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Abstract: In this study, the finite-time formation control of multi-agent systems with region constraints is studied.
Multiple agents have first-order dynamics and a common target area. A novel control algorithm is proposed using
local information and interaction. If the communication graph is undirected and connected and the desired framework
is rigid, it is proved that the controller can be used to solve the formation problem with a target area. That is,
all agents can enter the desired region in finite time while reaching and maintaining the desired formation shapes.
Finally, a numerical example is given to illustrate the results.
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1 Introduction

Research on flight formation and consensus con-
trol of multiple spacecraft has been an interesting
topic for decades. In addition, the explosion of com-
puting and the rapid improvement of communication
have increased activities in many research fields. In
particular, there has been increasing interest in the
problem of formation control of multiple agents in re-
cent years (Porfiri et al., 2007; Oh and Ahn, 2013; Oh
et al., 2015; Dong and Hu, 2016). The formation of
a multi-agent system (MAS) is designed to perform
multitasking and achieve high precision, slow dis-
placement, and stable automatic control. The task
of the agents is to realize and keep formation shape,
where each agent depends on internal communica-
tion and perception with neighbors. The multi-agent
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formation with a large effective coverage area can
solve problems that a single agent cannot do (Fax
and Murray, 2004; Lafferriere et al., 2005).

Earlier works on the control maneuver prob-
lem of MAS focus mostly on the consistent con-
trol of agents and achieving the goal of formation.
Porfiri et al. (2007) and Dong and Hu (2016) in-
vestigated the time-varying and time-invariant for-
mation control problems of an MAS, considering
general linear dynamics. Xia et al. (2016) studied
the collision avoidance problem of multiple agents
in the formation process. Under the assumption
that network topologies are fixed and undirected,
Xie and Wang (2009) provided the decentralized for-
mation control maneuvers for a first-order MAS.
The formation problem in complex situations has
attracted much attention, and numerous results
have been reported. Li et al. (2013) investigated
the formation problem for a nonlinear MAS with
time-varying communication delay. The formation
of multiple agents is applied to not only single-
integration MAS, but also high-order integral MAS.
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Rezaee and Abdollahi (2015) considered the for-
mation of an MAS with second-order dynamics.
Dong et al. (2014) introduced time-invariant forma-
tion control for linear MAS, and considered multiple
agents with high-order dynamics and communica-
tion time delays. In reality, we may need to consider
some constraints, including space and angle-only
constraints (Egerstedt and Hu, 2001; Hong et al.,
2006; Basiri et al., 2010; Ge et al., 2016). Basiri et al.
(2010) designed a distributed coupled controller with
specified angle constraints, and provided a new tool
for trajectory tracking control. Yang et al. (2019)
studied the formation problem for an MAS with re-
gion constraints. The majority of works mentioned
above studied only the stability of formation and few
concerned the finite-time stability. Xiao et al. (2009)
developed the framework to deal with consensus and
finite-time formation control of an MAS. Focusing on
first- and second-order dynamics of multiple agents,
Sun et al. (2014) proposed an algorithm that can
reach formation stabilization in finite time.

In practical applications, we need to consider
some constraints and timeliness, such as the need to
implement a formation into a specific area within a
specific time. So, it is necessary to consider the for-
mation problem with both finite time and regional
constraints. In this study, we design a controller
which controls all agents to enter the desired region
and to track a desired shape in finite time. An MAS
with first-order dynamics is considered. Compared
with Xiao et al. (2009) and Sun et al. (2014), we con-
sider the regional constraints. Compared with Basiri
et al. (2010) and Yang et al. (2019), we consider the
finite time. In fact, we study a more complex sit-
uation. For the desired region, the previous results
often lead to a leader-following formation controller.
Unlike the previous results, our algorithm does not
depend on the leader. It has good robustness. In
comparison with the controller in Yang et al. (2019),
the proposed algorithm handles the finite-time for-
mation problem in two steps successively. First, it
makes all the agents enter the desired area in finite
time. Second, it enables all the agents to reach the
desired formation shapes in finite time while keeping
the shapes.

2 Preliminaries

Notations are described as follows: Let x be a

two-dimensional (2D) column vector; its transpose is
denoted as xT. R

2 is the set of all 2D real vectors.
Ω is the closed convex set in R

2. ‖x‖1 is the 1-norm
of x. ‖x‖ and PΩ(x) = arg min

x̄∈Ω
‖x− x̄‖ denote the

2-norm of x and the projection of vector x in Ω,
respectively. The sign function of x is defined as
sgn(x). If the function h(x) is reversible, then its
inverse is denoted as h−1(x). ∂/∂x is the partial
differential with respect to x. R

n×m is the set of all
n×m real matrices. A ∈ R

n×m is a matrix, and its
transpose is denoted as AT.

In this study, we consider each node in the graph
as an agent. The mobile agents are regarded as the
vertices of a graph, and interactions among agents
are considered as edges of the graph. We consider
that the communication graph G(V , E) is composed
of vertex set V = {1, 2, . . . , N} and edge set E . If
(i, j) ∈ E , then nodes i and j are neighbors, and
node i can obtain the information of node j. The
neighbors of vertex i are represented as Ni = {j :

j ∈ V , (i, j) ∈ E}. The adjacency matrix of graph G
is A = [aij ] ∈ R

N×N , where aii = 0, aij = aji = 1 if
(i, j) ∈ E ; otherwise, aij = 0.

We consider that the system is composed of N
agents (indexed as 1, 2, . . . , N). The dynamics of the
agents can be described as

ẋi(t) = ui(t), (1)

where xi(t) ∈ R
2 and ui(t) ∈ R

2 represent the po-
sition vector and control input acting on agent i,
respectively.

We employ a rigid framework (G,X) to describe
the target formation shape. Each agent is viewed as a
vertex of the framework. First, we need the following
definition:
Definition 1 The pair (G,X) is a framework
of G in R, where X = [xT

1 ,x
T
2 , . . . ,x

T
N ]T ∈ R

2N .

Ordering edges E in some way, the rigidity function
hG(X) : R2N → R

|E| related to the pair (G,X) is
defined as (Oh et al., 2015)

hG(X) =
1

2

[‖xi − xj1‖2, ‖xi − xj2‖2, . . . ,
‖xi − xjk‖2

]T
, k = |E|, (2)

where |E| denotes the cardinality of E and (i, j) ∈ E .
Second, the rigidity framework is defined as

follows:
Definition 2 Let G and K be a graph and the com-
plete graph of N vertices, respectively. A framework
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(G,X) in R
2 is said to be rigid if there exists a neigh-

borhood U in R
2N such that h−1

G (hG(X)) ∩ U =

h−1
K (hK(X)) ∩ U (Asimow and Roth, 1979). The

complete graph K means that for any two vertices in
V , there is an edge between them.
Remark 1 The rigidity framework is a graph,
in which the lengths of some edges are sufficiently
limited to maintain the entire configuration. In other
words, in a rigid graph, the motion of any vertex will
not destroy the shape of the whole graph. We can
see that Fig. 1a represents a nonrigid framework and
that Fig. 1b shows a rigid one.

(a) (b)

Fig. 1 Nonrigid (a) and rigid (b) frameworks

In this study, we consider the finite-time forma-
tion of a multi-agent problem. That is, all agents
are given a target region Ω ∈ R

2 which limits all the
agents to enter the desired area and reach formation
in finite time. To deal with the problem, given that
a vector X∗ = [x∗T

1 ,x∗T
2 , . . . ,x∗T

N ]T (x∗
i ∈ Ω) is the

final desired state of the formation, (G,X∗) is rigid.
The target formation is given as follows:

EX := {X : xi −xj = x∗
i −x∗

j , j ∈ Ni, i ∈ K}. (3)

That is, EX is the set of all formations congruent to
X∗.

The following two lemmas will be used in this
study:
Lemma 1 The system is defined as

dx

dt
= f(x), f(0) = 0, x ∈ R

2. (4)

Let a continuous function V (x) : U −→ R be pos-
itive definite. If there exist an open neighborhood
U0 ⊂ U of the origin, c > 0, and α ∈ (0, 1), such that
V̇ (x)+c(V (x))α ≤ 0, x ∈ U0\{0}, then V (x(t)) −→
0 for all t > T (x0), where T (x0) ≤ (V (x0))

1−α

c(1− α)
and

the initial state x(t0) = x0 ∈ U0 \ {0}. This im-
plies that V (x) would converge to zero in finite time.

Therefore, the stability of system (4) is proved (Bhat
and Bernstein, 2000).
Lemma 2 Assume that Y �= ∅ is a closed convex

set in R
2. Then, we have ∇1

2
‖y − PY (y)‖2=y −

PY (y), and ‖y − PY (y)‖ is continuous with respect
to y (∀y ∈ R

2) (Facchinei and Pang, 2003).
To facilitate the later analysis, the following as-

sumptions are necessary:
Assumption 1 In this paper, the communication
graph G is undirected and connected for all t.
Assumption 2 The desired framework (G,X∗) is
rigid.
Remark 2 The rigidity of the framework (G,X∗)
ensures that the target formation can be achieved.

3 Asymptotic formation control and
entry into the desired area in finite time

In this section, we introduce a novel maneuver
to make the agents enter the target convex region
and achieve target formation in finite time. An MAS
with first-order dynamics is considered. The algo-
rithm consists of a target coordination part and a
sign function of the projection of xxxi(t) in Ω. The
formation controller is given as follows:

ui(t) =−
∑

j∈Ni

aijsgn(xi(t)− xj(t)− γ∗
ij)

− βsgn(xi(t)− PΩ(xi(t))),

(5)

where β is a positive coefficient, ui(t) is the control
input of agent i, γ∗

ij is the state vector of the desired
formation, PΩ(xi(t)) is the convex projection ofxi(t)

in Ω, and sgn(·) is the sign function. For simplifica-
tion, let γ∗

ij = x∗
i − x∗

j . Then, xi(t) − xj(t)− γ∗
ij =

xi(t) − x∗
i − (xj(t) − x∗

j) = x̃i(t) − x̃j(t), where
x̃i(t) = xi(t)−x∗

i and x̃j(t) = xj(t)−x∗
j . Then, we

will give the main results of this study.
Theorem 1 Under Assumptions 1 and 2, if β > N ,
for the first-order MAS (1) with controller (5), all the
agents can realize the asymptotic convergence of the
formation shape in finite time and xi(t) ∈ Ω in finite
time.

Then, Theorem 1 will be proved. First, we will
prove that all the agents can enter the target convex
region in finite time. Second, we will verify that all
the agents achieve finite-time formation. For simpli-
fication, xi(t) is written as xi and xj(t) is written as
xj for any i, j = 1, 2, . . . , N .
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Proof First, to prove that all the agents have
access to the target area in a limited time, we take
the Lyapunov candidate function of system (1) as

Vi(t) =
1

2
‖xi − PΩ(xi)‖2. (6)

Taking the derivative of Vi(t) with respect to t

along system (1) with controller (5), it follows from
Lemma 2 that

V̇i(t) =[xi − PΩ(xi)]
Tẋi

=−
∑

j∈Ni

aij [xi − PΩ(xi)]
Tsgn(xi − xj − γγγ∗

ij)

− β[xi − PΩ(xi)]
Tsgn(xi − PΩ(xi))

≤
N∑

j=1

aij‖xi − PΩ(xi)‖‖sgn(xi − xj − γγγ∗
ij)‖

− β[xi − PΩ(xi)]
Tsgn(xi − PΩ(xi))

≤N‖xi − PΩ(xi)‖ − β[xi − PΩ(xi)]
T

· sgn(xi − PΩ(xi)). (7)

Because [xi − PΩ(xi)]
Tsgn(xi − PΩ(xi)) = ‖xi −

PΩ(xi)‖1 and ‖x‖1 ≥ ‖x‖ (x ∈ R
2), we have

− [xi − PΩ(xi)]
Tsgn(xi − PΩ(xi))

= −‖xi − PΩ(xi)‖1
≤ −‖xi − PΩ(xi)‖.

Then, if β > N , inequality (7) can be rewritten as

V̇i(t) ≤ N‖xi − PΩ(xi)‖ − β‖xi − PΩ(xi)‖
=(N − β)‖xi − PΩ(xi)‖
≤ 0.

(8)

This implies that Vi(t) is bounded. By Eq. (6), we
have

V̇i(t) ≤
√
2(N − β)

√
Vi(t). (9)

Then inequality (9) can be rewritten as

V̇i(t)√
Vi(t)

≤ −
√
2(β −N) < 0. (10)

There exist t0 ≥ 0 and t ≥ t0. Integrating on both
sides of inequality (10) starting from t0 to t, we can
obtain

√
Vi(t)−

√
Vi(t0) ≤ −√

2(β −N)(t− t0). (11)

It is clear that Vi(t) asymptotically converges to zero
in finite time. That is, there exists a constant t1 > t0

such that xi(t) ∈ Ω for all t > t1 and for all i.
So, system (1) is asymptotically stable by Lemma 1.
Namely, agents can access the desired region in finite
time.

Next, we will prove that all the agents can
achieve an asymptotic target formation shape in lim-
ited time. Define the Lyapunov candidate function
of system (1) as follows:

V (t) =
1

2

N∑

i=1

∥
∥
∥∥x̃i − 1

N

N∑

k=1

x̃k

∥
∥
∥∥

2

. (12)

Taking the time derivative of V (t), we obtain

V̇ (t) =
N∑

i=1

(
x̃i − 1

N

N∑

k=1

x̃k

)T(
˙̃xi − 1

N

N∑

k=1

˙̃xk

)
.

(13)
For all t > t1, according to x̃i = xi − x∗

i , x̃j =

xj − x∗
j , and xi ∈ Ω, system (1) with controller (5)

can be rewritten by

˙̃xi = −
N∑

j=1

aijsgn(x̃i − x̃j). (14)

Because the undirected network is considered in this
study, then aij = aji. Thus,

N∑

i=1

N∑

j=1

aijsgn(x̃i − x̃j) = 000. (15)

By Eqs. (14) and (15), Eq. (13) can be rewritten by

V̇ (t) =

N∑

i=1

(
x̃i − 1

N

N∑

k=1

x̃k

)T

˙̃xi

= −
N∑

i=1

N∑

j=1

aij

(
x̃i − 1

N

N∑

k=1

x̃k

)T

sgn(x̃i − x̃j)

= −
N∑

i=1

N∑

j=1

aij x̃
T
i sgn(x̃i − x̃j)

+
1

N

N∑

i=1

N∑

j=1

N∑

k=1

aijx̃
T
k sgn(x̃i − x̃j)

= −
N∑

i=1

N∑

j=1

aij x̃
T
i sgn(x̃i − x̃j).

(16)
Because aij = aji, we have
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−
N∑

i=1

N∑

j=1

aij x̃
T
i sgn(x̃i − x̃j)

= −1

2

( N∑

i=1

N∑

j=1

aijx̃
T
i sgn(x̃i − x̃j)

+

N∑

i=1

N∑

j=1

ajix̃
T
j sgn(x̃j − x̃i)

)

= −1

2

N∑

i=1

N∑

j=1

aij(x̃i − x̃j)
Tsgn(x̃i − x̃j)

= −1

2

N∑

i=1

N∑

j=1

aij‖x̃i − x̃j‖1.

(17)

Then Eq. (16) can be rewritten as

V̇ (t) = −1

2

N∑

i=1

N∑

j=1

aij‖x̃i − x̃j‖1. (18)

Let maxi,j∈V ‖x̃i − x̃j‖ = ‖x̃i0 − x̃j0‖, (i0, j0) ∈
E . Since graph G is connected, then we have∑N

i=1

∑N
j=1 aij‖x̃i − x̃j‖ ≥ ‖x̃i0 − x̃j0‖. Note that

‖x̃i − x̃j‖ ≤ ‖x̃i − x̃j‖1 for all i, j ∈ V . We have

V̇ (t) =− 1

2

N∑

i=1

N∑

j=1

aij‖x̃i − x̃j‖1

≤− 1

2

N∑

i=1

N∑

j=1

aij‖x̃i − x̃j‖

≤ − 1

2
‖x̃i0 − x̃j0‖.

We also have

√
V (t) =

√√
√
√1

2

N∑

i=1

∥
∥
∥
∥x̃i − 1

N

N∑

k=1

x̃k

∥
∥
∥
∥

2

≤
√
2

2

N∑

i=1

∥
∥
∥∥x̃i − 1

N

N∑

k=1

x̃k

∥
∥
∥∥

≤
√
2

2N

N∑

i=1

N∑

k=1

‖x̃i − x̃k‖

≤
√
2N

2
‖x̃i0 − x̃j0‖.

(19)

By Eq. (18) and inequality (19), we can obtain

V̇ (t) ≤ −1

2
‖x̃i0 − x̃j0‖ ≤ − 1√

2N

√
V (t). (20)

Then inequality (20) can be rewritten as

V̇ (t)
√
V (t)

≤ −
√
2

2N
. (21)

Integrating on both sides of inequality (21), we have

2
√
V (t)− 2

√
V (t0) ≤ −

√
2

2N
(t− t0). (22)

Clearly, there exists t2 ≥ t1 such that
√
V (t) → 0

when t > t2, which means that

lim
t→+∞

∥
∥∥
∥x̃i − 1

N

N∑

k=1

x̃k

∥
∥∥
∥ = 0.

Thus, we can obtain x̃1 = x̃2 = . . . = x̃N . That
is, x1 − x∗

1 = x2 − x∗
2 = . . . = xN − x∗

N , and then
xi − xj = x∗

i − x∗
j (i, j = 1, 2, . . . , N). This implies

that the group can reach an asymptotic formation
shape in limited time. In summary, according to
Lemma 1, there exists t > t2 such that all the agents
can achieve an asymptotic target formation shape in
finite time and can access the desired area in finite
time.
Remark 3 Because the symmetry of an undi-
rected graph is needed in the proof of the theorem,
whether the control algorithm is suitable for the di-
graph or the time-varying graph remains to be fur-
ther studied.

4 Simulation results

In this section, simulation is performed to illus-
trate the validity of the theoretical results.

In the simulation, we consider an MAS with
92 agents in R

2. In controller (5), parameter β is
taken as 100 according to N = 92 and β > N . We
choose the initial relative positions randomly in the
unit square. We choose the random network (Erdös
and Rényi, 1959) which satisfies Assumption 1 as
the communication topology network of the MAS
and the adjacency matrix of the random network as
A = [aij ]. The random network is defined as follows:
start with a set of N isolated vertices and add suc-
cessive edges among them according to probability
p. Here, we choose N = 92 and p = 0.1. Fig. 2
shows the initial positions of the 92 agents. Fig. 2
shows that the edge describes the information ex-
change among agents, and that the node represents
the initial relative position in the unit square. We
choose the target formation shape (G,X∗) of the
group as “2019” (Fig. 3).

The desired area is a rectangle, where Ω =

{(x, y) : 3 ≤ x ≤ 12, 2 ≤ y ≤ 6}. By controller (5),
we have the motion trajectories of 92 agents in
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Fig. 4. Fig. 5 shows the final configuration of the
group. Note that the multi-agent group will move
into the desired region and achieve the target forma-
tion shape.

Errors between the position and projection of
agentsxi(t) (i = 1, 2, . . . , 92) inΩ are shown in Fig. 6
(we plotted the graph in 0.50 s). Note that the errors
will asymptotically converge to zero in 0.05 s. This
implies that all the agents would access the desired
region in finite time. Finally, the control inputs of 92
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Fig. 2 Initial configuration of 92 agents

Fig. 3 Desired formation shape of 92 agents
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Fig. 4 Simulation process of a 92-agent target forma-
tion shape

agents are shown in Fig. 7. It can be seen that the
finite-time formation for the first-order multi-agent
system (1) is achieved in 3.0 s. Therefore, simulation
results demonstrate the validity of our theoretical
results. That is, all the agents will enter the target
region in finite time and realize the target formation
shape in limited time.

6

5

4

3

2
3 4 6 7 8 9 10 11 125

x

y

Fig. 5 Final configuration of 92 agents

4.0

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0

║
x i−

P
Ω
(x

i)║

0 0.05 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50
t (s)

0.10

Fig. 6 Error between the convergence positions and
projection of 92 agents
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5 Conclusions and future work

In this study, a finite-time formation problem
has been studied with the consideration of a convex
constraint area. A formation controller has been pro-
posed by the convex set and local information among
the agents. Based on the rigorous undirected net-
work topology, it is shown that all the agents would
enter the global desired area and reach formation in
finite time. Finally, the results have been illustrated
by simulation. In the future, we will consider how
to use the control algorithm to solve the constrained
formation problem with nonlinear systems, directed
communication networks, or time-varying communi-
cation networks.
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