have also developed free-flying
demonstrators to carry out related research. The guidance methods which have been tested on these demonstrators
are briefly introduced at the end of the paper.
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1 Introduction

Autonomous guidance methods (AGMs) plan
flight trajectories and/or provide onboard guidance
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commands in real time to meet the complex con-
straints and terminal conditions in follow-up flight
processes independent of off-line planned reference
trajectories. An AGM considers the flight process
as a whole, and has strong adaptability and robust-
ness for tasks consisting of strong environmental un-
certainties and strict constraints. In recent years,
missions such as returning to the Moon, landing on
Mars, and the recovery of launch vehicles have at-
tracted worldwide attention. To obtain a greater
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scientific return, pinpoint soft landing has been an
indispensable feature, which sets the current research
apart from those in the Apollo era. The landing pro-
cesses of these missions are characterized by multi-
ple flight phases and large uncertainties, and the ac-
tual flight trajectory may vary from the prescribed
reference trajectory. Powered descent (PD) is the
last phase of landing a flight vehicle, and the guid-
ance, navigation, and control (GNC) system must be
able to deal with accumulated errors from the ear-
lier phases. For all the above missions, AGMs are
considered as a key technology to achieve pinpoint
landing.

The study of AGMs for powered landing began
with the Apollo project. Due to the limitation of
the computing ability in that era, the Apollo lunar
module did not use a fuel-optimal algorithm based
on optimal control theory (Meditch, 1964). Instead,
it adopted the polynomial guidance method, which
was easy to implement and deduced an analytical
expression for the acceleration command in combi-
nation with the remaining flight time for soft land-
ing (Klumpp, 1974). Restricted by the traditional
variational method or Pontryagin maximum princi-
ple, it is very difficult to obtain analytical guidance
laws for landing problems with complex constraints
(for example, concurrently meeting the terminal con-
straints of velocity, position, and altitude, or dealing
with the aerodynamic drag), and thus the progress
in this area has remained slow.

During the early 21st century, the United States
launched the Mars Exploration Program. The Mars
Science Laboratory computed a three-dimensional
polynomial trajectory online during the PD phase
(Prakash et al., 2008), and AGMs for planetary ex-
ploration, especially for pinpoint landing, attracted
renewed attention. Thanks to 40 years of theoreti-
cal mathematicians’ research on numerical program-
ming algorithms (Luenberger and Ye, 1984; Boggs
and Tolle, 1995; Wright, 1997; Boyd and Vanden-
berghe, 2004; Bomze et al., 2007) and the evolution
of hardware, many solvers have been developed (Toh
et al., 2004; Gill et al., 2005; Grant et al., 2008;
Biegler and Zavala, 2009; Domahidi et al., 2013).
To improve a lander’s autonomy during a pinpoint
soft landing, researchers are no longer confined to ex-
plicit guidance laws based on simplified models. In-
stead, computational guidance that considers motion
characteristics and process constraints has gradually

become an important research focus (Lu, 2017; Tsio-
tras and Mesbahi, 2017). Through reasonable mod-
eling, transformations, and analyses, we can rely on
robust and efficient numerical algorithms and ad-
vanced computing platforms for iterative calcula-
tions to meet the requirements of online flight tra-
jectory planning. These methods are regarded as the
state-of-the-art technologies in pinpoint landing, but
they are still restricted by computational efficiency
and convergence, and the practical applications are
rare.

In early studies, the lander was first taken as a
mass particle, and the direct method was applied to
solve the three-degree-of-freedom (3-DoF) nonlinear
programming (NLP) problems with a fuel-optimality
objective. By analyzing the motion and control of
planetary powered pinpoint landings (Topcu et al.,
2005, 2007; Najson and Mease, 2006), it was found
that the pseudospectral discretization methods de-
veloped from the finite element theory had high solu-
tion accuracy in solving NLP problems (Sostaric and
Rea, 2005; Fahroo and Ross, 2008), although their
real-time performance and convergence were unable
to meet the requirements of online trajectory plan-
ning. Açıkmeşe and Ploen (2005, 2007) proposed
to transform the 3-DoF Mars landing problem into
semi-definite programming (SDP) and second-order
cone programming (SOCP), and Ploen et al. (2006)
compared the features of polynomial guidance with
those from the convex optimization algorithm. It
was proved in follow-up studies that the convex prob-
lem, after lossless convexification, has the same solu-
tion to the original problem based on the Pontryagin
maximum principle (Açıkmeşe and Blackmore, 2011;
Blackmore et al., 2012; Açıkmeşe et al., 2013b; Harris
and Açıkmeşe, 2014). The convergence and rapidity
of the convex optimization algorithms make AGMs,
which are based on numerical algorithms, have the
potential for online applications. The Jet Propul-
sion Laboratory (JPL) developed the Guidance for
Fuel-Optimal Large Diverts (G-FOLD) software in
the Autonomous Ascent and Descent Powered-Flight
Testbed (ADAPT), where the computation time can
reach 100 ms on a 1.4-GHz processor. The real-
time performance and control accuracy of the algo-
rithm were verified with the Xombie vehicle (Açık-
meşe et al., 2013a; Dueri et al., 2014, 2017; Scharf
et al., 2014, 2017). However, plagued by the inac-
curacy of terminal time prediction, it is difficult for
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convex optimization algorithms to solve the problem
of free terminal time. According to six flight dura-
tions estimated off-line, G-FOLD constructs six tra-
jectories onboard and selects the most fuel-efficient
one as the guidance command. The NLP problem is
even harder to convexify when the variance in grav-
itational acceleration based on height and the aero-
dynamic forces are considered. Therefore, successive
convex programming (SCP) was proposed (Lu and
Liu, 2013; Liu and Lu, 2014), where the emphasis was
placed on the treatment of the nonlinear equations of
motion. Two methods, direct linearization (inspired
by the linearization of sequential quadratic program-
ming (SQP)) and nonlinearity-kept and linearization
(Yang and Liu, 2019), were applied to landing prob-
lems with free terminal time or aerodynamic forces
(Casoliva, 2013; Szmuk and Açıkmeşe, 2016; Liu,
2019). Mao et al. (2016, 2017, 2018) analyzed the
continuous-time convergence and optimality of SCP
by combining the trust region and virtual control
variables. Zhao and Song (2017) used the terminal
time as a control variable, which was combined with
the SCP algorithm to obtain fast reentry trajectory
planning under multiple constraints. These meth-
ods all use convex optimization to solve the relaxed
second-order cone constraints of the thrust ampli-
tude. Only when the minimum fuel is taken as the
index and the modulus value of the thrust vector is
equal to the relaxation variable, can the convexifica-
tion be equivalent to the original problem. However,
the above treatment leads to the bang-bang control,
which does not adapt well to the disturbances.

Some constraints, such as the line-of-sight and
glide-slope, are coupled with the translational and
rotational motion of the spacecraft during landing.
Lee and Mesbahi (2015, 2017) proposed an expres-
sion of a six-degree-of-freedom (6-DoF) convex op-
timization problem based on dual quaternions. On
this basis, a time-free 6-DoF SCP method was pro-
posed (Szmuk et al., 2017; Szmuk and Açıkmeşe,
2018), and the state trigger constraints (STCs) were
introduced into the landing problem combined with
the linear compensation problem (Szmuk et al.,
2019), which further expanded the application of
SCP. For the 6-DOF problem with free terminal
time, the SCP algorithm also needs better initial
values to converge. At present, the theoretical proof
of the optimal convergence is still under research.

Although it is still challenging to prove the

convergence of many direct methods for NLP prob-
lems, they are effective ways to analyze planetary
landing features and have developed in many direc-
tions, such as obstacle avoidance (Ma et al., 2016;
Zhang B et al., 2016; Wang C and Song, 2018b),
vertical takeoff and vertical landing (VTVL) simul-
taneous optimization (Ma et al., 2018a), and pseu-
dospectral discrete convex optimization (Sagliano
and Mooij, 2018; Sagliano, 2018a, 2018b; Wenzel
et al., 2018; Malyuta et al., 2019). Simulations have
shown that a reasonable initial value can help quickly
find the (local) optimal solution of an NLP problem,
and the computing speed and convergence effect are
not inferior to the counterparts of the convex opti-
mization methods. Hence, how to obtain a good ini-
tial guess (Ma et al., 2017, 2019) becomes one of the
research directions. Additionally, by analyzing the
optimal thrust amplitude profile of planetary land-
ing, Lu (2018) proposed a fast trajectory-generation
method by adaptively determining the initial condi-
tions of the PD phase.

When the real-time performance of trajectory
planning is guaranteed, the strategies based on
receding horizon control (RHC) or model predic-
tive control (MPC) can generate real-time con-
trol commands that satisfy the required constraints
(García et al., 1989; Mayne et al., 2000; Zeilinger
et al., 2014; Pascucci et al., 2015; Lee and Mes-
bahi, 2017). The control precision of MPC re-
lies on the prediction model, and the optimization
time will directly affect the interval of the con-
trol cycle. The zero-effort-miss/zero-effort-velocity
(ZEM/ZEV) feedback guidance law can also gener-
ate an acceleration control command during landing
(Furfaro et al., 2011; Ebrahimi et al., 2008), which
can guide the lander to track discrete waypoints
planned online, avoid obstacles through a multi-
phase design (Guo et al., 2013; Zhou and Xia, 2014;
Zhang Y et al., 2017), and generate a feedback guid-
ance command with terminal attitude constraints by
introducing auxiliary control variables (Song et al.,
2015; Zhao et al., 2015). However, the ZEM/ZEV
method can derive only the guidance command when
omitting the aerodynamic forces. Recently, the re-
inforcement learning based guidance algorithm has
also been adopted to enhance the robustness of the
ZEM/ZEV algorithms (Furfaro and Linares, 2017;
Gaudet et al., 2018; Jiang et al., 2018), but its effec-
tiveness is affected by the training samples, and it is
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not adaptable to model uncertainties.
In 2015, SpaceX successfully completed a verti-

cal landing of its rocket booster (Blackmore, 2016),
which expanded the application of AGMs. Unlike
vacuum or rarefied atmospheric environments, the
atmospheric influence on the Earth’s surface can-
not be neglected. At the same time, the mass of
the rocket during landing significantly changes, the
larger slenderness ratio demands a stringent atti-
tude constraint, and the terminal landing accuracy
is within several meters of the landing site. Today,
studies of AGMs in terms of the recovery of rock-
ets have focused mainly on the convex optimization
algorithm during the PD phase (Wang JB and Cui,
2018; Wang C and Song, 2018a; Liu, 2019), where
the remaining time is relatively short (around 10 s)
and the ability to adjust is limited. In summary, the
multi-phase simultaneous planning AGM is a key di-
rection of future research (Ma et al., 2018b).

Many space agencies and private companies
are also actively engaged in the testing and ver-
ification of reusable rockets, such as FROG of
the Centre National d’Études Spatiales (CNES) in
France (Monchaux et al., 2018), EAGLE of the
Deutsches Zentrum für Luft- und Raumfahrt e.V.
(DLR) in Germany (Dumke et al., 2017; Wenzel,
2017; Sagliano et al., 2019a), RV-X of the Japan
Aerospace Exploration Agency (JAXA) (Nonaka,
2018; Sato et al., 2018), and Cooperative Action
Leading to Launcher Innovation in Stage Toss-
back Operations (CALLISTO) (jointly developed by
CNES, DLR, and JAXA and planned to fly by 2022
(Dumont et al., 2018; Sagliano et al., 2019b)). One
of the main technological G&C branches that are
currently under investigation by DLR and JAXA
for CALLISTO is convex optimization. Similar re-
search has been carried out by the China Academy
of Launch Vehicle Technology (CALT), whose Pea-
cock vehicle validated their online trajectory plan-
ning technology at low altitudes and low speeds in
2018. The VTVL vehicle of CALT, composed of
four rocket engines, is scheduled for tests under high
thrust-to-weight ratio conditions in 2020. The pri-
vate company LinkSpace validated a state predictive
neural network control algorithm on two small vehi-
cles RLV-T3 and RLV-T5 (Chen SZ et al., 2019).

In the following sections, the research status,
features, and challenges of AGMs are summarized
for lunar landing, Mars landing, and rocket recovery.

In the Appendix, all methods for powered planetary
landings mentioned in this paper are summarized
and classified into five categories.

2 Problem description

2.1 3- and 6-DoF equations of motion

The 3-DoF equation of translational motion de-
scribing the powered planetary landing problem is

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ṙ = v,

v̇ = F /m− 2ωp × v − ωp × (ωp × r) ,

F = D + T +G,

ṁ = −‖T ‖/(Ispg0),

(1)

where r and v represent the position and velocity
vectors, respectively, and F represents the resultant
force on the vehicle, including gravitation G, engine
thrust T , and aerodynamic drag forces D. ωp is
the angular velocity of the rotation of the planet, m
is the mass of the vehicle, Isp is the engine-specific
impulse, and g0 is the acceleration of gravity at sea
level.

In terms of the attitude-related processes and
terminal constraints, the 3-DoF equations of motion
can meet only the attitude constraints by assum-
ing that the thrust vector of the engine always coin-
cides with the body axis of the vehicle. The 6-DoF
equations of motion can describe the landing process
more accurately by modeling the inertia and angular
motion. To avoid the singularity caused by 90◦ of at-
titude, quaternions are used to describe the attitude
of the vehicle. The equation of rotational motion is

⎧
⎨

⎩

ω̇ = J−1 · (M − ω × Jω) ,

q̇ =
1

2
Ω (ω) · q, (2)

where ω is the attitude angular velocity, M is the
moment, J is the inertia, q is the quaternion vector,
and

Ω (ω) =

⎡

⎢
⎢
⎣

0 −ωx −ωy −ωz
ωx 0 ωz −ωy
ωy −ωz 0 ωx
ωz ωy −ωx 0

⎤

⎥
⎥
⎦ .

Eq. (2) ignores the coupling between the angular
velocity and inertia along three axes, and the effect
of centroid movement on the inertia caused by mass
consumption. To simplify the 6-DoF equation of
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motion, the dual quaternion method can be used here
to describe the translational and rotational motions
(Lee and Mesbahi, 2017).

2.2 Characteristic comparison of different
scenarios

The atmospheric environment is considered
first. The Moon’s surface is vacuum and the at-
mosphere near the surface of the Mars is very thin,
so the aerodynamic effects in these two scenarios
are usually negligible. The Earth’s atmospheric
environment is complex and includes wind distur-
bances. However, atmospheric effects are well under-
stood, and relatively accurate aerodynamic force co-
efficients and deviation thresholds can be obtained.
The aerodynamic force D can be calculated with

D = −1

2
ρCDSref ‖v‖v, (3)

where ρ is the atmospheric density, CD is the aero-
dynamic force coefficient, and Sref is the reference
area.

The landing accuracy of a rocket on the Earth’s
surface needs to be very high, especially in the sce-
narios that require landing on a drone ship, whereas
the terminal position constraints in the lunar and
Mars landing scenarios can be relaxed. The terminal
constraints are

⎧
⎪⎪⎨

⎪⎪⎩

‖r (tf )− rf‖ ≤ εr,

‖v (tf )− vf‖ ≤ εv,

‖φ (tf )− π/2‖ ≤ εφ,

(4)

where tf , rf , vf , and φ represent the terminal time,
target landing position, expected velocity, and pitch
angle, respectively. The thresholds ε can be different
for each scenario.

In most cases, the Earth’s landing site does not
include complex terrain, and measurement instru-
ments can be deployed near the site to correct the
motion parameters. For lunar and Mars landing,
obstacle avoidance is needed using onboard sensors,
which introduces the line-of-sight and glide-slope
constraints given below:

{
cos θmax · ‖T ‖ ≤ Ty,

cos γmax · ‖r − rf‖ ≤ ry − ryf ,
(5)

where θmax and γmax represent the maximum line-
of-sight angle and half cone angle of glide-slope,
respectively.

According to Eq. (1), the fuel consumption rate
is proportional to the thrust amplitude, so the upper
and lower limits of the fuel consumption rate are used
to restrict the thrust amplitude, as shown in Eq. (6).
A high-thrust rocket engine has a limited throttling
capacity and fast fuel consumption, while the rela-
tively low thrust engines of planetary landers have
deep throttling ability and less fuel consumption.

dmmin ≤ ṁ ≤ dmmax ⇔ Tmin ≤ ‖T ‖ ≤ Tmax. (6)

A planetary lander is usually a small vehicle
with a slenderness ratio of about 1, and its attitude
seldom diverges. However, the rocket has strict at-
titude constraints. When the roll motion is ignored,
the pitch and yaw angular rate and angular con-
straints are

⎧
⎪⎪⎨

⎪⎪⎩

φmin ≤ φ ≤ φmax,

ψmin ≤ ψ ≤ ψmax,

ωmin ≤ ωφ,ψ ≤ ωmax,

(7)

where ψ is the yaw angle and ωφ,ψ is the pitch and
yaw angular rate.

For all landings, the boundary constraints, in-
cluding the position and velocity equality constraints
of the starting point, and the terminal minimum
residual mass constraint should be satisfied:

{
[r,v] (t0) = [r0,v0] ,

m (tf ) ≥ mmin,
(8)

where t0, r0, and v0 represent the initial time, ac-
tual position, and velocity at the starting point,
respectively.

2.3 Performance index

Less fuel consumption is the most common
choice as a performance index. A landing point
nearer to the target is acceptable when the fuel quan-
tity is insufficient for the vehicle to reach its original
target. In SCP, the virtual control variables and
trust region radii are minimized by introducing reg-
ularization terms. A quadratic objective function
is formed in MPC to track the state and control
variables.

The fuel-optimality objective is equivalent to
maximizing the terminal residual mass. As shown in
Eq. (9), energy-optimality or the shortest flight time
may also be used as optimization objectives (J1, J2,
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J3, J4), and J5 represents the minimum deviation of
the landing position if the fuel is insufficient to reach
the target point (Blackmore et al., 2010).

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

J1 =
∫ tf
t0

−ṁ (t) dt,

J2 = −m (tf ) ,

J3 =
∫ tf
t0

‖T (t)‖dt,
J4 = tf ,

J5 = ‖r (tf )− rf‖2 .

(9)

For MPC problems, the minimum tracking de-
viation is usually used as the objective function:

JMPC=

∫ tf

t0

(
ΔX (t)QΔX (t)+ΔU (t)RΔU (t)

)
dt,

(10)
where ΔX (ΔU) represent the deviations between
the state and control variables (target values), and
Q and R are weighted matrices.

2.4 General expression

Combined with different performance indices
and equations of motion, a general powered plan-
etary landing problem is provided:

min Eq. (9) or (10)

s.t. Dynamics : Eq. (1) or Eqs. (1) and (2),

Constraints : Eqs. (4)−(8).
(11)

The following can be seen from problem (11):
1. Since the aerodynamic force is negligible in

lunar landing, an analytical or tracking algorithm
can be adopted, and a direct method of online plan-
ning can also be used when considering obstacle
avoidance or selecting an optimal landing site.

2. For a pinpoint soft landing on Mars, the ini-
tial conditions of the powered descent phase cannot
be determined in advance due to aerodynamic de-
celeration, so online planning, such as convex opti-
mization, is needed. However, the aerodynamic force
during the PD phase can be ignored, so the planning
can be performed only once, and then the tracking
method could be used.

3. The rocket vertical landing on Earth is the
greatest challenge, and the aerodynamic force can-
not be ignored. The nonlinear relationship between
the atmospheric density and the altitude in Eq. (3),
the limited engine throttling range, and the large
mass flow rate all increase the difficulty of online

planning. SCP or other direct methods could be
alternative solutions, and iterative optimization is
needed throughout the process.

Landing on asteroids (Ge et al., 2019) can be
regarded as a special case of problem (11).

3 Autonomous guidance methods

The analytical guidance method was the earli-
est AGM that was studied and applied, where the
landing problem was reasonably simplified accord-
ing to the mission features to obtain guidance laws
related to the real-time flight state. In this section,
analytical guidance methods, including the Apollo
polynomial guidance, optimal guidance based on the
maximum principle, and ZEM/ZEV feedback guid-
ance, are introduced. Then, the landing problem
is discretized into an NLP problem, and convex op-
timization and other numerical algorithms are dis-
cussed. Finally, a learning-based intelligent algo-
rithm is introduced.

3.1 Analytical guidance methods

With respect to the difficulties in deriving the
high-order nonlinear optimal control law by the vari-
ational method and the maximum principle, the an-
alytical guidance command can be obtained only by
simplifying problem (11), such as neglecting aerody-
namic drag, assuming constant mass, uniform gravi-
tational field, and unrestricted thrust change. Three
typical methods are introduced here, and other ana-
lytical methods can be developed based on them.

3.1.1 Polynomial guidance

The Apollo guidance law (Klumpp, 1974) as-
sumes that acceleration a is a quadratic polynomial
of time, where the velocity and position are obtained
by integration. By considering the terminal position,
and the velocity and acceleration constraints, analyt-
ical expressions of the acceleration in line with the
current and terminal states are derived, as shown in
Eq. (12). The time-to-go is expressed by tf .
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

a (t) = C0 + C1t+ C2t
2,

v (t) = v0 + C0t+
1

2
C1t

2 +
1

3
C2t

3,

r (t) = r0 + v0t+
1

2
C0t

2 +
1

6
C1t

3 +
1

12
C2t

4,

a (tf ) = af , v (tf ) = vf , a (tf ) = af .

(12)
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From Eq. (12), we can obtain
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

C0=af− 6

tf
(vf−v0)+ 12

t2f
(rf−r0−ṙ0tf ) ,

C1=− 6

tf
af+

30

t2f
(vf−v0)− 48

t3f
(rf−r0−ṙ0tf ) ,

C2=
6

t2f
af− 24

t3f
(vf−v0)+ 36

t4f
(rf−r0−ṙ0tf ) .

The guidance method based on higher-order
polynomials was developed. The polynomial co-
efficient vector is regarded as the variable to be
optimized. By solving the quadratic optimal con-
trol problem with the energy-optimality objective, a
polynomial expression related only to tf is obtained:

{
J =

∫ tf
0 aT(t)a(t)dt,

AC = b,

⇒

⎧
⎪⎨

⎪⎩

a (t) = tTC,

C = S−1AT
(
AS−1AT

)−1
b,

S =
∫ tf
0

ttTdt,

(13)

where t = [I, tI, . . . , tNI]T, C = [C0, C1, . . . , CN ]T,
b = [af , vf − v0, rf − r0 − v0tf ]

T, and

A =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

I tfI · · · tNf I

tfI
t2fI

2
· · · tN+1

f I

N + 1
t2fI

2

t3fI

6
· · · tN+2

f I

(N + 1) (N + 2)

⎤

⎥
⎥
⎥
⎥
⎥
⎦

.

The key of the polynomial guidance is to esti-
mate tf . A linear search algorithm for energy opti-
mality is often used to calculate the optimal time-to-
go t∗f , i.e., estimating the initial value of tf with the
maximum thrust and adopting the Newton method
to search for the value of t∗f that can minimize J in
Eq. (13).

China’s lunar exploration project has also made
successful landings on the moon (Zhang HH et al.,
2014a, 2014b). The entire landing of CE-3 includes
six stages. In the deceleration stage, the engine-
specific impulse and guidance time are estimated
based on the linear tangent guidance law (McHenry
et al., 1979). In the adjustment stage, the guid-
ance law changes the thrust amplitude and direction
linearly to make the lander transit smoothly to the
next stage. In the approach stage, a polynomial guid-
ance law that can analytically calculate the guidance
time is used. In the hover, obstacle avoidance, and
descent stages, the tracking method is adopted for
vertical control; after reaching the area above the
target point, the lander descends at the lowest pos-
sible constant speed.

3.1.2 Guidance methods based on the maximum
principle

By considering only longitudinal motion and
based on the Pontryagin maximum principle, the lu-
nar landing process with a time-optimality objective
comes with full thrust retro-propulsion after free fall
(Meditch, 1964); hence, the switching equation was
needed. The relationship among the ignition altitude
ry, velocity vy, and tf is
⎧
⎪⎪⎨

⎪⎪⎩

ry = − km0

ṁmax
ln

(

1− ṁmax

m0
tf

)

− k · tf − 1

2
g · t2f ,

vy = k ln

(

1− ṁmax

m0
tf

)

+ g · tf ,
(14)

where k represents the velocity of the exhaust gases
with respect to the vehicle.

The next step is to approximate the logarithmic
terms using quadratic polynomials. If the lander
freely falls to a state that meets Eq. (15), the engine
ignites and works at full thrust for tf to reach soft
landing:

⎧
⎨

⎩

f (ry , vy) =
b

a
ry + 2a

√
ry/a+ vy = 0,

tf =
√
ry/a,

(15)

where a =
1

2

Tmax − gm0

m0
and b =

Tmaxṁmax

2m2
0

.

3.1.3 ZEM/ZEV feedback guidance law

The ZEM/ZEV feedback guidance law ignores
aerodynamic effects. By calculating the time-to-go
tgo, it solves the guidance command with the energy-
optimality objective to meet the position and veloc-
ity constraints (Ebrahimi et al., 2008; Furfaro et al.,
2011; Guo et al., 2013; Zhou and Xia, 2014; Zhang Y
et al., 2017). ZEM and ZEV represent the position
and velocity deviations between the lander and the
prescribed target at tgo if no control force is exerted,
respectively:
⎧
⎪⎪⎨

⎪⎪⎩

ZEV(t) = vf −
[
v(t) +

∫ tf
t

g(τ)dτ
]
,

ZEM(t) = rf −
[
r(t) + tgov(t)

+
∫ tf
t

(tf − τ)g(τ)dτ
]
,

(16)

where tgo = tf − t, and g(τ) represents the accelera-
tion of gravity.

Combined with the objective function and the
equation of motion, an analytical expression of the
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optimal acceleration command ac is derived:

min J =
1

2

∫ tf

t

aT
c acdτ

s.t. ˙ZEV = −ac,

˙ZEM = −actgo,

ZEV(tf ) = ZEM(tf ) = 0.

⇒

⎧
⎪⎪⎨

⎪⎪⎩

ac = (6/t2go)ZEM− (2/tgo)ZEV,

ac = (3/t2go)ZEM, if vf is free,

ac = (1/tgo)ZEV, if rf is free.

(17)

All three analytical guidance methods include
some approximations, which limit their applications.
(1) The Apollo and ZEM/ZEV guidance laws assume
that the accelerations along the three axes are decou-
pled, and that the derived acceleration commands
are directly related to tf . It is necessary to make
the tf values of the three axes equal while satisfying
the thrust regulation. (2) The longitudinal optimal
guidance law derived from the maximum principle
guarantees the optimality of bang-bang control using
the engine startup equation. However, this equation
is derived according to the maximum thrust, which
poorly adapts to deviant conditions, especially for
Mars landings that requires significant diversions or
in the complex aerodynamic environment on Earth.
This is also the reason for more than 10-km devi-
ations that occurred during the early Mars landing
missions. (3) None of the methods consider pro-
cess and attitude constraints. The lower limit of
the thrust is not considered when calculating the
acceleration commands, which means that the en-
gine’s thrust amplitude is assumed to be arbitrarily
adjustable.

3.2 Numerical optimization algorithms

At present, embedded computers can solve
small- and medium-sized NLP problems online using
a numerical optimization algorithm (NOA). Even if
the landing problem (11) is discretized on each node
under the 6-DoF equations of motion, the number
of variables to be optimized is smaller than 2000,
and the total number of endpoints and process con-
straints, including the equality constraints of the
equation of motion, is still smaller than 3000. This
scale is acceptable for online planning. However,
the convergence and computational efficiency of nu-
merical optimization methods are still related to the

application scenarios, and there is no generalized
method.

The basic idea of NOA is to make the prob-
lem converge to a (local) optimal solution by itera-
tively calculating the search direction and step size.
Whether the NLP problem is convex or not is the key
factor affecting the computing efficiency and conver-
gence. The convergence to global minima is guar-
anteed theoretically for convex problems, and the
high-speed algorithm represented by the primal dual
interior point method (PDIPM) can play the role of
online programming. However, the convex sets, con-
straints, and the means of lossless convexification are
limited, and convex optimization is not applicable to
all problems. Meanwhile, non-convex optimization
algorithms can also possibly be used for online plan-
ning if suitable initial values are selected.

3.2.1 Online trajectory planning based on convex
optimization

Convex optimization refers to a class of opti-
mization problems with convex objective functions,
linear equality constraints, and convex inequality
constraints. Its advantages include the following: (1)
By constructing a homogeneous self-dual embedding
model, it does not require users to provide an initial
guess of the optimization variables. (2) It has good
convergence and polynomial time complexity. (3)
It quantifies the approximation between the current
value and the optimal solution with the dual gap, and
judges the feasibility of the original and dual prob-
lems. It includes mainly three categories, linear pro-
gramming (LP), SOCP, and SDP, all of which require
fixed endpoints to the independent variables and
monotonic changes throughout the process. Specific
forms of convex optimization problems are shown in
Table 1, where LP ⊆ SOCP ⊆ SDP.

For the 3-DoF landing problem with constant
gravitational acceleration and ignored aerodynamic
forces (Açıkmeşe and Ploen, 2007), the glide-slope
constraint can be expressed as the second-order cone
constraint:

∥
∥
∥[rx, rz ]

∥
∥
∥− tan(θmax) · ry ≤ 0. (18)

The thrust magnitude constraint described by
Eq. (6) is non-convex when Tmin > 0, and it can be
transformed into a convex constraint by introducing
the relaxation variable Γ , as shown in Eq. (19). The
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Table 1 Definition of convex optimization

LP SOCP SDP

Description min cTx min cTx min trace (CX)

s.t. Ax = b, s.t. Ax = b, s.t. trace (AiX) = bi,

x ≥ 0 ‖Fix− di‖ ≤ pT
i x+ qi, i = 1, 2, . . . ,m,

i = 1, 2, . . . , l X�0

Variables x, c ∈ R
n,A ∈ R

n×n, x, c ∈ R
n,A ∈ R

n×n, b ∈ R
m, X ∈ Sn, b ∈ R

m,
b ∈ R

m,m ≤ n Fi ∈ R
ni×n,di ∈ R

ni ,pi ∈ R
n, qi ∈ R C,Ai ∈ Sn

LP: linear programming; SOCP: second-order cone programming; SDP: semi-definite programming. S: symmetric matrices

optimal solution of the relaxed constraints is equiva-
lent to the original problem with the fuel-optimality
objective (Açıkmeşe and Blackmore, 2011):

‖T ‖ ≤ Γ, Tmin ≤ Γ ≤ Tmax. (19)

For the nonlinear term T /m, we define the
variable M = lnm and the new control variable
σ = Γ/m. u = T /m while ‖u‖ ≤ σ. Then the
equation of motion can be expressed as
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ṙ = v,

v̇ = u+g−
[
S (ωp)

2
, 2S (ωp)

]
·[r,v]T ,

Ṁ = −σ/(Ispg0),

S (ωp)=

⎡

⎢
⎢
⎣

0 −ωxp ωzp

ωxp 0 −ωyp
−ωzp ωyp 0

⎤

⎥
⎥
⎦ .

(20)

By taking a Taylor expansion, the thrust am-
plitude constraint can be converted to a convex
constraint:
⎧
⎪⎪⎨

⎪⎪⎩

Tmine
−z0

[
1− (z − z0) + 0.5 (z − z0)

2
]
≤ σ,

σ ≤ Tmaxe
−z0 [1− (z − z0)] ,

z0 (t) = ln [m0 − (Tmax/(Ispg0)) t] .

(21)
Combined with the relaxation variable σ, the

line-of-sight constraint can be relaxed to the con-
vex constraint in Eq. (22). Açıkmeşe et al. (2013b)
proved that the optimal solution with the J1 and
J5 objective functions is equivalent to the original
problem.

cos(θmax) · σ ≤ uy. (22)

To deal with the nonlinear relationships among
the aerodynamic forces, gravitational acceleration,
and state variables, the SCP algorithm was proposed
to guarantee that the solution to the non-convex op-
timal control problems achieves global convergence
with a superlinear convergence rate (Casoliva, 2013;

Szmuk and Açıkmeşe, 2016). The SCP algorithm lin-
earizes the nonlinear dynamics, non-convex states,
and control constraints near the solution of the pre-
vious iteration, and then constructs a convex opti-
mization sub-problem and solves it to obtain the cur-
rent iteration’s solution. Several safe-guarding tech-
niques are incorporated into the algorithm, such as
virtual control and buffer technology, to avoid the ar-
tificial infeasibility introduced by linearization. The
trust region method is used to avoid artificial un-
boundedness to ensure a solution to each convex op-
timization sub-problem. Theoretical analyses have
shown that if the convergent solution is feasible for
the original problem, then it is also the local optimal
solution of the current problem (Mao et al., 2016,
2017, 2018).

With the definition of the trust region radius of
the state and control variables as δx, δu > 0, respec-
tively, the trust region constraint can be expressed
as

{
−δx ≤ [r,v,M ]− [r,v,M ]κ ≤ δx,

−δu ≤ [u, σ,av]− [u, σ,av]
κ ≤ δu,

(23)

where av represents the virtual control variable and
κ represents the number of iterations.

By introducing the aerodynamic force acceler-
ation aD and the virtual control variable av into
Eq. (20) and linearizing it, we obtain

⎡

⎣
ṙ

v̇

Ṁ

⎤

⎦ = Aκ

⎡

⎣
r

v

M

⎤

⎦+B

⎡

⎣
u

σ

av

⎤

⎦+ cκ, (24)

where

B =

⎡

⎣
0 0 0

I 0 I

0 −1/(Ispg0) 0

⎤

⎦ ,

cκ =

⎡

⎣
ṙκ

v̇κ

Ṁκ

⎤

⎦−Aκ

⎡

⎣
rκ

vκ

Mκ

⎤

⎦ ,
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and linearization matrix Aκ is
⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

Aκ =

⎡

⎢
⎢
⎣

0 I 0

Aκ
21 Aκ

22 ∂aD/∂M
κ

0 0 0

⎤

⎥
⎥
⎦ ,

Aκ
21 = ∂g/∂r

κ − S (ωp)
2
,

Aκ
22 = ∂aD/∂v

κ − 2S (ωp) .

(25)

For the thrust acceleration amplitude constraint
expressed in Eq. (21), the virtual buffer s1,2 is

Tmine
−z0

[
1− (z − z0) + 0.5 (z − z0)

2
]
− s1 (26)

≤ σ ≤ Tmaxe
−z0 [1− (z − z0)] + s2, s1,2 ∈ R+.

In conjunction with the above-mentioned safe-
guarding technology, regularization terms need to be
added to the above objective functions to minimize
the impact of the virtual variables and trust regions
on the problem:

J = Ji+wtr

∫ tf
t0
[δx, δu]

T[δx, δu]dt (27)

+wv

∫ tf
t0

‖av(t)‖dt+ ws

∫ tf
t0

‖s1,2(t)‖dt,

where the regularization coefficients wtr, wv, and ws

represent the weighted coefficients of the trust re-
gion, virtual control variables, and virtual buffer,
respectively, i = 1, 2, . . . , 5.

Due to the requirement of a fixed terminal con-
dition for the independent variable in the convex op-
timization, the above landing problem with the in-
dependent time variable is still very sensitive to the
estimated accuracy of tf . Using t = (tf − t0)τ + t0,
the time is mapped to the interval [0, 1]. Taking
τ as a new independent variable and tf as an aug-
mented control variable is an effective way to solve
the problem of free terminal time when using the
SCP algorithm (Wang C and Song, 2018a). The al-
gorithm is also applicable to the nonlinear equality
constraints of the angular velocity and quaternion
(Eq. (2)) in the 6-DoF problem (Lee and Mesbahi,
2015, 2017; Szmuk et al., 2017; Szmuk and Açıkmeşe,
2018). Another method is to select other state vari-
ables as independent variables, and these variables
should be monotonic and have definite boundary val-
ues. This method can avoid guessing or specifying
the terminal time, which can be calculated with the
state equations.

Non-convex process constraints can also be
transformed into STCs to form convex constraints

with judgment conditions. For example, if the ve-
locity is significant, the bending moment constraint
can be expressed as “the angle of attack is less than
or equal to the maximum allowable value αmax if the
velocity is greater than the threshold vα”:

0.5ρ‖vb‖2 · α ≤ qαmax (28)

⇒− vbx (t) ≥ cos(αmax)·
∥
∥vb (t)

∥
∥ , if

∥
∥vb (t)

∥
∥ > vα,

where α denotes the angle of attack and vb repre-
sents the velocity in the vehicle’s coordinate system
(Szmuk et al., 2019).

With the principle of linear complementarity,
the above equation can be transformed into Eq. (29).
SCP is used to solve the problem with STC. Accord-
ing to the velocity profile in the previous iteration,
hα is linearized if gα < 0; else, we set hα = 0.
⎧
⎪⎪⎨

⎪⎪⎩

hα
(
vb
)
= −min

(
gα

(
vb
)
, 0
) · cα

(
vb
) ≤ 0,

gα
(
vb
)
= vα − ∥

∥vb (t)
∥
∥ ,

cα
(
vb
)
= vbx (t) + cos(αmax)

∥
∥vb (t)

∥
∥ .

(29)
The accuracy and sparsity of the discretization

method are also key factors that ensure the accuracy
and effectiveness of the algorithm. The discretiza-
tion methods for differential equations of motion
include mainly: (1) the trapezoidal method (TM)
(Wang C and Song, 2018a), where the estimation of
the state variable differential at each discrete point
is related to only the state and control variables of
two adjacent discrete points; (2) the state transition
method (STM) (Açıkmeşe and Ploen, 2007), where
the estimation is related to the state and control
variables of all previous discrete points; (3) the pseu-
dospectral method (PM) (Sagliano and Mooij, 2018;
Sagliano, 2018a, 2018b; Wenzel et al., 2018; Ma-
lyuta et al., 2019), where the estimation is related
to the control and state variables at all other dis-
crete points. From the approximation accuracy of
the discrete problem to the original problem, more
information means higher accuracy, so the sequence
is PM > STM > TM. From the point of view of spar-
sity, the left matrix of equality-constrained equations
in TM is a banded sparse matrix, while it is the lower
triangular matrix in STM and the dense matrix in
PM, due to the Lagrange polynomial approximation.
So, the alternative sequence when considering spar-
sity is TM > STM > PM. An intermediate possibil-
ity is also given by the hp pseudospectral method
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(Sagliano, 2018b), characterized by CPU time simi-
lar to that of TM and by limited loss of accuracy with
respect to that of PM. In that case, the sparse ma-
trix representing the discretized dynamics is a block-
diagonal matrix.

3.2.2 Other numerical optimization-based online
planning

1. Homotopy method

The homotopy method is an effective way to
solve NLP problems. By setting homotopy parame-
ters and paths, a series of homotopy optimization
sub-problems are solved in turn starting from an
easy-to-solve problem, where the optimal solution of
the current sub-problem is taken as the initial value
of the next sub-problem until the solution to the orig-
inal problem is obtained (Wang C and Song, 2018b).
For the optimal trajectory design of VTVL transfer
on the lunar surface, Ma et al. (2018a) proposed a si-
multaneous approach and an adaptive discrete mesh
refinement algorithm based on the orthogonal collo-
cation on finite element (OCFE). Although terrain
obstacle avoidance constraints in this case compli-
cate the problem, the homotopy backtracking strat-
egy enhances the solvability of the problem. The
equation of motion, acting as an equality constraint
describing the connections of the state variables at
adjacent discrete points, accounts for more than 90%

of the total constraints, and the solutions to the sub-
problems obtained by the homotopy method satisfy
the constraints of the equation of motion, so tak-
ing them as the initial values helps solve the NLP
problem.

As an example, the discontinuously adjustable
thrust constraints can be transformed into inequality
constraints f(T ):

T ∈ {0}
⋃[

Tmin, c1Tmax

]⋃[
c2Tmax, Tmax

]

⇔f(T ) = −(T − l1) · (T − l2) · (T − l3)

· (T − l4) · (T − l5) · (T − l6) ≥ 0,
(30)

where l1 = l2 = 0, l3 = Tmin, l4 = c1Tmax, l5 =

c2Tmax, l6 = Tmax.

The homotopy sub-problems corresponding to
T1, T2, and T3 in Eq. (31) can be solved sequentially,
and then the optimal solution satisfying Eq. (30) can

be rapidly obtained:

T1 = [Tmin, Tmax]

⇒T2 = [0, c1Tmax]
⋃[

c2Tmax, Tmax

]

⇒T3 = {0}
⋃[

0, c1Tmax

]⋃[
c2Tmax, Tmax

]
.

(31)

Another typical example is the complex terrain
constraints existing with many hills at the landing
site:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

r (t) ≥ Rm + (hT (θ, ϕ) + Δh) , ∀t ∈ (t0, tf ),

hT (θ, ϕ) =
MT∑

i

Hi,

Hi=hTiexp

(

− ((θ − θ0i)Rm)2

xTi
− ((ϕ − ϕ0i)Rm)

2

yTi

)

,

(32)
where Rm is the moon radius, MT is the number
of peaks, and hTi and (θ0i, φ0i) represent the height
and coordinates of each peak, respectively. The ho-
motopy sub-problem without terrain constraints can
be solved first, and then the peak constraints are in-
troduced step by step to obtain the optimal solution
of the original problem.

2. Sensitivity method

Another method to generate a better initial
guess quickly is (parametric) sensitivity analysis.
Therein, the Hessian matrix is solved, which repre-
sents the optimal condition of Karush-Kuhn-Tucker
(KKT) relative to one adjusted variable, and which
shows the influence of the change in this variable
on the KKT condition (Ma et al., 2017). Ma et al.
(2019) proposed an online trajectory optimization
algorithm for multi-point powered soft landing on
the Mars surface based on NLP sensitivity and an
improved K-means clustering algorithm, which im-
proved the accuracy of the fuel consumption estimate
by clustering candidate landing sites.

It is important to check the possibility of reach-
ing candidate points to select the optimal one on-
board. The position vector rf of the landing point
can be defined as the parameter to be adjusted. Ac-
cording to the principle of the interior point method,
the inequality constraints in problem (11) are trans-
formed into logarithmic obstacle terms and added
to the objective function. Eq. (33) is then the
optimization problem and the corresponding KKT
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condition:

min J (Z; rf )− μ

nx∑

i=1

ln (gi (Z))

s.t. c (Z; rf ) = 0. (33)

⇒

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∇ZL (Z, λ, ν; rf ) = ∇ZJ (Z; rf )

+∇Zc (Z; rf) λ− ν = 0,

c (Z; rf ) = 0,

Z(i)ν(i) = μ,

where Z represents the vector composed of all state
and control variables, μ is the obstacle factor, and λ
and ν are Lagrange multipliers.

We first solve for the flight trajectory planning
problem corresponding to the approximate geomet-
ric center rf0 of all landing points. Then, the Hes-
sian matrix corresponding to the KKT condition is
expressed as

Hs (s (μ; rf0)) =

⎡

⎣
Hs11 Hs12 −I

Hs21 0 0

Hs31 0 Hs33

⎤

⎦ , (34)

where s represents all variables to be optimized and
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Hs11 = ∇ZZL (s (μ; rf0)) ,

Hs12 = ∇Zc (s (μ; rf0)) ,

Hs21 = ∇Zc (s (μ; rf0))
T
,

Hs31 = diag (ν (μ; rf0)) ,

Hs33 = diag (Z (μ; rf0)) ,

s (μ; rf0) = [Z (μ; rf0) , λ (μ; rf0) , ν (μ; rf0)]
T.

Based on the first-order Taylor formula, the ini-
tial value of the variables corresponding to other tar-
get points can be expressed as
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

s(0; rfi) = s(0; rf0)−Hs(s(μ; rf0))
−1

·
(
Hrf

(s(μ; rf0)) · (rfi − rf0)
)
,

Hs(s(μ; rf0)) =

⎡

⎢
⎢
⎣

∇ZZL(s(μ; rf0))

∇Zc(s(μ; rf0))

0

⎤

⎥
⎥
⎦ ,

Hrf
(s(μ; rf0)) =

⎡

⎢
⎢
⎣

∇Zrf
L(s(μ; rf0))

∇rf
c(s(μ; rf0))

0

⎤

⎥
⎥
⎦ .

(35)

The optimal solution satisfies all constraints
when μ = 0. According to rfi, the performance

index Ji of the corresponding landing point is cal-
culated to quickly find the optimal landing point.
Finally, s(0; rfi) is used as an initial guess when
planning the optimal landing trajectory.

If the underlying optimal control problem is
treated as a parameter varying one, a first-order
Taylor expansion of the optimal solution under NLP-
KKT conditions can be used to derive fast iterative
update schemes to approximate the optimal solu-
tion for perturbed parameters. In a neighborhood
of the nominal optimal solution, this can be used to
achieve sub-optimal closed-loop control for nonlinear
dynamic systems (Seelbinder, 2017).

3. Numerical predictor-corrector method
For lunar and Mars landing problems with neg-

ligible aerodynamic effects, the fuel-optimal thrust
is bang-bang if none of the glide-slope, line-of-sight,
and thrust regulation rate constraints are considered.
The switching between the upper and lower thrust
limits (Tmax and Tmin) occurs twice, so the landing
problem can be expressed as an optimization prob-
lem divided into three stages that have fixed thrust
amplitudes (Lu, 2018).

Then the guidance problem is transformed into
optimization of the switching time, which greatly
reduces the variables’ dimensions. By estimating
the objective function related to the current switch-
ing time, and adopting the univariate minimiza-
tion method (Brent, 2013) to search for the opti-
mal switching time, which updates only once in each
guidance cycle, the online planning is implemented.

3.3 Learning-based method

The learning-based algorithms can achieve the
desired control strategies through the neural net-
work, which is trained off-line and is easy to cal-
culate online, to avoid the shortages of convergence
and computing efficiency of the numerical methods.
However, many training samples are needed which
deeply depend on the accuracy of the modeling if
the samples are generated by a mathematical model.
Two common learning-based methods for powered
landing are deep neural networks (Sánchez-Sánchez
and Izzo, 2018) and reinforcement learning.

The reinforcement learning process can be sum-
marized as the block diagram in Fig. 1. The lander is
regarded as an agent. The state (S) and control (A)
variables are consistent with those in the equation
of motion, and the output satisfies the constraints
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l
p

n

u

Value function

Fig. 1 Reinforcement learning process

in Eqs. (6) and (7). The environment includes the
equality constraints of the equations of motion in
problem (11) and the process state constraints in
Eq. (5). The “reward” and “value” functions are im-
portant indices used to update the network, and need
to be determined based on the objective functions
(Eqs. (9) and (10)) and the terminal constraints.
For example, the satisfaction degree of the terminal
constraints is taken as the main term of the value
function. If the lander satisfies the terminal con-
straints, it will get a large positive return; otherwise,
it will get a large negative return. The return corre-
sponding to the objective function is taken as a small
quantity when finding the optimal strategy. Then,
combined with the methods of fuzzy reinforcement
learning (FRL) (Jouffe, 1998) and proximal policy
optimization (PPO) (Schulman et al., 2017), a re-
peated learning process can be implemented which
will converge to the output network under the con-
sideration of possible interferences and uncertainties
in different scenarios. During a landing phase, the
algorithm outputs control commands in real time
according to the current state (Furfaro and Linares,
2017; Gaudet et al., 2018; Jiang et al., 2018).

4 Key issues related to autonomous
guidance methods

The convergence and application effects of the
above algorithms are related not only to the algo-
rithms themselves, but also to the physical character-
istics of the problem. Therefore, this section explores
the key problems faced by AGMs from three aspects:
physical feasibility, model accuracy, and real-time

performance.

4.1 Physical feasibility

Physical feasibility refers to the existence of at
least one flight trajectory within the control capa-
bility of the lander that can reach the target point
from the current state and satisfy all constraints. To
ensure a pinpoint landing, the initial state of the
PD phase must match the range of the engine thrust
regulation and the estimate of tgo. The feasible phys-
ical region consists of two sets: the reachable set and
the controllable set (Benito and Mease, 2010). The
controllable set, also known as the access condition,
is the focus of the following discussion. It could be
searched through trajectory planning algorithms, in-
cluding direct multiple shooting (Benito and Mease,
2010), lossless converse optimization (Eren et al.,
2015), and Hamilton-Jacobi-Isaac traceability anal-
ysis (Akametalu et al., 2018).

4.1.1 Access conditions

For a lunar landing with few environmental dis-
turbances, the switching function can be designed
according to the thrust amplitude, where there is
only one intersection point between the free-falling
trajectory of the lander and the switching function.
When the lander’s state crosses the switching func-
tion, it enters the PD phase (Meditch, 1964).

For a Mars landing that requires a large devi-
ation movement, perturbed initial conditions may
lead to a PD trajectory that is close to the limit
of the lander, or it may not reach the prescribed
soft landing location (Lu, 2018). If the planned
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fuel-optimal trajectory lies on the boundary of the
physically possible flight envelope, a slight deviation
will lead to a landing failure. A more suitable access
condition is to enter the PD phase as early as pos-
sible when the thrust regulation range is satisfied,
and the energy-optimal trajectory that meets only
the terminal velocity constraint can be optimized to
predict the landing point. When the predicted land-
ing point violates the target position, the engine will
start to enter the PD phase.

For rocket vertical landings, the aerodynamic
drag is greater than or equal to the gravity before
entering the PD phase due to the influence of the
Earth’s dense atmosphere. The velocity along the
y-direction should satisfy

m0g0 ≤ Dy = 0.5ρCDSrefvy0 ‖v0‖ . (36)

First, according to the rocket mass after the first
cutoff of the engine, the initial velocity range needs
to be predicted when entering the equilibrium state.
If only the y-direction motion is considered, the ini-
tial height range [y0min, y0max], which can satisfy
the terminal velocity and position constraints, can
be searched by the Newton method under the condi-
tions of Tmin and Tmax.

Then, traversal of y0 in [y0min, y0max] needs to
be conducted to search the range of the initial posi-
tion along the x direction. An optimization problem
is constructed, as shown in Eq. (37), to ensure that
no matter where the lander starts, the deviations of
the terminal velocity and position are minimal while
maintaining the terminal vertical attitude. A search
for x0 occurs with the Newton method, which allows
the performance index in Eq. (37) to gradually ap-
proach 0, to obtain the initial position range of the x
direction [x0min, x0max] that can satisfy the terminal
constraints.

min J = (xf − xexp)
2
+ (yf − yexp)

2

+
(
vxf

−vxexp

)2
+
(
vyf − vyexp

)2

s.t. Dynamics : Eq. (1) or Eqs. (1) and (2),

Constraints : Eqs. (4)−(8).
(37)

Subsequently, the method traverses the range of
mass [m0min,m0max] and repeats the above process
until a set of initial velocities and positions can be
obtained off-line as the access conditions of the PD
phase. The terminal conditions of the former phase
(usually the aerodynamic deceleration phase) are set

to be within the access conditions after the vehicle
approximately falls down at a constant speed, and
as far away as possible from the boundary of the fea-
sible region. For example, we could select the inter-
mediate value as the access condition, so the vehicle
can adapt to both positive and negative deviations
during landing.

4.1.2 Adaptability of thrust regulation capability to
deviations

Assuming that the thrust amplitude is not ad-
justable, and defining the nominal guidance com-
mand as φ∗(t) and ψ∗(t), the vehicle can swing its
body to correct the deviations of the velocity and
position. The acceleration of the vehicle is expressed
as
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

a (t) =
‖T ‖
m (t)

[a1, a2, a3]
T ,

a1 = cos (φ∗ (t) + Δφ (t)) cos (ψ∗ (t) + Δψ (t)) ,

a2 = sin (φ∗ (t) + Δφ (t)) ,

a3 = cos (φ∗ (t) + Δφ (t)) sin (ψ∗ (t) + Δψ (t)) ,

(38)
where Δφ and Δψ represent the commanded angle
corrections. Eq. (38) can be expressed as Eq. (39),
when only longitudinal motion is considered:

a (t) =
‖T ‖
m (t)

[
cosφ∗ (t)−Δφ (t) sinφ∗ (t)
sinφ∗ (t) + Δφ (t) cosφ∗ (t)

]

.

(39)
Because the pitch angle in the PD phase is near

90◦, the effect of guidance command correction on
the x-direction acceleration is greater than that on
the y-direction acceleration. So, let us take the
thrust amplitude as ‖T ‖ and the nominal guidance
command corresponding to time t as φ∗. When there
is a deviation in the y direction, it is necessary to al-
ter the acceleration component in this direction with
a corrected commanded angle Δφs, which causes a
deviation of the acceleration in the x direction, i.e.,
(Txs − Tx0)/m, thus affecting its position or veloc-
ity in the x direction. If the thrust amplitude is
adjustable in the range of [Tmin, Tmax], correction of
the y-direction deviation can be achieved by simul-
taneously altering the thrust amplitude and guid-
ance command angle, almost without affecting the
x-direction motion. So, the adjustability of thrust
regulation is a precondition for a pinpoint landing,
where the regulation range determines the adaptabil-
ity to deviations. Tmax and Tmin determine the lower
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and upper limits of the height in access conditions,
respectively. To analyze the relationship between
the access conditions and the thrust regulation range
(or the thrust-to-weight ratio), the following simula-
tion is considered: the initial mass during the PD
phase is 40 000 kg, the maximum thrust of the en-
gine is 1200 kN, the engine-specific impulse is 300 s,
and the thrust regulation range is [τ, 100%]. Sup-
posing that the vehicle has reached the area above
the target point by aerodynamic deceleration, i.e.,
x = 0 m, the access conditions of the height-velocity
in the longitudinal plane is analyzed by Eq. (37),
as shown in Fig. 2. It can be seen that a larger
access height leads to a larger feasible velocity re-
gion, so it is preferable to enter the PD phase as
early as possible; the smaller the thrust regulation
range is, the stricter the access conditions are, which
means a higher control accuracy is required for the
aerodynamic deceleration phase.

The feasible region can also be regarded as the
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Fig. 2 Access conditions for the powered descent
phase: (a) τ = 65%; (b) τ = 90%

capacity for adaptation to deviations. If full thrust
retro-propulsion is activated and large deviations or
disturbances have occurred, a safe landing cannot
be assured. Assuming that the fuel remaining for a
landing can be determined, the requirement to en-
sure a successful landing is much more important
than saving fuel, so mission planning should aim
to expand the feasible physical landing region, and
to select access conditions that match the median
thrust as the engine start-up condition.

4.2 Model accuracy

Uncertainties in the environment and model
should be considered when making decisions during
a powered soft-landing process. When the uncer-
tainties are quite prominent, the optimal solution
based on the model is usually significantly different
from the actual flight process. This is due mainly
to the influence of the (limited) measurement accu-
racy, noise, and other factors on the estimated model
parameters, as well as unpredictable dynamical char-
acteristics, resulting in a loss of optimality or even
the effectiveness of the solution based on the model.
Therefore, we should analyze the compatibility be-
tween the optimization solution and model parame-
ters to improve the effectiveness of the optimization
results.

Any deviation in the model will be introduced
into the optimal control commands generated in each
planning cycle. Although the effect can be relieved
by receding horizon optimization, it may still shrink
the feasible physical region in the landing process
due to the limitations of the landing time and thrust
regulation range. Taking rocket vertical landing as
an example, the aerodynamic drag, mass consump-
tion, and engine thrust amplitude in the model will
directly affect the descent acceleration, which there-
fore affects the accuracy of the rocket’s velocity and
position. If the command acceleration is less than
the actual acceleration, the required thrust magni-
tude would be gradually reduced by iterative adap-
tation. However, if the accumulated influence of
the model’s deviations is large enough, even if the
thrust is throttled to a minimum in the follow-up
process, it still could not meet the requirements to
land, and the velocity will change direction (from de-
scent to ascent) before landing. On the other hand, if
the command acceleration is greater than the actual
acceleration, that is, the deceleration is insufficient
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and the feasible region is gradually reduced until the
maximum thrust amplitude is reached, then the ve-
hicle may lose the ability to correct errors and finally
land at a higher speed. Therefore, online prediction
and model correction are necessary to improve the
adaptability of AGM.

An online identification of thrust and aerody-
namic drag acceleration deviations can be achieved
using a forgetting factor in the recursive least-squares
method:
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

θ̂(k + 1) = θ̂(k) +K(k + 1)

·(y(k + 1)− x(k + 1)Tθ̂(k)
)
,

K(k + 1) =
P (k)x(k + 1)

x(k + 1)TP (k)x(k + 1) + 1
,

P (k + 1)=
1

λ

(
P (k)−K(k + 1)x(k + 1)TP (k)

)
.

(40)
Eq. (41) describes the acceleration along the

three axes, including the independent and dependent
variables and the parameters to be identified:

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

y(k) = θTx(k),

y(k) = [ax, ay, az]
T,

x(k) =

[
aTx aTy aTz

aDx aDy aDz

]

,

θ = [τT , τD],

(41)

where [ax, ay, az]
T represents the real-time mea-

sured apparent acceleration, [aTx, aTy, aTz]T repre-
sents the command acceleration generated by online
planning, [aDx, aDy, aDz]T represents the estimated
aerodynamic drag acceleration based on the model,
and τT and τD represent the thrust and drag coeffi-
cient deviations, respectively. τT and τD are updated
in each planning cycle to correct the model.

4.3 Real-time performance

The real-time performance of numerical opti-
mization is a key factor restricting engineering appli-
cations. To achieve this performance, it is necessary
to ensure the convergence or reliability of the algo-
rithm (such as the convergence of SCP), and then to
improve its computational efficiency.

The convergence of the algorithm directly af-
fects the feasibility of AGM. No convergence problem
exists in analytic guidance methods, while convex
optimization algorithms have mature convergence
theory proofs. However, when considering the free

terminal time and aerodynamic or process con-
straints, even for SCP, the solutions are prone to
oscillation, and thus convergence is hard to achieve
(Yang and Liu, 2019). It is worth pointing out that
each convexification method or technique has a great
influence on its convergence, and a good initial guess
in the non-convex NLP problem will also directly
affect its convergence.

However, the traditional convergence criterion,
which is reasonable in theoretical applications, is
usually very strict and has only two results when
terminating an algorithm: success or failure of con-
vergence. By introducing the convergence depth and
progress degree according to the convergence state of
the current iteration point, the termination of the al-
gorithm could be better controlled (Wang KX et al.,
2007; Chen WF et al., 2010).

At present, PDIPM is an important algorithm
for solving convex optimization problems for trajec-
tory planning (Domahidi et al., 2012, 2013; Mattin-
gley and Boyd, 2012; Jerez et al., 2017). To further
improve PDIPM’s computational efficiency, we can
customize the solver for small- and medium-sized
problems (for fewer than 1000 optimization vari-
ables) and generate explicit branches and a loop-
free code that can be executed far more quickly,
and thus reduce unnecessary computation (Mattin-
gley and Boyd, 2012). However, when the scale of
the problem is large, explicit coding significantly in-
creases the amount of code and the size of the ex-
ecutable, which may also negatively affect the com-
puting speed. Moreover, PDIPM automatically gen-
erates an initial guess, which also deprives it of an
effective means of improving the speed of the numer-
ical algorithm with a warm start. Specifically, in the
case of SCP, iteratively updating the initial guess can
greatly improve its efficiency.

The alternating direction method of multipliers
(ADMM) is a framework for solving large-scale non-
convex or convex problems. Although the ADMM
algorithm is slower than the gradient descent method
and Newton method in terms of convergence speed,
the framework is easy to implement in parallel and
distributed computing, and can be warm-started
(Boyd et al., 2011). Therefore, ADMM can be com-
bined with PDIPM to reduce the number of searches
in the Newton direction and step size (Giselsson and
Boyd, 2017; Stellato et al., 2018).

Parallel computing or hardware accelerators can
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also be used to enhance the real-time performances.
For PDIPM, the linear equations that usually need
to be solved twice for the affine directions can be
carried out in parallel, as can the steps of iteratively
updating the optimization and additional variables
in ADMM.

5 Vertical landing flight demonstration

National space agencies and companies have de-
signed GNC demonstrators for various vertical land-
ing scenarios. Some are shown in Fig. 3. This sec-
tion briefly introduces the flight demonstrations of
AGMs.

Fig. 3 Flight demonstrator: (a) EAGLE; (b) Peacock

5.1 ADAPT

One of the focuses of the ADAPT project is to
validate the G-FOLD algorithm for online Mars land-
ing (Scharf et al., 2014). G-FOLD was translated
into the C language and it solves for the online fuel-
optimal flight trajectory that satisfies the constraints
during the descent of the Xombie vehicle. Large di-
vert was realized and the landing accuracy was con-
trolled at the meter level. The ADAPT project ne-
glected aerodynamic forces, regarded gravitational
acceleration as a constant, and validated the real-
time performance of the PDIPM-based solver, which
could solve 3-DoF SOCP problems online (Açıkmeşe
and Ploen, 2007). The customized solver (Dueri
et al., 2017) took about 16 ms for each planning
on a 1.4-GHz Intel Pentium M processor. Although
no optimal flight time was obtained, it evaluated six

flight durations, solved six flight trajectories, and
selected the optimal solution, where the total plan-
ning time was controlled within 100 ms.

5.2 EAGLE

EAGLE’s guidance solves a 3-DoF convex op-
timal control problem discretized by trapezoidal or
pseudo-spectral methods into a SOCP that is solved
online using the SOCP solver ECOS (Domahidi
et al., 2013). To cast the problem in convex form, the
minimal flight time is analytically predetermined as-
suming arcs t1 and t2 of constant acceleration (Wen-
zel, 2017; Wenzel et al., 2018). For each dimen-
sion, the minimal flight time is calculated accord-
ing to Eq. (42) by specifying a maximally desired
acceleration:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

ti = t1,i + t2,i, i = x, y, z,

t1,i = (−t2,ia2,i − v0,i)/a1,i,

t2,i =

√
√
√
√
√
√
√

r0,i − rf,i +
1

2

v20,i
a1,i

1

2
a2,i

(

1− a2,i
a1,i

) .

(42)

The horizontal flight time thor and the total
flight time tf are then given by
⎧
⎨

⎩

thor = max
(√

t2x + t2y,max (tx, ty)
)
,

tf = max
(√

t2hor + t2z,max (thor, tz)
)
·k1 + k2,

(43)
where k1 ≥ 1, k2 ≥ 0 are empirically determined
parameters.

To avoid infeasibility due to inaccurate estima-
tion of flight time, the terminal state constraints on
position and velocity are formulated in the objective
function as quadratic penalty terms. The planning
problem is thus always feasible. The terminal con-
ditions are exactly fulfilled if the penalty terms are
zero.

For each motion command, EAGLE’s guidance
algorithm plans the direct motion from the current
state to the target state once; additional iterations
are possible during the motion to eliminate residuals
in the penalty terms. The trajectory is tracked by
a 6-DoF controller based on proportional differential
control and sliding mode control techniques (Wen-
zel, 2017; Wenzel et al., 2018). Tethered tests were
performed in 2017 and 2018 at the DLR Institute of
Space Systems in Bremen to assess and compare the
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computational efficiency and accuracy of different
variants of the convex guidance algorithm and the
performance of the 6-DoF controller.

5.3 Peacock

A low-altitude vertical landing demonstration
was carried out with the Peacock vehicle, which
was designed by the National Key Laboratory of
Aerospace Intelligent Control Technology, a branch
of CALT, to simulate limited throttling conditions.
With intermediate thrust, the longitudinal velocity-
altitude profile for soft landing is calculated off-line,
and is fitted with a polynomial as the switching
function. Because the descent trajectory intersects
only the switching function once (Meditch, 1964),
the crossing state is regarded as the ignition condi-
tion of the PD phase. By taking fuel-optimality as
the objective and considering aerodynamic drag, the
terminal time free 3-DoF optimization problem is

min −Mf

s.t. v̇ = tgov,

v̇ = tgo(u+De−M + g),

Ṁ = −tgoσ/(Ispg0),
Eqs. (19), (21), and (22).

(44)

In combination with MPC strategies, PDIPM-
based SCP is implemented onboard iteratively to
plan the descent trajectory. tgo is estimated first
by taking the terminal time of a landing trajectory
as the initial guess, and this trajectory is obtained
by integration according to the intermediate thrust.
To ensure the landing attitude, some variables at the
landing time, including angular velocity, speed, and
acceleration in the horizontal plane, are reduced as
much as possible. The vehicle quickly flies to the re-
gion above the target point through a cone constraint
with the smallest velocity amplitude in the horizon-
tal plane (v2x + v2z ≤ ηv). The updated objective
function is

min −Mf +
N∑

i=0

i · ηv(i), (45)

where the weight coefficient i increases gradually as
the vehicle approaches the landing point, making the
horizontal velocity of the planned trajectory closer to
the landing point smaller, so the vehicle can elimi-
nate the deviation in the horizontal plane as soon as
possible and move directly above the landing point.

5.4 RLV-T3 and RLV-T5

LinkSpace carried out a low-altitude vertical
takeoff-hover-vertical landing test with the RTV-T3
and RLV-T5 vehicles (Chen SZ et al., 2019). Track-
ing guidance was adopted, and the nonlinear transfer
relationship among the engine flow valve’s rotation
angle u, thrust F , and the mass flow per second was
established. According to the equation of longitudi-
nal translational motion, the nonlinear relationship
among u, flight speed v, and altitude h was derived:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

F (t) = f
(∫ t

0 k1u (τ − τ0) dτ
)
,

ṁ (t) = k2
∫ t
0 k1u (τ − τ0) dτ ,

v (t) =
∫ t
0
(F (τ)/m (τ) − g) dτ ,

h (t) =
∫ t
0 v (τ) dτ ,

(46)

where g represents the value of acceleration of
gravity.

A state prediction neutral network control was
adopted to replace proportion-integral-differential
(PID) to control the flight altitude.

6 Conclusions

In this paper, studies of AGMs for powered
planetary landing were reviewed. By comparing
the characteristics of three scenarios for landing
on the Moon, Mars, and Earth, the constraints
and performance index functions for 3- and 6-DoF
landing problems were summarized, a general
problem description was formed, and three classes
of methods, including analytical algorithms, numer-
ical optimization algorithms, and learning-based
methods, were discussed in detail. Only SpaceX
has validated the vertical landing of rockets and
Blue Origin has also successfully performed powered
descent landing experiments with their New Shepard
rocket, although they were just suborbital flights.
However, the efficiency and convergence of a method
are deeply affected by engine configurations and the
vehicle’s characteristics, and soft pinpoint landing
is still a challenge for many projects. Although
a few demonstrators have been developed and
tested, these AGMs need to be verified in real
missions. Future research may continue focusing on
the appropriate convexification strategy or a smart
initial guess for the non-convex problems, and at the
same time properly handle the three key issues in
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engineering application: physical feasibility, model
accuracy, and real-time performance.
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Appendix: Summary of methods for powered planetary landing

Table A1 Summary of the methods for powered planetary landing

Method Project or characteristic Literature Remark

Analytical
method

Tracking guidance or combined with other methods Song et al. (2015), Zhao et al. T, E, L
(2015), Monchaux et al. (2018),
Chen SZ et al. (2019)

Polynomial guidance Klumpp (1974), Prakash et al. (2008), F, L, M
Zhang HH et al. (2014a, 2014b)

ZEM/ZEV feedback guidance Ebrahimi et al. (2008), Furfaro et al. M, L
(2011), Guo et al. (2013), Zhou
and Xia (2014), Zhang B et al. (2016)
Zhang Y et al. (2017)

Pontryagin maximum principle Meditch (1964), M, L
Najson and Mease (2006)

Indirect
method

Accelerated dual gradient projection (QP) Pascucci et al. (2015) M
Pontryagin maximum principle Topcu et al. (2005) M
Predictor-corrector method Lu (2018) M

CVX or
SCP

G-FOLD software: 100 ms on a 1.4-GHz processor; Açıkmeşe and Ploen (2007), T, M
customized solver; six flight durations estimated Açıkmeşe et al. (2013a),
off-line; tested by Xombie Rocket Dueri et al. (2014, 2017),

Scharf et al. (2014, 2017)
EAGLE of DLR: planned by ECOS with time-to-go Dumke et al. (2017), Wenzel (2017), T, E

estimation; tracked by a 6-DoF controller; tethered Wenzel et al. (2018), Sagliano et al.
test (2019a)

Semi-definite programming Açıkmeşe and Ploen (2005) M
Second-order cone programming Açıkmeşe and Ploen (2007) M
Minimum-landing-error guidance Blackmore et al. (2010) M
6-DoF optimization Açıkmeşe et al. (2013b), M

Lee and Mesbahi (2015, 2017)
CVX with pseudospectral discretization Sagliano (2018a, 2018b), Sagliano M

and Mooij (2018), Wenzel et al. (2018),
Malyuta et al. (2019)

CVX with state transition discretization Açıkmeşe and Ploen (2007) M
Convex programming with hp pseudospectral method Sagliano (2018b) M
SpaceX reusable booster (CVXGEN solver): planned Blackmore (2016) F, E

in a fraction of 1 s; demonstrated by multiple launches
Optimization with aerodynamic drag (SCP) Szmuk and Açıkmeşe (2016, 2018), M, E

Szmuk et al. (2017), Wang JB and
Cui (2018), Wang C and Song
(2018a), Liu (2019)

Contractive sequential convex programming (SCP) Casoliva (2013) E, L
Optimization with state trigger constraints (SCP) Szmuk et al. (2019) E
Peacock (SCP) of CALT: 200 ms on a 1.0-GHz processor; − T, E

customized code (ECOS); free fly to hundreds of meters

Non-convex
direct
method

Finite-element collocation approach (IPOPT solver) Ma et al. (2016, 2018a, 2018b) E, L
Fuel-efficient powered descent guidance (SNOPT solver) Topcu et al. (2007) M
Pseudospectral discretization method Sostaric and Rea (2005) M, L
Sensitivity-based trajectory generation (IPOPT solver) Ma et al. (2017, 2019), M

Seelbinder (2017)
Adaptive pseudospectral method with hazard avoidance Wang C and Song (2018b) L

(SNOPT solver)

Learning
method

Planetary landing via reinforcement learning Furfaro and Linares (2017), Gaudet M
et al. (2018), Jiang et al. (2018)

Optimal landing control via deep neural networks Sánchez-Sánchez and Izzo (2018) L

ZEM/ZEV: zero-effort-miss/zero-effort-velocity; QP: quadratic programming; SCP: successive convex programming; G-FOLD:
guidance for fuel-optimal large diverts; ECOS: embedded conic solver; DoF: degree-of-freedom; E: landing on Earth; M: landing
on Mars; L: landing on the Moon; T: demonstration test; F: actual launch
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