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Abstract: Multi-focus image fusion is an increasingly important component in image fusion, and it plays a key role
in imaging. In this paper, we put forward a novel multi-focus image fusion method which employs fractional-order
derivative and intuitionistic fuzzy sets. The original image is decomposed into a base layer and a detail layer.
Furthermore, a new fractional-order spatial frequency is built to reflect the clarity of the image. The fractional-order
spatial frequency is used as a rule for detail layers fusion, and intuitionistic fuzzy sets are introduced to fuse base
layers. Experimental results demonstrate that the proposed fusion method outperforms the state-of-the-art methods
for multi-focus image fusion.
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1 Introduction

As an important branch of information fusion,
image fusion is a research hotspot (Zhang L et al.,
2010; Chen Y and Qin, 2015; Zhu et al., 2017). Image
fusion is mainly to fuse the information of multiple
images in matrix form into a single image. The in-
formation of the fused image is more comprehensive,
and more suitable for human visual observation and
computer post-processing. As a comprehensive tech-
nique, image fusion has been widely used in medical,
military, and remote sensing fields.

Multi-focus image fusion refers to the fusion of
images with different focuses to obtain an image with
two clear targets (Huang and Jing, 2007). Because
of the limited optical lens, it is difficult to obtain
a clear panoramic image with photography. There-
fore, it is necessary to fuse two multi-focus images
with different blurred areas and clear areas. Gen-
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erally, multi-focus image fusion can be divided into
three levels, i.e., pixel, feature, and decision levels.
Among them, the pixel level is the easiest and the in-
formation of the fusion image is the richest without
losing the information of the original images. The
pixel-level multi-focus image fusion algorithm based
on the spatial domain is to analyze and process im-
age pixels directly. This kind of algorithm can save
as much as possible data of the source image, and its
calculation is relatively simple.

In recent years, many multi-focus image fusion
methods have been proposed. In particular, spatial
frequency (SF), which refers to the quality of the
image region focus, has been introduced into image
fusion. Li et al. (2001) combined SF with image
decomposition to fuse images effectively. Then, Li
and Yang (2008) proposed multi-focus image fusion
algorithms based on region segmentation and SF.
The traditional segmentation algorithm was used to
divide images into different regions, and then the SF
of the corresponding region was used to fuse images.
In Yang B and Li (2007), SF was segmented directly.
The above methods segment the source images into
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regions which can represent the characteristics of the
images, and then use SF to fuse images.

Although the results of the above fusion meth-
ods reflect the feature information of source images
very well in vision, the fusion results have a strong de-
pendence on segmentation effects in practical appli-
cations. Li et al. (2013) proposed a method based on
two-scale image decomposition: an image is divided
into a base layer and a detail layer, and then the
guided filtering-based weighted average technique is
used to fuse images effectively. Compared with the
image fusion methods based on regional features, the
fusion method based on image layering is more sensi-
tive to image details, and it can overcome the disad-
vantage of the uncertainty of segmentation regions.

Fuzzy sets (FSs) constitute a theory which aims
at dealing with fuzzy and uncertain things and quan-
tifies them as the information that can be processed
by computer (Zadeh, 1965). Atanassov (1986) ex-
panded FS to intuitionistic fuzzy sets (IFSs). IFS
takes account of the information of membership,
non-membership, and hesitation degrees at the same
time, so it is more flexible and practical than tradi-
tional FSs in dealing with fuzziness and uncertainty.
Many image fusion problems have been solved using
IFS. Specifically, Yang Y et al. (2016) proposed a
method to fuse images in IFS. It is more suitable for
image fusion since images have a lot of uncertainties.

Fractional calculus, which is a theory of frac-
tional order, has been widely used to deal with many
practical problems on image processing, such as im-
age denoising, image enhancement, and image super-
resolution (Bai and Feng, 2007; Pu YF et al., 2010;
Chen DL et al., 2015). Compared with traditional
local integral calculus, fractional calculus has the
property of non-locality. This means that fractional
calculus is related to not local information, but the
whole range of discussion. Thus, fractional calcu-
lus has the advantage of memorability. Because of
the property of non-locality, the application of frac-
tional calculus to image processing can describe more
vividly image features such as edges, textures, and
smooth areas. Some researchers also applied it to
image fusion and obtained effective fusion results
(Azarang and Ghassemian, 2018), but no one has
introduced it into the clarity measure of images to
fuse images. Therefore, we apply fractional calcu-
lus to the clarity measure to perfectly describe the
clarity information of images, so as to fuse images.

In this study, we combine IFS and fractional-
order derivative to produce a novel method for multi-
focus image fusion. To better preserve the details
of the original images, two-scale representations of
the original images are first obtained according to
an average filter. Then, the base layers are fused
through IFS, making full use of the richness of gray
values of images. To reflect the clarity of images,
the fractional-order spatial frequency (FSF) is built
which is an integration of fractional-order derivative
and SF. FSF is used to fuse detail layers capturing
small-scale details.

2 Preliminaries

2.1 Fractional-order derivative

In this subsection, definitions and properties
of the fractional-order derivative are introduced.
There are three popular definitions of the fractional-
order derivative, i.e., Riemann-Liouville (R-L), Ca-
puto, and Grünwald-Letnikov (G-L) (Podlubny,
1999; Zhang XF and Chen, 2018). The G-L defi-
nition is introduced in this study. The definition of
the G-L fractional differential of order α is

Dα
G-Lu(x) :

dα

dxα
u(x)|G-L

:= lim
n→∞

⎛
⎜⎝

(x
n

)−α

Γ(−α)

n−1∑
k=0

Γ(k − α)

Γ(k + 1)
u
(
x− k

(x
n

))
⎞
⎟⎠ ,

(1)
where u(x) is the signal under consideration, α is a
real number, and Γ(·) is the Gamma function.

Based on the G-L definition, the discrete deriva-
tive definition can be given. The fractional-order dis-
cretized derivative at point (i, j) along the x and y

directions are as follows:

Dα
xuij =

i+1∑
k=0

wα
k ui−k+1,j , i, j = 1, 2, . . . , n,

Dα
y uij =

j+1∑
k=0

wα
k ui,j−k+1, i, j = 1, 2, . . . , n,

where

wα
k = (−1)k

Γ(α+ 1)

Γ(k + 1)Γ(α− k + 1)

and k = 0, 1, . . . , n + 1. The coefficients wα
k can be
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obtained through the recursive relation:

wα
k =

⎧⎪⎨
⎪⎩

1, k = 0,(
1− α+ 1

k

)
wα

k−1, k = 1, 2, . . . , n+ 1.

Then the discrete α-order gradient can be writ-
ten in the following matrix form:

Dαu =

(
Dα

xu
Dα

yu

)
=

(
Mu
uM

)
∈ R

2n×n, (2)

where

M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝
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...
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∈ R
n×n (3)

and w = wα
0 + wα

2 .
Then, considering signal processing and the

fractional-order derivative, the definition of the
Fourier transform of u(x) (Tao et al., 2006) is as
follows:

FT (Dαu(x)) =(iω)αFT(u(x))

−
n−1∑
k=0

(iω)k
dα−1−k

dxα−1−k
u(0), (4)

where i is the imaginary unit and ω is the digital
frequency. When u(x) is a causal signal, Eq. (4) can
be written as

FT(Dαs(x)) = (iω)αFT(s(x)).

Fig. 1 shows the amplitude-frequency figure,
which is the fractional Fourier transform of different
orders. In Fig. 1, we can see that the fractional-order
differential operator can enhance the low-frequency
signal to a certain extent when the fractional order
belongs to (0, 1), and that the amplitude of enhance-
ment is larger than that of the first- and second-order
differential operators (Pu YF and Wang, 2007). At
high frequencies of the signal, the fractional-order
operator also enhances the signal. Although the en-
hancement amplitude is not as large as that of the
first and second orders, the fractional-order signal
enhances the low-frequency signal at the same time.
It is shown that the fractional-order differential has
weak derivatives, which not only increases the high
frequency of the signal, but also preserves the low
frequency nonlinearly.
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Fig. 1 Amplitude-frequency characteristic curves of
fractional-order differential operators (v: fractional
order)

2.2 Intuitionistic fuzzy sets

IFS has been widely used in image processing
and is described in this subsection (Xu, 2007).

Consider a finite set S = {s1, s2, . . . , sn}. A
fuzzy set F of S is defined as

F = {(s, μF (s))|s ∈ S}, (5)

where the function μF (s) : F → [0, 1] denotes
the membership degree of s in S. Thus, the non-
membership degree of s is written as 1− μF (s).

Atanassov (1986) put forward IFS on the basis
of FS, considering the information of membership,
non-membership, and the hesitation degree at the
same time. IFS is defined as

F = {(s, μF (s), νF (s))|s ∈ S}, (6)

where μF (s), νF (s) : F → [0, 1] denote the mem-
bership degree and non-membership degree of an el-
ement s in S respectively, and the condition 0 ≤
μF (s) + νF (s) ≤ 1 holds.

Then, hesitation degree πF (s) is introduced in
relation to the lack of knowledge. IFS is defined
based on the hesitation degree, written as

F = {(s, μF (s), νF (s),πF (s))|s ∈ S}, (7)

where μF (s) + νF (s) + πF (s) = 1.

3 Fractional-order spatial frequency

In Eskicioglu and Fisher (1995), spatial fre-
quency was used to measure the overall activity level
in images. Then, Li et al. (2001) proved that the
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spatial frequency can describe the clarity of images.
The definition of SF is

SF =
√

RF2 + CF2, (8)

RF =

√√√√ 1

JK

J∑
m=1

K∑
n=2

(f(m,n)− f(m,n− 1))2, (9)

CF =

√√√√ 1

JK

J∑
m=2

K∑
n=1

(f(m,n)− f(m− 1, n))2,

(10)

where [J,K] is the size of image block f . From
the definition of SF, f(m,n) − f(m,n − 1) and
f(m,n) − f(m − 1, n) can be seen as the partial
derivatives of f at point (m,n) along the x and y

directions. From the definitions of fractional- and
integer-order derivatives, the integer-order deriva-
tive combines only the value in the current step with
those in a finite number of previous steps, and the
fractional-order derivative is related to all the values
in the range. Thus, the fractional-order derivative
has the advantage of memorability. Furthermore,
the fractional-order derivative can highlight details
of image textures. It is more sensitive to different
features of an image than the integer-order deriva-
tive. Based on the advantages of the fractional-order
derivative, we define the FSF as follows:

FSF =
√

FRF2 + FCF2 =‖Dαf‖F, (11)

FRF = ‖Mf‖F, (12)

FCF = ‖fM‖F, (13)

where M is the coefficient matrix of the fractional-
order derivative as in Eq. (3) and ‖ · ‖F denotes the
Frobenius norm.

Figs. 2b–2f are “Lena” blocks after blurring with
a Gaussian of radius 0.5, 0.51, 0.8, 1.0, and 1.5, re-
spectively, while Fig. 2a is the original block. Ta-
ble 1 shows the SF and FSF of the images in Fig. 2,
where α of FSF is 1.5 or 0.5. From the results above,
with the images more blurred, SF and FSF become
smaller gradually. The experimental results show
that SF and FSF are consistent with human visual
perception of blur. The more blurred the images, the
smaller the corresponding values. Thus, both can be
used to reflect the clarity of images.

To compare the sensitivity of SF and FSF, we
set up a special group of experiments. Setting the

(a) (b) (c)

(d) (e) (f)

Fig. 2 Original (a) and blurred versions of block
“Lena” with radius 0.5 (b), 0.51 (c), 0.8 (d), 1.0 (e),
and 1.5 (f)

Table 1 Spatial frequency (SF) and fractional-order
spatial frequency (FSF) of the images in Fig. 2

Radius SF FSF (α = 1.5) FSF (α = 0.5)

0 18.3581 28.3781 28.7471
0.5 15.3249 24.5047 27.2160
0.51 15.1886 24.3370 27.1395
0.8 13.1816 21.8856 25.8097
1.0 12.3307 20.7671 25.2856
1.5 11.2530 19.3123 24.6474

blur radius to 0.5 and 0.51, their corresponding SF
and FSF values are given in Table 1. The change of
SF is about 0.1363, and the change of FSF is larger
than that of SF when α = 1.5. Combining frac-
tional order has the advantages of memorability and
detailed description of the image. We can conclude
that FSF has better perception of clarity than SF.

4 Model description

The details of the fusion method are described
in this section. Suppose that the two original multi-
focus images u1 and u2 are pre-registered. The
framework of the method proposed is shown in Fig. 3.
First, average filtering decomposes u1 and u2 into
base layers B1,B2 and detail layers D1,D2, respec-
tively. Then the base layers are fused by IFS and
the detail layers are fused by FSF. Finally, the tar-
get image is obtained according to the combination
of the processed base and detail layers.



838 Zhang et al. / Front Inform Technol Electron Eng 2020 21(6):834-843

Average
filtering

Average
filtering

Base layer

Base layer

Detail layer

Detail layer

FSF

FSF

ENT

ENT

Fig. 3 Flow diagram of the proposed multi-focus image (ENT: fuzzy entropy)

4.1 Two-scale image decomposition

As shown in Fig. 3, average filtering is used to
decompose the original images into two-scale repre-
sentations. The base layer is obtained as follows:

Bn = un ∗ Z, n = 1, 2, (14)

where un (n = 1, 2) is the original image, and Z is
average filtering, whose size is 30× 30. Based on the
base layer, the detail layer can be obtained easily:

Dn = un −Bn, n = 1, 2. (15)

The purpose of two-scale decomposition is to
segment each source image into a base layer and
a detail layer. The base layer contains large-scale
changes in the image, and the detail layer contains
small-scale details. Two-scale decomposition divides
each source image into two scales, and each scale
contains different information. This makes the later
fusion information more comprehensive and specific,
and makes the fusion rules more targeted.

The base layer reflects the large-scale informa-
tion about the source image. Because the two base
layers of the source images are very fuzzy, the dif-
ference of sharpness is not obvious. Therefore, we
use the entropy of images, which represents the rich-
ness of image information and IFS, to fuse them.
This fusion method can make full use of uncertain-
ties of source images, and fuse the basic information
effectively.

4.2 Base layer fusion with IFS

On the basis of IFS, the membership μ(i, j) can
fuzzily denote the belongingness of the gray value of
images, defined as (Balasubramaniam and Ananthi,
2014)

μ(i, j) =
u(i, j)− a

b− a
, (16)

where u(i, j) is the gray value of the image, a =

min(u), and b = max(u).
Then, the membership degree of IFS based on

Eq. (16) is defined as

μIFS(i, j) = 1− (1 − μ(i, j))λ, λ ≥ 0. (17)

The non-membership degree is calculated as

νIFS(i, j) = (1− μ(i, j))λ(λ+1), λ ≥ 0. (18)

The hesitation degree is computed as follows:

πIFS(i, j) = 1− μIFS(i, j)− νIFS(i, j). (19)

Fuzzy entropy measures the uncertainty of a
fuzzy set. The larger the fuzzy entropy is, the more
abundant the information it contains. Therefore, it
is necessary and effective to use the maximum value
of fuzzy entropy to determine λ. In this study, the
fuzzy entropy is described as

ENT(IFS, λ) =
1

MN

M∑
m=1

N∑
n=1

V

U
, (20)
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where

V = 2μIFSνIFS + π2
IFS,

U = μ2
IFS + ν2IFS + π2

IFS,

and M ×N represents the window size 5× 5.
Therefore, we fuse the base layers with fuzzy

entropy, and this represents the richness of the infor-
mation contained in the image. The fusion rule for
the base layers is as follows:

B(i, j) =

{
B1(i, j), ENT1(i, j) ≥ ENT2(i, j),

B2(i, j), otherwise.
(21)

4.3 Detail layer fusion with FSF

The detail layers can reflect the information
about the source images in detail, including edges,
textures, and other abrupt information. The fre-
quency of these layers is high, and the difference of
the gray values for multi-focus images is obvious.
Thus, it is suitable for fusing images based on FSF,
which can fuse frequency information easily.

First, we use Eq. (11) to calculate the FSF of
position (i, j) in the 5× 5 window. Then, the fusion
rule for the detail layers is built according to the
max-min operator, written as follows:

D(i, j) =

{
D1(i, j), FSF1(i, j) ≥ FSF2(i, j),

D2(i, j), otherwise.
(22)

4.4 Two-scale image reconstruction

Through the above steps, we can obtain the
fused base layer and detail layer. Finally, the two
layers of the source image are added to obtain the
complete fusion image:

u = B+D. (23)

4.5 Choice of variable order

Image processing of a variable fractional order is
to construct an independent optimization framework
of images by selecting independent evaluation in-
dices. This is of great practical significance (Baleanu
and Wu, 2019; Wu et al., 2019). We use the adap-
tive feedback method to fuse images. Entropy (EN)
is used as the evaluation index of image fusion, and
the fractional order in the range of (1,2) is the fusion

parameter. By calculating the EN of the fused im-
age with different fractional orders, the fused image
corresponding to the largest EN is selected as the
final result. All fusion parameters are optimized by
taking the EN of the final fusion image as the objec-
tive function. This method can not only ensure the
robustness of the proposed method, but also obtain
the optimal fusion image.

5 Experimental results

To demonstrate the performance of the pro-
posed method, several experiments are given and
analyzed in this section.

5.1 Performance index

Entropy (EN), mutual information (MI), and
average gradient (AVG) are used to evaluate the
quality of the fused multi-focus images. EN is used
to measure the amount of information contained in
an image. The larger the EN, the greater the amount
of information contained in an image and the richer
the image information. EN is defined as follows:

EN = −
L−1∑
i=0

pi · log2 pi,

where L = 256 and pi is the distribution probability
of each gray level.

MI is an important index to calculate how much
information the source image has transferred to the
fusion image. MI shows the completeness of the fu-
sion image. Thus, the larger the MI, the better the
fusion effect. MI is defined by

MI = MI1U + MI2U,

MI1U =
∑
u,1

P1Uf(u,u1) lg
P1U(u,u1)

P1(u1)PU(u)
,

MI2U =
∑
u,2

P2Uf(u,u2) lg
P2U(u,u2)

P2(u2)PU(u)
,

where P1(u1) and P2(u2) are the edge probability
densities of u1 and u2 respectively, PU(u) is the prob-
ability density of fusion image u, and P1Uf(u,u1)

and P2Uf(u ,u2) are the joint probability densities
of fusion image u and source images u1 and u2,
respectively.

Average gradient (AVG) reflects the ability to
express the change of small details of the image, and
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it also reflects the clarity of the fusion image. There-
fore, the larger the AVG, the better the fusion image.
AVG is formulated as

AVG =
1

MN

M∑
i=1

N∑
j=1

√
Δu2

x +Δu2
y

2
,

Δux = u(i, j)− u(i− 1, j),

Δuy = u(i, j)− u(i, j − 1).

5.2 Experiments and analysis

Experiments were carried out on four groups of
source images which have been registered (Fig. 4).
These source images are all classical multi-focus im-
ages and have been widely used in experiments.
Fig. 5 gives the results under different fusion meth-
ods. Columns 1–6 correspond to simple averaging

(AVG), discrete wavelet transform (DWT) (Pu T
and Ni, 2000), CSF (Li et al., 2001), FMS (Azarang
and Ghassemian, 2018), the integer-order method,
and our method, respectively. In the experiments,
the best fractional order for our method was chosen
for comparison with other methods. The EN, MI,
and AVG of images in Fig. 5 are shown in Table 2.

Figs. 5a–5f are the results of fusing the origi-
nal images (Figs. 4a and 4b). After experiments, we
determined that the optimal fractional order is 1.8.
We use the optimal fractional order for comparison
with other methods. It is observed that images ob-
tained by the proposed integer- and fractional-order
methods are clearer than those obtained by other
existing methods. Based on the comparison of the
three indices in Table 2, the information in fusion
image Fig. 5f is the most comprehensive.

(a) (b) (c) (d) (e) (f) (g) (h)

Fig. 4 Original multi-focus images: (a, b) group 1; (c, d) group 2; (e, f) group 3; (g, h) group 4

(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

(m) (n) (o) (p) (q) (r)

(s) (t) (u) (v) (w) (x)

Fig. 5 Results under AVG (a, g, m, s), DWT (b, h, n, t), CSF (c, i, o, u), FMS (d, j, p, v), the integer-order
method (e, k, q, w), and the proposed fractional-order method (f, l, r, x) for multi-focus images
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Table 2 Performance evaluation of the fusion images in Fig. 5

Method
EN MI AVG

Group 1 Group 2 Group 3 Group 4 Group 1 Group 2 Group 3 Group 4 Group 1 Group 2 Group 3 Group 4

AVG 7.0031 7.1799 7.5265 7.1085 5.1642 4.3993 4.2203 4.0676 3.0561 4.6299 8.5841 8.6143
DWT 7.0045 7.1850 7.5335 7.1130 5.1645 4.3996 4.2122 4.0677 3.0561 4.6299 8.5841 8.6143
CSF 7.0214 7.2527 7.3806 7.1547 6.8078 6.6361 6.6302 6.3605 3.8061 5.9718 9.9415 9.9456
FMS 7.3934 7.3798 7.3335 7.4383 2.4922 2.5695 6.7939 3.1119 5.2840 5.1368 3.4203 5.7518

Integer∗ 7.0325 7.3244 7.5442 7.1760 5.3219 4.6989 4.6779 4.2132 4.2928 6.8383 13.2018 10.2561
Fractional∗ 7.0331 7.3256 7.5483 7.1766 5.3227 4.6994 4.6787 4.2096 4.2953 6.8415 13.2051 10.2570
∗ Methods proposed in this study. Groups 1–4 correspond to rows 1–4 in Fig. 5, respectively

Figs. 5g–5l are the results of fusing the original
images (Figs. 4c and 4d). The optimal fractional or-
der for our method is 1.4. Because of the uncertainty
of digital images, artifacts will appear in image fu-
sion. Artifact is a common problem in image fusion,
closely related to the selection of fusion rules. It is
observed that the method proposed in this study can
avoid artifacts while the images are fused completely.

Figs. 5m–5x are the fusion results of Figs. 4e–
4h. In these two experiments, the optimal fractional
orders for our method are 1.1 and 1.5, respectively.
Based on the perspective of human vision and the
three fusion indicators, it is shown that the images
fused by the proposed method contain richer infor-
mation. For objects with different focusing targets,
our method can clearly fuse them in a single image.
We use the knowledge of the fractional-order deriva-
tive and IFS to fuse multi-focus images, and this can
avoid the uncertainty of source images and preserve
the details perfectly.

To highlight the advantages of FSF in image
fusion, a group of special experiments were estab-
lished. The FSF images of the detail layers are given
in Figs. 6 and 7, and the orders of FSF are 1.0, 1.2,
1.5, 1.7, and 1.9. The EN, MI, and AVG of im-
ages fused by the proposed fractional-order method
with different orders are shown in Figs. 8, 9, and 10,
respectively.

When the order of FSF is 1.0, FSF is equal to
the classical SF. Figs. 6 and 7 show that with the
increase of fractional order, the effect of the detail
layers described by FSF has improved. The use of
the fractional-order derivative makes the textures of
the image more obvious, and the details of the image
more abundant. Therefore, FSF is more conducive
to multi-focus image fusion.

(a) (b) (c)

(d) (e) (f)

Fig. 6 FSF images of detail layer 1: (a) original image;
(b) α = 1.0; (c) α = 1.2; (d) α = 1.5; (e) α = 1.7; (f)
α = 1.9

(a) (b) (c)

(d) (e) (f)

Fig. 7 FSF images of detail layer 2: (a) original image;
(b) α = 1.0; (c) α = 1.2; (d) α = 1.5; (e) α = 1.7; (f)
α = 1.9

Figs. 8–10 are the performance comparison of
FSF with different orders. We can conclude that
the order of the best performance is about 1.5, and
the corresponding fusion image is clearer than the
integer one. The advantages of FSF are well reflected
in this group of comparative experiments. Because
FSF uses the fractional-order derivative, it is more
sensitive to information and has better memory for
image information than SF.
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Fig. 8 The EN of the proposed fractional-order
method with various orders
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Fig. 9 The MI of the proposed fractional-order
method with various orders
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Fig. 10 The AVG of the proposed fractional-order
method with various orders

6 Conclusions

In this paper, we have proposed a novel model
for multi-focus image fusion. This new approach
is based on two-scale image decomposition, by
which an image is decomposed into two layers by
average filtering. Then, the base layers are fused
in IFS. This can solve the uncertainty problem
effectively. The detail layers are fused in FSF. FSF

is a measurement of clarity. It combines SF and
a fractional-order derivative to indicate the clarity
of the image. Finally, the fused multi-focus image
is obtained by image reconstruction. The exper-
imental results demonstrated that the proposed
method is more effective than and superior to other
classical fusion methods for multi-focus image fusion.
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