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Abstract: With the fast development of consumer-level RGB-D cameras, real-world indoor three-dimensional (3D) scene mod-
eling and robotic applications are gaining more attention. However, indoor 3D scene modeling is still challenging because the 
structure of interior objects may be complex and the RGB-D data acquired by consumer-level sensors may have poor quality. 
There is a lot of research in this area. In this survey, we provide an overview of recent advances in indoor scene modeling methods, 
public indoor datasets and libraries which can facilitate experiments and evaluations, and some typical applications using RGB-D 
devices including indoor localization and emergency evacuation. 
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1  Introduction 
 

In the past few decades, three-dimensional (3D) 
modeling of indoor environments has been a very 
popular research area. Generation of detailed 3D maps 

for indoor environments is essential for many mobile 
robot applications, including indoor navigation, facility 
management, virtual reality, and building information 
models (BIMs) (He and Habib, 2018). Three- 
dimensional indoor models can be obtained by either 
active or passive remote sensing systems. Passive 
sensors (such as imaging sensors) whose representa-
tive product is the ZED camera of Stereolabs, are able 
to acquire 3D information by applying the structure 
from the motion method (Konolige and Agrawal, 2008; 
Westoby et al., 2012; Ortiz et al., 2018), and are usually 
at a low cost. However, to extract 3D information from 
two-dimensional (2D) images, these sensors need ex-
tensive post-processing, including image matching and 
pose estimation, which are time-consuming, and espe-
cially suffer from dark environments, poorly textured 
areas, and motion blurs. Active sensors provide alter-
native ways to obtain accurate 3D models for indoor 
scenes. Laser scanners are typical devices to capture 
precise and reliable 3D information from indoor scenes. 
However, most existing laser scanning systems are 
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expensive and are short of RGB information (Chen C 
et al., 2018; Tang et al., 2019a). Recently, RGB-D 
sensors, such as Kinect (https://developer.microsoft. 
com/en-us/windows/kinect), Structure Sensor (https:// 
structure.io/), and Intel RealSense (https://www. 
intelrealsense.com/lidar-camera-l515), have gained 
their popularity. They are inexpensive, lightweight, 
and accurate in acquiring 3D information and have 
promoted a rapid progress in indoor mapping. This 
technology combines laser scanning and visual sys-
tems. It collects depth and color information syn-
chronously at high data rates. Considering their low 
cost and acceptable high accuracy, RGB-D sensors are 
the optimum option for indoor 3D modeling and re-
lated applications. This survey focuses on 3D model-
ing of indoor scenes and related applications using 
RGB-D devices. 

1. For the modeling part, we have witnessed the 
development of 3D dense mapping and simultaneous 
localization and mapping (SLAM) pipelines, as shown 
in Fig. 1. Those that depend on only the RGB-D de-
vices are now an important part. Visual SLAM systems 
are too diverse and complex to discuss. Here we focus 
only on RGB-D SLAM. The accuracy of the 3D maps 
rises as the accuracy of frame registration increases. 
We can classify them based on the differences of the 
registration method. Newcombe et al. (2011) first 
proposed a dense mapping system in which a global 
volumetric model is built to integrate all the depth data 

flow from the Kinect sensor. As the iterative closest 
point (ICP) algorithm is implemented, the camera pose 
can be obtained by capturing the trajectory of the live 
depth frame through the global surface model (Zeng  
et al., 2012; Chen JW et al., 2013; Whelan et al., 2013). 
On the other hand, a sparse style RGB-D system was 
proposed first by dos Santos et al. (2016). The feature- 
based SLAM system takes advantages of using fewer 
meaningful points to estimate the camera pose. As a 
consequence, this model requires less computational 
cost. Take an early feature-based SLAM system as an 
example. It was first introduced by Engelhard et al. 
(2011). This model first extracts the speeded up robust 
features (SURFs) from color images, and then maps it 
into the depth image. Meanwhile, the corresponding 
3D points can be obtained to estimate the camera pose. 
Based on the proposed RBG-D SLAM method, the 
sensors can be used to model different kinds of objects, 
such as indoor space, tunnel, small objects, and human 
body, providing millimeter-level accuracy for small 
object reconstruction and centimeter-level accuracy for 
enclosure or semi-enclosed space modeling. 

2. Since commodity RGB-D sensors were intro-
duced, the 3D geometry capture technology has blos-
somed rapidly. Applications based on these technolo-
gies are expanding over a broad field, such as semantic 
understanding of scenes, indoor localization, and BIM 
reconstruction. For semantic understanding of scenes, 
Song et al. (2015) introduced a dataset called “SUN 

 
Fig. 1  Samples of 3D modeling using RGB-D devices 
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RGB-D.” This dataset contains 10 335 RGB-D images, 
which are either 2D or 3D. Dense annotations are 
embedded in these images, for both objects and rooms. 
It has been used for an object recognition task moving 
towards total scene understanding. Similarly, Dai et al. 
(2017) presented a ScanNet framework, which  
contains 2.5 million views in 1513 scenes annotated 
with 3D camera poses, surface reconstructions,  
and semantic segmentations. For indoor localization, 
Li et al. (2018) presented a visual localization  
and navigation method based on the Tango sensor, in 
which the direct depth information was employed  
to recover the real scale of the scenes and used  
to estimate the motion of the sensor. For semantically 
rich indoor reconstruction, Chen K et al. (2014)  
suggested working out the links between objects and 
their knowledge from the databases. Based on the  
links, they proposed a method to build the model  
of indoor scenes through low-quality RGB-D  
sequences. These two methods mentioned above  
are used mainly to reestablish the indoor furniture, 
while the reconstruction of indoor structural ele- 
ments is not involved. Current research on indoor  
reconstruction does not give much of any method 
based on RGB-D mapping systems. However, Tang et 
al. (2019b) came up with a method to rebuild a se-
mantically rich indoor model from low-quality RGB-D 
sequences. This method provides a quick and auto-
matic way to classify and build the principal indoor 

structural elements from RGB-D data. These elements 
may include space, wall, floor, ceilings, windows, and 
doors. 
 
 
2  Commercial RGB-D devices 
 

In recent years, RGB-D devices, such as Kinect 
and Structure Sensors, have gained wide acceptance 
for SLAM and indoor-mapping applications. The ad-
vantage of these types of sensors is that they can cap-
ture and update 3D spatial information in real time. 
Meanwhile, they are more portable and have a lower 
cost. The measurement accuracy of RGB-D devices 
decreases with the increase of the measurement dis-
tance. Generally, only a depth within 3.5 m is able to be 
used for frame registration and indoor 3D mapping. 
This makes it hard to use in large scenes, like airports 
and underground space. Therefore, due to the limited 
measurement distance of consumer RGB-D cameras, 
significant work is needed on measurement error cali-
bration or sensor integration to improve the mapping 
accuracy and range. 

There are typical RGB-D sensors, like Kinect 1, 
Kinect 2, Azure Kinect DK, and Structure Sensor. In 
Table 1, we compare the hardware parameters of four 
types of sensors. The Kinect series devices can be 
connected to a desktop or a laptop for use, and the 
sensors themselves carry a depth camera, a near- 

Table 1  Comparison of typical RGB-D sensor parameters 

Device 
Size 

(height×width×length) 
Depth image  

resolution 
Data acquisition  

frequency (frame/s) 
Battery usage Weight (g) 

Kinect 1 64 mm×76 mm 
×305 mm 

320×240 <30 No 
battery 

1360 

Kinect 2 76 mm×165 mm 
×350 mm 

512×424 <30 No 
battery 

1225 

Azure Kinect 
DK 

39 mm×103 mm 
×126 mm 

640×576, 320×288, 
512×512, or 
1024×1024 

<30 No 
battery 

400 

Structure 
sensor 

29 mm×28 mm 
×119 mm 

640×480 <30 3–4 h continuous 
mapping and 

1000+ h standby 

95 

Device 
Maximum effective  

distance (m) 
View angle 

Inertial measurement 
unit 

Interface 
Multi-device 

synchronization 
Kinect 1 4.5 57°×43° × USB2/ 

USB3 
√ 

Kinect 2 4.5 70°×60° × USB3 × 

Azure Kinect 
DK 

4 75°×65°, or 
120°×120° 

√ USB3 √ 

Structure 
sensor 

3.5 58°×45° × Lightning × 
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infrared transmitter, and an ordinary RGB camera 
each. Structure Sensor devices can work collabora-
tively with tablets and mobile phones. They carry 
only depth cameras and near-infrared cameras, and 
their RGB sensors use RGB cameras from external 
devices. The working principles of these two series 
are similar. Both can simultaneously generate 30 
frames of 640×480 depth images and RGB images per 
second. 

Kinect 1 and Kinect 2 have the same size, which 
is about 15 times larger than that of the Structure 
Sensor. From the point of view of battery usage, the 
former two do not have their own battery and require 
an external power supply during the mapping process, 
while the latter has its own battery, making continu-
ous mapping for 3–4 h possible. Moreover, Kinect is 
13 times heavier than Structure Sensor. As for data 
quality, the data resolution of Structure Sensor is 
higher, while the difference of the effective meas-
urement distance between these two series is not that 
much. Based on the comparison above, Structure 
Sensor has better portability than Kinect series de-
vices. In 2019, Microsoft officially released the Azure 
Kinect DK device. Its size and weight are much less 
than those of the previous generation (i.e., Kinect 2 
sensor), and the ranging accuracy has also been de-
veloped and improved. Azure Kinect DK supports a 

multi-device synchronization mode. Meanwhile, 
body tracking software development kit (SDK), 
computer vision service interface, and voice SDK are 
embedded. As for the working mode, Azure Kinect 
DK can switch working modes according to different 
requirements to obtain depth visual images with dif-
ferent viewing angle sizes and a high resolution. 

 
 

3  Datasets and modeling techniques 

3.1  Public datasets 

It is important that the evaluation and comparison 
of the algorithms should be scientific and objective, as 
public datasets and benchmarks are introduced. In 
recent years, public RGB-D datasets with indoor 
scenes have been released and used widely in many 
fields, such as scene reconstruction, semantic classifi-
cation, and object recognition (Fig. 2). Common da-
tasets and explicit evaluation indices can assist in the 
improvement of most advanced technologies. This 
view has been proved by several successful examples 
in the computer vision area. Some public RBG-D da-
tasets are listed as follows, with a brief overview. 

1. SUN RGB-D (Song et al., 2015): The bench-
mark is from Princeton University. There are four dif-
ferent sensors (i.e., Intel Realsense, Asus Xtion, Kinect 

(a)

(b) (c)

(d) (e)

Ceiling Floor Wall Beam Column Window Door

Desk Chair Sofa Bookshelf
Wooden

board
Others

 
Fig. 2  Automatic semantic modeling of an office scene: the predicted point clouds of the whole scene (a), wall, floor, and 
ceiling components (b), door components (c), window components (d), and others (e) 
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1, and Kinect 2) introduced to the collection task. The 
whole dataset involves 10 335 RGB-D images with 
dense annotations. To be more specific, it contains 
146 617 2D polygons and 64 595 3D bounding boxes 
with precise object orientations. Three-dimensional 
room layout and scene category are also included as 
annotations in each image. The dataset can be down-
loaded at http://rgbd.cs.princeton.edu. 

2. ICL-NUIM (Chen K et al., 2014): The dataset 
name is the abbreviation of the Imperial College 
London and National University of Ireland Maynooth. 
To evaluate the visual odometry, 3D rebuilding, and 
SLAM algorithm, Chen K et al. (2014) set four inter-
dependent camera trajectories to obtain high-quality 
RGB-D sequences. A ground-truth surface model was 
proposed. Through this model, quantitative evaluation 
of the map results can be carried out. Also, the accu-
racy of surface reconstruction can be ensured. The 
dataset also shows us the collection of handheld 
RGB-D camera sequences with perfect ground-truth 
poses in synthetically generated environments. This 
dataset can be downloaded at https://www.doc.ic.ac. 
uk/~ahanda/VaFRIC/iclnuim.html. 

3. TUM RGB-D datasets (Sturm et al, 2012): 
Sturm et al. (2012) proposed a series of treatments and 
applications for RGB-D SLAM systems. A motion- 
capture system was introduced to capture the time- 
synchronized camera poses. Higher-speed cameras 
(100 Hz) were applied in this system so that the tra-
jectories can be recorded. Microsoft Kinect was im-
plemented to obtain high-accuracy image sequences, 
which contain both color and depth images. The reso-
lution parameters were 640×480 (full sensor resolu-
tion), and the video frame rate was 30 Hz. The 39 da-
tasets were obtained separately from a single office 
room and a factory corridor. To compare the simulation 
results of different approaches, an automatic evaluation 
tool was provided. This tool was aimed to measure the 
drifts and pose errors generated from the system men-
tioned above. The circumstance pictures, annotations 
of the dataset, codes, and tools listed above can be 
found at https://vision.in.tum.de/data/datasets/rgbd- 
dataset/tools. 

4. Washington RGB-D scenes dataset (Lai et al., 
2014): Fourteen new scenes recorded from a lounge, a 
coffee room, an office desk, and a meeting area were 
collected in the RGB-D scenes dataset v.2. These ex-
panded the eight original scenes. Using patch volume 

mapping, Lai et al. (2014) aligned a set of Kinect 
RGB-D image frames to create a point cloud in each 
scene. The scenes contain furniture like chairs, coffee 
tables, tables, and sofas. The stitched scene point 
clouds can also provide nine object classes and labels 
for the background. This dataset is available at 
http://www.cs.washington.edu/rgbd-dataset. 

3.2  Modeling techniques 

Recently, many 3D techniques that use RGB-D 
devices and laser systems have been developed in 
robotics and computer vision research areas. In this 
review, we focus mainly on the techniques of modeling 
the RGB-D system, rather than the typical visual 
SLAM systems. Typically, frame registration, loop 
closure detection, and global optimization for the 
whole trajectories are the required technologies during 
RGB-D SLAM. We categorize the methods into two 
types based on the registration styles, including  
feature-based and dense styles.  

First, the feature-based SLAM method is com-
monly used in the visual SLAM system. The core 
concept of this method is to achieve camera tracking 
using the detected feature points, and the pose updating 
is conducted by minimizing the distances of features. 
Basically, the pose of frames is obtained by minimizing 
the residual error of 2D or 3D correspondence through 
the iterative least squares method. The cost function of 
a feature-based tracking method is 

 
2*

r s

1
= arg min ( ) ,

| |
i i

T i A

T T P P
A 

 
 

 
             (1) 

 
where T* consists of a rotation matrix R and a transla-
tion t, T is the initial transformation of the point cloud 
pairs, A contains the associations between feature 
points of the frames from two sensors, i is the point 
index of the point cloud, Pr

i is the ith point of the ref-
erence point cloud, and Ps

i is the ith point of the source 
point cloud. 

At an early stage, the feature-based RGB-D 
camera tracking method was proposed by Engelhard  
et al. (2011). In this method, the features detected by 
SURFs are used to estimate the camera updating  
between adjacent frames. To reduce the drift during 
scanning, a pose graph optimization method is em-
ployed for global consistency. Similarly, an RGB-D 
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SLAM system is used for 3D flight autonomous nav-
igation in a cluttered environment proposed by Huang 
et al. (2017). Henry et al. (2012) proposed an ICP 
variant method for camera tracking, in which both 
color information and depth information are used to 
enhance the robustness of frame tracking in textureless 
areas. Instead of evaluating the camera pose directly by 
minimizing the feature distances, a linear regression 
method proposed by Steinbrucker et al. (2011) is used 
to find the best rigid transformation between adjacent 
frames. As the performance of camera tracking can be 
influenced highly by feature descriptors, the tracking 
accuracy, robustness, and processing time with dif-
ferent kinds of features were investigated by Endres  
et al. (2014). To enhance the tracking robustness in the 
textureless area, Kerl et al. (2013) proposed a dense 
direct RGB-D tracking method by minimizing both 
photometric and depth errors. This is able to provide a 
high tracking accuracy. The random measurement 
error of the correspondences can also highly influence 
the mapping accuracy. There have been many studies 
on evaluating the theoretical random error of RGB-D 
devices and then using it to weight the contribution of 
each 3D correspondence during frame registration. dos 
Santos et al. (2016) and Vestena et al. (2016) presented 
the details of the weighed feature-based tracking 
method. Recently, a complete SLAM called “ORB- 
SLAM2” was proposed and used by Mur-Artal and 
Tardós (2017) for monocular, stereo visual cameras, 
and RGB-D camera tracking. However, the depth 
measurement error is ignored in this system. Tang et 
al. (2019a) proposed a vertex-to-edge RGB-D SLAM 
system to reduce the influence of the depth meas-
urement error. The theoretical error of correspond-
ences is used for weighting purposes, and the error of 
every pose updating is also used to adjust the edge 
contribution in global optimization. For the recon-
struction part, Fehr et al. (2017) presented a novel 3D 
reconstruction algorithm based on an extended trun-
cated signed distance function (TSDF), which enables 
continuous refinement of the static map while ob-
taining 3D reconstructions of dynamic objects in the 
scene. Wang et al. (2014) presented a 3D reconstruc-
tion approach using a Kinect RGB-D camera. For 
robust registration, they proposed to use both visual 
and geometry features combined with a structure 
from motion (SfM) technique, to enhance the ro-
bustness of feature matching and camera pose esti-

mation. In addition, the semantic reconstruction from 
RGB-D cameras is a hot topic in the RGB-D mapping 
area (Song et al., 2015; Dai et al., 2017). Dai et al. 
(2017) proposed a scalable RGB-D acquisition and 
semantic annotation framework, which includes au-
tomated surface reconstruction and crowd-sourced 
semantic annotation. Ikehata et al. (2015) proposed a 
novel 3D modeling framework that reconstructs an 
indoor scene as a structured model from panoramic 
RGB-D images. This framework is able to recover the 
structural elements of indoor space, such as rooms, 
walls, and objects. 

For the dense system, the ICP algorithm and rel-
ative variants are commonly used techniques (Segal  
et al., 2009). The ICP algorithm conducts the pose 
updating by minimizing the whole distances between 
two sets of point clouds. Compared with the feature- 
based tracking method, it is time-consuming and costly. 
Newcombe et al. (2011) first used the ICP method for 
RGB-D frame registration. The live frames are fused 
continually into the global volumetric model. In the 
early vision of the system, the memory cost almost 
increases linearly with the mapping range or the 
number of frames. The algorithm can work within an 
area of only 7 m2. Therefore, the main challenge of a 
dense RGB-D system is how to decrease the time and 
memory cost. To address this issue, an octree-based 
structure on a graphics processing unit (GPU) was used 
for voxel representation and to reduce the computing 
cost during ICP (Zeng et al., 2012). Three-dimensional 
scenes modeled using this system can be three times 
larger than those modeled using the original Ki-
nectFusion system. However, neither method has ad-
dressed the problem of trajectories drift. Similarly, a 
hierarchical data structure for reducing memory con-
sumption was proposed by Chen JW et al. (2013), and 
Nießner et al. (2013) explored a new system for 
large-scale volumetric reconstruction based on a spa-
tial hashing scheme. Their 3D reconstruction hashing 
scheme supports real-time computation without trad-
ing quality or scale (Nießner et al., 2013; Dai et al., 
2017). However, all of the works above lack drift cor-
rection. Generation of local structured 3D models with 
rigidity constraints from adjacent frames was proposed 
by Thomas and Sugimoto (2017) for camera tracking. 
Instead of using common features of frames, Shi et al. 
(2018) introduced a coplanar surface detection method. 
Coplanar surfaces were detected from adjacent RGB-D 
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frames, and the camera pose was recovered by  
coplanarity matching. Experimental results showed 
that the detected coplanarity constraints are able to 
improve the mapping accuracy significantly. 
 
 

4  Applications 

4.1  Indoor localization 

It is universally accepted that locating people 
precisely in indoor conditions is key to services re-
quiring location perception. Using WiFi or Bluetooth 
in indoor conditions is a very common solution (Fox  
et al., 1999; Biswas and Veloso, 2010; Chintalapudi  
et al., 2010). These techniques are frequently suscep-
tible to the location of the WiFi source, the precision of 
the signal strength diagram, and the amount of clutter 
and dynamics in the conditions. Also, the quantity of 
WiFi makes a difference. Over the past few years, 
more and more research has been carried out on 
RGB-D devices, which can calculate the positions of 
smartphones or tablets with six degrees of freedom 
(Winterhalter et al., 2015; Cheng et al., 2018; Li et al., 
2018). 

Fig. 3 shows an example scenario for a method to 
position an RGB-D smartphone or tablet. As the 2D 
outline of the environment is typically available from 
architectural drawings, it can be used as the map for 
this method. This was first proposed by Winterhalter  
et al. (2015). To solve the indoor positioning problem 
in a low-light environment, Chen SN et al. (2017) 
considered infrared images and depth image pairs as 
inputs, and listed the most matched images after 
searching through the existing datasets. Using a Tango 
device, Li et al. (2018) proposed an approach which 
combines the feature-based method and the direct 
method for indoor localization. Since the distance 
between the Tango camera and the object can be col-
lected by a Tango smartphone directly, the accuracy 
and success rate of camera pose tracking can be refined. 
The real scale of the indoor space depends on the direct 
depth information from the Tango sensor. Also, the 
direct method in regions with few texture features can 
generate the motion information of the Tango camera. 
Using a combination of these methods on visual lo-
calization and navigation in a complex space envi-
ronment, the scale ambiguity issue caused by the 
monocular vision localization system can be well 
solved. 

 
 
 
 
 
 

 
 

 
 
 
 
 
 
 
 

 

4.2  Emergency evacuation 

Emergencies such as fires, earthquakes, and ter-
rorist attacks occur frequently. How to ensure safe and 
efficient evacuation of people in the case of an emer-
gency is a key point in the field of emergency evacua-
tion management. The research hotspot of indoor 
emergency evacuation is to use simulation technology 
to restore and quantify the layout of indoor space fa-
cilities, the topological structure of escape routes, and 
the evacuation management strategy, to verify the ra-
tionality of the design and management scheme for 
indoor public areas (Yuan et al., 2017, 2018, 2019). As 
the building structure is becoming more and more 
complex, the traditional plan of an evacuation sche-
matic has been found difficult to meet the demand of 
emergency evacuation guidance. However, RGB-D 
devices can carry out rapid 3D mapping of indoor 
space and realize fine modeling of the physical space 
of an evacuation environment. This physical space 
model includes obstacle information, exit/channel 
location and obstacle structure information, fire- 
fighting equipment location information, and escape 
route topology information for emergency evacuation 
simulation. Thus, RGB-D devices also have a high 
application value in the field of emergency evacuation. 
Compared with traditional building design drawings 
(such as 2D computer-aided design drawings), the 
indoor evacuation space model based on RGB-D de-
vices contains more diverse information and is closer 
to objective facts. RGB-D devices can obtain the  

Fig. 3  Localization in positions with six degrees of free-
dom using only a 2D outline of the environment and an 
RGB-D Google Tango device 
The computer screen shows the floor plan in white and the 
particle cloud represents the current pose estimate in red 
(Winterhalter et al., 2015) 
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real-time locations of facilities, such as seats, desks, 
and fire-fighting equipment. Even the location and size 
information of idle items which have a significant 
impact on the evacuation process can be extracted. In 
addition, the indoor evacuation space model obtained 
by RGB-D devices has the location and structure in-
formation of the channel and exit, which can be used to 
identify the key nodes of the personnel escape route, 
and then the evacuation topology of personnel escape 
can be obtained. 

Using 3D sensors such as RGB-D devices, we can 
obtain an excellent BIM of buildings. Based on that, 
some emergency evacuation research has been carried 
out (Rüppel and Schatz, 2011; Choi et al., 2014; Liu R 
et al., 2014; Chen AY and Huang, 2015; Santos et al., 
2017). Chen AY and Chu (2016) studied the indoor 
emergency rescue routing. They combined network 
analysis and BIM, and used medial axis transform for 
graph construction from BIMs. Then a new path plan-
ning model was formed for rescue routes. Ma et al. 
(2017) built a management platform which contains 
full integration of BIM technology and virtual reality 
technology, and timely updates to the daily information. 
Ma et al. (2017) found that the BIM platform evacua-
tion route information and fire equipment information 
are very intuitive, and the information transfer is sig-
nificantly better than that in the 2D plan. Cheng JCP  
et al. (2018) proposed a simulation model for offshore 
oil and gas platforms to evaluate different evacuation 
plans to improve the evacuation performance by inte-
grating the BIM technology and the agent-based model. 

In their work, some platform information was ex-
tracted from BIM and then can be used to model the 
evacuation environment by integrating the matrix and 
network models. Cheng JCP et al. (2018) found that the 
simulation model further improves the simulation 
performance and safety management on offshore oil 
and gas platforms. Liu HM et al. (2016) presented a 
robust keyframe-based monocular SLAM framework, 
which can reliably handle fast motion and strong rota-
tion of RGB-D devices, ensuring good AR experience. 
This framework can be useful in emergency response 
of indoor evacuation. Zou et al. (2016) combined BIM 
and virtual reality technologies to research the emo-
tional responses of pedestrians in the process of 
emergency evacuation when immersive virtual envi-
ronments were constructed. Two immersive virtual 
environments were developed in Zou et al. (2016), 
both representing a fire emergency scenario in an 
apartment but having different levels of realism. 
Quantitative analysis of the possible negative emotions 
of the personnel was also made. 

Next, we introduce the whole process of emer-
gency evacuation simulation using the BIM acquired 
by RGB-D devices and give an example. Fig. 4 is a 
high-precision BIM of an indoor evacuation space, 
which can be quickly acquired by RGB-D devices. The 
model is based on an office scene of a research institute 
in Shenzhen, Guangdong Province, China. BIM con-
tains the information of the initial location, channel, 
exit, and obstacle structures for emergency evacuation 
simulation. 

(a) (b)

(d) (c)

 
Fig. 4  BIM of the indoor evacuation space obtained by RGB-D devices: (a) fast acquisition of the three-dimensional point 
cloud in the evacuation scene; (b) automatic recognition of evacuation spatial structures; (c) high precision generation of 
BIM for the evacuation scene; (d) automatic texture mapping in the evacuation space (BIM: building information model) 
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As shown in Fig. 5, we imported the BIM ac-
quired by RGB-D devices into the simulation system, 
and laid out the initial location, exit, navigation area, 
and other logical areas according to the information in 
BIM, to achieve the function of laying out pedestrians 
and key nodes of the evacuation path in simulation. 
The statistics of evacuation data are shown in Table 2. 
Then, the design of evacuation topology (blue lines in 
Fig. 5c) was implemented, and the evacuation path of 
the current evacuation topology was calculated ac-
cording to Dijkstra’s algorithm (green lines in Fig. 5c). 
Finally, the simulation of the pedestrian movement 
process was realized by combining the micro simula-
tion models of pedestrian movement such as social 
force (Helbing et al., 2000), so that we can obtain pe-
destrian displacement and the speed data in the process 
of evacuation, and then analyze the evacuation data 
using the data we obtained. 

 
 
 
 
 
 
 
 
 
5  Conclusions 

 
In this paper, we have presented an extensive 

survey for indoor scene modeling and applications 
with RGB-D data. We briefly introduced some public 
RGB-D datasets and modeling technologies, and 
divided the technologies for 3D modeling using an 
RGB-D system into two categories: feature-based and 
dense styles. The feature-based RGB-D SLAM  

Table 2  Statistics of evacuation data 

Parameter Value 

Average evacuation time 33.07 s 

Total evacuation time 64.5 s 

Average evacuation speed 0.95 m/s 

Maximum density 1.59 p/m2 

Maximum evacuation path length 62.89 m 

 

 
Fig. 5  Emergency evacuation simulation based on the BIM acquired by RGB-D devices: (a) evacuation space BIM im-
ported into the simulation system; (b) layout of personnel location and export areas; (c) evacuation topology structure 
design and evacuation shortest path automatic generation; (d) visualization analysis of emergency evacuation based on 
the pedestrian micro simulation model (2D); (e) visualization analysis of emergency evacuation based on the pedestrian  
micro simulation model (3D) 
BIM: building information model. References to color refer to the online version of this figure 
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system uses a few meaningful points for camera pose 
estimation, and thus has a lower computational cost 
than the dense SLAM system. The dense style mod-
eling method uses mainly an ICP algorithm or a 
modified ICP algorithm for scene fusion, which is 
time-consuming and has high computing cost. After 
that, two typical applications including indoor local-
ization and emergency evacuation based on RGB-D 
devices were introduced. By summarizing a broad 
spectrum of literature related to RGB-D devices, we 
hope this work gives some insights into this important 
topic.  
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