
Seng et al. / Front Inform Technol Electron Eng   2021 22(9):1179-1193 1179 

 
 
 
 

Forecasting traffic flows in irregular regions with multi-graph  
convolutional network and gated recurrent unit* 

 
Dewen SENG, Fanshun LV, Ziyi LIANG, Xiaoying SHI‡, Qiming FANG 

School of Computer Science and Technology, Hangzhou Dianzi University, Hangzhou 310018, China 
E-mail: sengdw@hdu.edu.cn; 172050041@hdu.edu.cn; liangziyi2020@163.com;  

shixiaoying@hdu.edu.cn; fangqiming@hdu.edu.cn 
Received May 21, 2020; Revision accepted Feb. 17, 2021; Crosschecked Apr. 1, 2021; Published online July 29, 2021 

 

Abstract: The prediction of regional traffic flows is important for traffic control and management in an intelligent traffic system. 
With the help of deep neural networks, the convolutional neural network or residual neural network, which can be applied only to 
regular grids, is adopted to capture the spatial dependence for flow prediction. However, the obtained regions are always irregular 
considering the road network and administrative boundaries; thus, dividing the city into grids is inaccurate for prediction. In this 
paper, we propose a new model based on multi-graph convolutional network and gated recurrent unit (MGCN-GRU) to predict 
traffic flows for irregular regions. Specifically, we first construct heterogeneous inter-region graphs for a city to reflect the rela-
tionships among regions. In each graph, nodes represent the irregular regions and edges represent the relationship types between 
regions. Then, we propose a multi-graph convolutional network to fuse different inter-region graphs and additional attributes. The 
GRU is further used to capture the temporal dependence and to predict future traffic flows. Experimental results based on three 
real-world large-scale datasets (public bicycle system dataset, taxi dataset, and dockless bike-sharing dataset) show that our 
MGCN-GRU model outperforms a variety of existing methods. 
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1  Introduction 

 
An intelligent transportation system is a signif-

icant part of a smart city, and traffic forecasting plays 
an important role in intelligent transportation control 
and management (Zhu et al., 2019). The goal of  
region-level traffic forecasting is to predict the future 
flow number of regions in a city given historical ob-
servation. Accurate traffic forecasting provides a 
scientific basis for traffic managers in controlling 
flow numbers. 

This task is challenging because of the compli-
cated spatio-temporal dependencies among regions: 

(1) Spatial dependence: Complicated dependen-
cies exist among different regions, and are influenced 
by not only the topological structure of the urban road 
network, but also the proximity and usage patterns of 
regions; 

(2) Temporal dependence: Traffic flows in one 
region change dynamically over time. These flows 
not only have periodic patterns, but also are affected 
by the flow conditions of previous time steps. 

Traditional time-series forecasting methods, 
such as auto-regressive integrated moving average 
(ARIMA) (Box et al., 2015), time-varying Poisson 
model (Moreira-Matias et al., 2013), and vector au-
toregressive model (Chandra and Al-Deek, 2009), 
consider only the temporal dependence and have 
relatively low prediction accuracy. With the boom of 
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deep learning techniques, researchers tried to adopt 
them for flow prediction. Long short-term memory 
(LSTM) and gated recurrent unit (GRU) models 
achieved better performance for short-term time- 
series prediction than traditional methods (Fu et al., 
2016). However, they also focused only on temporal 
correlation. 

To better capture spatio-temporal correlations, 
deep learning based models, such as the convolutional 
neural network (CNN) (Zhang et al., 2016) and re-
sidual neural network (Zhang et al., 2018), have been 
introduced. The city was divided into grids and the 
grid-level flows were predicted (Zhang et al., 2016, 
2018). However, such methods focused on modeling 
the Euclidean correlations among regular grids. The 
city can be divided into meaningful regions according 
to the road network or administrative boundaries. 
These regions are always irregular with a complex 
topological structure. Grid-level prediction models 
failed to predict the demands of irregular regions, 
decreasing the effectiveness of the predicted results. 
In addition, most existing methods (Li et al., 2018; Yu 
B et al., 2018; Zhao et al., 2020) use only the distance 
to represent the spatial relationship, but ignore the 
multiple complex relationships among regions. 

In this study, we propose a novel deep learning 
based prediction model, i.e., multi-graph convolu-
tional network and gated recurrent unit (MGCN- 
GRU), to predict traffic flows in irregular regions. We 
view the traffic flows in a city from the graph per-
spective. Three heterogeneous inter-region graphs 
encoding various spatial dependencies are con-
structed first. A multi-graph convolutional network is 
proposed to fuse the complex non-Euclidean correla-
tions among irregular regions. Then, a GRU is built to 
capture the dynamic temporal patterns. Hence, both 
the spatial and temporal patterns are effectively cap-
tured for region-level traffic flow prediction. Ex-
perimental results on three real-world datasets 
demonstrate that our model can effectively capture 
the spatio-temporal correlations from traffic data, and 
that our MGCN-GRU model outperforms a variety of 
existing methods. 

Two contributions are made in this paper: 
1. We encode multiple non-Euclidean pair-wise 

correlations among irregular regions using multiple 
graphs, and propose a novel prediction model to use 
these spatial correlations to predict traffic flows in 

irregular regions. 
2. Three real-world traffic datasets (public bi-

cycle system dataset, taxi dataset, and dockless bike- 
sharing dataset) are used to evaluate our model, and 
the experimental results show that our MGCN-GRU 
model outperforms a variety of existing methods. 

 
 

2  Literature review 

2.1  Traffic flow prediction 

Traffic flow prediction is important for traffic 
management. Traffic-related datasets have been used 
to predict taxi demand (Moreira-Matias et al., 2013; 
Yao et al., 2018), traffic speed (Li et al., 2018; Wang 
et al., 2018; Yu B et al., 2018; Kim et al., 2019), and 
bicycle flows (Kaltenbrunner et al., 2010; Yoon et al., 
2012). Traditional approaches use time-series fore-
casting techniques such as ARIMA, seasonal ARIMA 
(Williams and Hoel, 2003), and time-varying Poisson 
model (Moreira-Matias et al., 2013). In recent years, 
deep learning based methods have been applied as 
novel alternatives for traffic flow prediction. LSTM 
(Tian and Pan, 2015) and GRU (Fu et al., 2016) 
models have been adopted to predict short-term traf-
fic flows, which perform better than traditional mod-
els. Yu R et al. (2017) augmented the LSTM model 
with stacked autoencoder accounting for accident 
features to forecast extreme traffic conditions. How-
ever, the above methods focus only on the temporal 
correlation. 

To capture the spatial and temporal dependen-
cies simultaneously, Zhang et al. (2016) partitioned a 
city into grids and proposed a deep neural network 
based prediction model including spatio-temporal and 
global components. CNN was used to capture spatio- 
temporal dependencies. Zhang et al. (2018) further 
proposed ST-ResNet, using a residual neural network 
to forecast the inflow number and outflow number for 
each region. Yao et al. (2018) proposed a deep multi- 
view spatial-temporal network to predict taxi demand. 
The above methods (Zhang et al., 2016, 2018; Yao 
et al., 2018) predict traffic flows in regular grids. 
However, partitioning the city into grids is inaccurate 
for flow prediction. Human activity regions are usu-
ally irregular, influenced by road networks or ad-
ministrative boundaries. In our study, we use a multi- 
graph convolution to model the spatial relationships 
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among irregular regions explicitly, so that the scope 
of prediction is no longer limited to regular grids. 

2.2  Graph convolutional networks 

Generalizing CNN to the graph convolutional 
network (GCN) can enable the handling of arbitrary 
graph-structured data, which has received widespread 
attention recently. GCN was first introduced by Bruna 
et al. (2014), in which convolutional layers were ap-
plied to the graph data. It was later extended by Def-
ferrard et al. (2016) with fast localized convolutions 
to accelerate the computation process. Kipf and 
Welling (2017) proposed an efficient variant of CNN 
which can be used directly on graphs, and the network 
achieved good performance on graph node classifi-
cation tasks. Seo et al. (2018) proposed a graph CNN 
to deal with structured sequence data. 

GCN has been successfully used in many ap-
plications, including semi-supervised classification 
(Kipf and Welling, 2017), system recommendation 
(Monti et al., 2017; Ying et al., 2018), and traffic 
prediction. For traffic prediction, Zhao et al. (2020) 
proposed a temporal GCN (T-GCN), combining the 
GCN with GRU to predict the traffic speed on the 
road. Li et al. (2018) and Yu B et al. (2018) applied 
GCN to predict the traffic speed in road segments. 
These methods (Li et al., 2018; Yu B et al., 2018; 
Zhao et al., 2020) construct only one kind of graph 
(e.g., distance) to represent the spatial relationship. 
Chai et al. (2018) constructed multiple graphs to re-
flect the heterogeneous relationships among stations, 
and proposed a multi-graph CNN model to predict 
bike flows at the station level. As one graph may not 
be able to describe inter-region relationships com-
prehensively, we construct multiple graphs and fur-
ther design a multi-graph convolutional network to 
capture the heterogeneous spatial relationships among 
regions. In addition, different from Chai et al. (2018), 
in which only the original adjacent matrices were 
calculated, we further set different thresholds for 
different graphs, and investigate the impact of the 
threshold on the model performance. 

 
 

3  Problem definition and framework overview 

3.1  Problem definition 

Our goal in traffic forecasting is to predict traffic 
flows over a certain period of time based on historical 

traffic data. 
Definition 1 (Traffic flows)    Traffic flows include 
two types, i.e., inflows and outflows. Supposing that 
we divide the city into N disjoint irregular regions, the 
inflows in all regions in the time interval t (e.g., 1 h) 
can be denoted as 1 2[ri , ri , , ri ],t t t t

N= I  where rit
i  

stands for the inflows of region i in the time interval t. 
Similarly, the outflows in the time interval t can be 
denoted as 1 2[ro , ro , , ro ],t t t t

N= O  and rot
i  stands for 

the outflows of region i in the time interval t. 
Definition 2 (Inter-region graph)    The inter-region 
graph encodes the spatial relationship between irreg-
ular regions, and is defined as a weighted graph  
G=(V, E). The nodes vi∈V in the graph represent the 
irregular regions, and |V|=N. The edges (vi, vj)∈E 
encode the pair-wise relationships among regions. 
The weights of the edges encode the relationship 
strength between regions, and are represented by an 
adjacency matrix A∈N×N. 

Based on the above definitions, the traffic flow 
prediction problem for irregular regions can be for-
mulated as follows: Given inputs with the history data 
[(I0, O0), (I1, O1), …, (It−1, Ot−1)], a function f(·) that 
maps the historical inflows and outflows of all irreg-
ular regions to the inflows and outflows at the next 
time step is learned: 

 
0 0 1 1 1 1 ( ) ˆˆ( , ), ( , ),..., ( , ) ( , ),t t f t t− − ⋅  → I O I O I O I O  (1) 
 

aiming to minimize 2 2ˆ) (( ) ,t t t t− + −Î I O O  where 

(It, Ot) and ˆˆ( , )t tI O  are the ground truth and pre-
dicted traffic flow numbers of the next time step t, 
respectively. 

3.2  Framework overview 

The system architecture of the proposed 
MGCN-GRU model is shown in Fig. 1. As seen from 
the right side of Fig. 1, we first use the historical 
time-series data as inputs, and a multi-graph convo-
lutional network is designed to capture the spatial 
dependency for each time step. Details of MGCN are 
illustrated on the left side of Fig. 1. Based on the 
segmented irregular regions, we simplify the data 
from the spatial and temporal dimensions and calcu-
late the inter-region graphs to encode pair-wise cor-
relations between regions, including distance graph, 
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temporal similarity graph, and interaction graph. The 
inter-region graphs are processed by the GCN model 
and combined with the additional time and weather 
attributes to obtain the multi-graph convolutional 
results. These calculation results are further fed into 
the GRU model. The temporal dynamic pattern is 
captured by transmitting information between units. 
The observations in different time steps are aggre-
gated. Then, the additional attribute is concatenated 
with the output of the GCN model, and fed into the 
fully connected layer to generate the prediction  
results. 
 
 
4  Method 
 

In this section, we describe the proposed novel 
prediction model MGCN-GRU in detail. 

4.1  Datasets and data pre-processing 

Three real-world traffic datasets are used for 
model evaluation. Here, we first introduce the da-
tasets used in our study. 

1. Public bicycle system (PBS) dataset 
(https://www.citibikenyc.com/system-data). The PBS 
dataset was taken from the bike system in New York 
City (NYC), from Jan. 1, 2014 to Dec. 31, 2014. The 
PBS dataset includes two kinds of records, station 
records and trip records. Station records contain at-
tributes of stations, such as station name, longitude, 
and latitude. Each trip record contains the start station, 
start time, end station, and end time. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2. Taxi dataset (https://www1.nyc.gov/site/tlc/ 

about/tlc-trip-record-data.page). The taxi dataset 
contains taxi trip records of NYC from Jan. 1, 2014 to 
Dec. 31, 2014. Each trip record captures the pick-up/ 
drop-off timestamps and the corresponding Global 
Positioning System coordinates. 

3. Dockless bike-sharing (DBS) dataset 
(https://www.biendata.com/competition/mobike/). The 
DBS dataset contains dockless bicycle usage records 
from May 10, 2017 to May 24, 2017 in Beijing. Each 
record represents the flow from a start location to a 
destination location, containing user ID, bike ID, start 
time, start location, and end location. Since the start 
and end locations are encoded by geohash, a decode 
function is adopted to obtain the latitude and longi-
tude coordinates for locations. 

The original datasets are pre-processed first, in-
cluding region segmentation and spatial-temporal 
simplification. 

1. Region segmentation 
The first step is to divide the city into irregular 

regions. The region boundaries can be provided by 
users directly, or generated by an irregular map seg-
mentation method (Yuan et al., 2015) if road network 
data is available. In our experiments, the region 
boundaries of NYC are generated by the map seg-
mentation method, and the boundaries of Beijing are 
provided by the user. We obtain 94 and 363 irregular 
regions for NYC and Beijing, respectively. The 
segmented maps can be seen on the left side of Fig. 1. 

2. Spatial-temporal simplification 
The entire time period is split into time steps 

Fig. 1  Architecture of the proposed multi-graph convolutional network and gated recurrent unit (MGCN-GRU) model 
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(e.g., hour), and the original traffic records are 
mapped into regions on an hourly basis. For PBS 
dataset, all stations are mapped into the corresponding 
regions. For taxi and DBS datasets, the start and end 
locations are mapped into regions. Hence, different 
traffic datasets can be abstracted as a uniform form, 
and we obtain the following simplified trajectories: 

 
Simp [startRegion,startDate,startHour,

endRegion,endDate,endHour],

=TR
     (2) 

 
which means that a person departs from the star-
tRegion on startDate of startHour and arrives at the 
endRegion on endDate of endHour. startRegion and 
endRegion are region IDs. 

Then, we aggregate trajectories to calculate the 
inflows and outflows. A record of TRinflow represents 
the inflow number ending at region i on IDate of IHour, 
which is represented as TRinflow=[IDate, IHour, i, num]. 
From this, we can obtain the number of inflows rit

i  in 
region i during the tth time step. A record of TRoutflow 
represents the outflow number starting from region i 
on ODate of OHour, which is represented as 
TRoutflow=[ODate, OHour, i, num]. From this, we can 
obtain the number of outflows rot

i  in region i during 

the tth time step. Based on rit
i  and ro ,t

i  It and Ot are 
calculated. For the taxi and PBS datasets, It and Ot are 
obtained. For the DBS dataset, only Ot is calculated 
since the end time is not available. 

4.2  Construction of multiple inter-region graphs 

After calculating the regional inflows and out-
flows, we build different inter-region graphs to rep-
resent various spatial relationships among regions 
that can help improve our prediction accuracy. Spe-
cifically, they are distance graph, temporal similarity 
graph, and interaction graph. 

1. Distance graph 
Since nearby regions may share similar usage 

patterns, the distance graph is constructed. The edge 
weight is the distance between two regions. The el-
ement in the adjacency matrix of the distance graph is 
calculated as follows: 

 
 

d

dist( , ), if ,
( , )

0, if ,
i j i j

A i j
i j
≠

=  =
               (3) 

where dist(i, j) is the distance between the centroids of 
region i and region j. The adjacency matrix Ad is 
further normalized to [0, 1] and transformed to a 0/1 
matrix based on the predefined distance threshold 
thresd. If Ad(i, j)≤thresd, which means that the distance 
between region i and region j is very short, then  
Ad(i, j)=1; otherwise, Ad(i, j)=0. 

2. Temporal similarity graph 
Historical records contain regions’ usage char-

acteristics. Temporal demand correlations between 
regions are calculated to generate the temporal simi-
larity graph. Specifically, the historical usage num-
bers of each region in each time step (1 h) are calcu-
lated. Taking the PBS dataset as an example, each 
region has a time series of 17 520 (365×24×2) hourly 
traffic flow values for a one-year period. The time 
series for region i can be expressed as 

0 1 8759 0 1 8759[ri , ri , , ri , ro , ro , , ro ].i i i i i i i=  h  Then, the 
similarity between every two regions is calculated by 
the Pearson correlation coefficient (PCC) based on 
the hourly time series between region i and region j. 
An element in the adjacency matrix of the temporal 
similarity graph AtSimi(i, j) is calculated as follows:  

 

tSimi

PCC( , ), if ,
( , )

0, if ,
i j i j

A i j
i j
≠

=  =

h h
          (4) 

 
where hi and hj are the hourly time series for region i 
and region j, respectively. The adjacency matrix AtSimi 
is further normalized to [0, 1] and transformed to a 0/1 
matrix based on the predefined threshold threstSimi. If 
AtSimi(i, j)≥threstSimi, which means that region i and 
region j have similar temporal usage patterns, then 
AtSimi(i, j)=1; otherwise, AtSimi(i, j)=0. 

3. Interaction graph 
The bi-directional flows provide plenty of in-

formation. If the flow number between two regions is 
very large, these two regions tend to affect each other 
in their dynamic traffic flow patterns. Therefore, an 
interaction graph is constructed to indicate whether 
two regions have interacted with each other fre-
quently according to the historical records. The in-
teractions include bi-directional flows between two 
regions over a period of time. By aggregating TRSimp, 
we can calculate the flow number fn(i, j) starting from 
region i and ending at region j and the flow number 
fn(j, i) starting from region j and ending at region i 
during the whole time period. Then, the elements in  
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the adjacency matrix of interaction graph Ainter(i, j) are 
calculated. To handle the graph convolution in a uni-
fied form, we set the entries on the main diagonal as 
0:  

 

inter

fn( , ) fn( , ), if ,
( , )

0, if .
i j j i i j

A i j
i j

+ ≠
=  =

        (5) 

 
The adjacency matrix Ainter is further normalized 

to [0, 1] and transformed to a 0/1 matrix based on the 
predefined interaction threshold thresinter. If  
Ainter(i, j)≥thresinter, which means that the interaction 
between region i and region j is strong, then  
Ainter(i, j)=1; otherwise, Ainter(i, j)=0. 

It should be noted that we set the diagonal ele-
ments of all adjacency matrices as 0 in this phase. An 
identity matrix will be added to the adjacency matri-
ces in the following phase, to ensure that the connec-
tion from region i to itself is the strongest. 

4.3  Multi-graph convolutional network 

After constructing the inter-region graphs, we 
propose a multi-graph convolutional network to fully 
exploit different graphs that contain useful spatial 
correlation information and to capture the spatial 
dependency. The multi-graph convolutional network 
can fuse features of various spatial relationships with 
some additional attributes for different time steps. 
The process contains three steps: 

Step 1: Each graph for the (t′)th time step is 
processed by a GCN model ( , ) :tf ′X A  

 
1 1
2 2

d d d d( , ) ,t tf
− −′ ′ 

= σ 
 

 X A D A D W X          (6) 

1 1
2 2

tSimi tSimi tSimi tSimi( , ) ,t tf
− −′ ′ 

= σ 
 

 X A D A D W X   (7) 

1 1
2 2

inter inter inter inter( , ) ,t tf
− −′ ′ 

= σ 
 

 X A D A D W X    (8) 

 
where ,t t t′ ′ ′ =  X I O  is the model input at time t′ 

(t′∈[0, t−1]). Such input can be regarded as the traffic 
flow feature for each node at t′. The elements of the 
feature vector of each node are the inflow number and 
outflow number in the (t′)th time step for a region. 

Thus, the dimension of the feature vector is 2. 
= + N
A A I  is an adjacency matrix with self-loops, 

where IN is an identity matrix. For example, 

d d= + N
A A I  is the distance graph. Adding an iden-

tity matrix IN can ensure that the distance correlation 
from region i to itself is the strongest. Similarly, we 
set tSimi tSimi N= +A A I  for the temporal similarity 

graph and inter inter N= +A A I  for the interaction graph. 
D  is a diagonal matrix with .ii ijj

D A=∑   Wd, WtSimi, 

and Winter are the trainable weight matrices. σ(·) rep-
resents the activation function, and we use tanh in the 
experiments. 

Step 2: The additional attribute t ′attr  for each 
time step is calculated, since the traffic flow in each 
time step has unique influence factors. The additional 
attributes include the date attribute date

t ′attr  (the day of 

the week, 7-dimensional), hour attribute hour
t ′attr  (the 

time of the day, 24-dimensional), weather attribute 

wea ,t ′attr  and temperature attribute temp .t ′attr  The 

weather attribute is divided into eight categories, 
including sun, cloud, light rain, moderate rain, heavy 
rain, light snow, moderate snow, and heavy snow. 
The temperature attribute is divided into eight levels, 
from 10 °F to 90 °F. Every 10 °F corresponds to one 
level. All these attributes use one-hot encoding, and 
are concatenated as a binary vector 

date hour wea temp[ , , , ].t t t t t′ ′ ′ ′ ′=attr attr attr attr attr  

Step 3: Multiple inter-region graphs are fused by 
weight matrices, and the fusion operation is defined 
as follows:  
 

fusion d d d tSimi tSimi tSimi

inter inter inter

( , ) ( , )

( , ),

t t t

t

f f

f

′ ′ ′

′

′ ′= +

′+

 



G W X A W X A

W X A
 

(9) 
 

where d ,′W  tSimi ,′W  and inter′W  are the weight matrices, 
and   is an element-wise multiplication operator. 
The fusion result fusion

t ′G  is further concatenated with 

the additional attributes by weight matrix attr ,′W  to 
generate the multi-graph convolution result 

fusion attr[ , ].t t t′ ′ ′′ ⋅= attM N rGC G W  t ′MGCN  represents 
the input of the GRU neural network. 
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4.4  GRU neural network 

The GRU neural network uses a gated mecha-
nism to memorize as much long-term information as 
possible, which is effective for various tasks. Com-
pared with LSTM, the GRU model has a relatively 
simple structure and fewer parameters, and needs a 
shorter training time. Therefore, we choose the GRU 
model to capture the temporal dependency based on 
the multi-graph convolution results. 

The GRU model obtains the traffic status at time 
t′ by taking the hidden status at time t′−1 and the 
multi-graph convolution result t ′MGCN  as the input. 
Let ht′−1 denote the hidden state at time t′−1 and ht′ 
denote the output state at time t′. The specific calcu-
lation process of the GRU is shown below: 
 

( )1[ , ] ,t t t
u u

′ ′ ′−= σ +MGCNu W h b            (10) 

( )1[ , ] ,t t t
r r

′ ′ ′−= σ +MGCNr W h b             (11) 

( )1tanh [ , ] ,t t t t
c c

′ ′ ′ ′−= +MGCN c W r h b     (12) 
1 (1 ) ,t t t t t′ ′ ′ ′ ′−= + −h u h u c                   (13) 

 

where t ′r  is the reset gate which controls how to 
combine the new input with the previous memory. 
When t ′r  is close to 0, the hidden state is forced to 
ignore the previous hidden state and reset with the 
current input. t ′u  is the update gate deciding how 
much information will be carried over from the pre-
vious hidden state to the current hidden state. t ′c  is 
the memory content stored at time t′, Wu, Wr, and Wc 
are the weight matrices, and bu, br, and bc are the bias 
vectors. 

The output of the GRU model is further com-
bined with the additional attributes by the weight 
matrix Wattr, and processed by a fully connected layer 
to obtain the prediction result ˆˆ( , ),t tI O  which is de-
fined as follows:  

 

( )1
pred attr

ˆˆ( , ) sigmoid [ , ] ,t t t t−= ⋅ ⋅attrI O W h W    (14) 
 

where Wpred is the weight matrix for final prediction. 

4.5  Loss function 

During the training process, the goal is to min-
imize the error between the predicted value ŷt and the 

ground truth value yt. We employ the smooth L1 loss 
function SmoothL1 as the objective function, which 
has been verified as a robust loss function for  
regression: 

 
2

L1

ˆ ˆ0.5( ) , if 1,
Smooth

ˆ 0.5, otherwise.
t t t t

t t

y y y y

y y

 − − ≤= 
− −

   (15) 

 
The loss function SmoothL1 combines the de-

sirable properties of the squared-error loss (yt−ŷt)2 
near zero and the absolute-error loss ˆt ty y−  when 

ˆt ty y−  is greater than 1. We will compare its per-
formance with those of the squared-error loss and  
absolute-error loss in Section 5.2. 

 
 

5  Evaluation 
 

In this section, we evaluate our prediction model 
based on real-world traffic datasets. We first intro-
duce the experimental setting and then give the ex-
perimental results. 

5.1  Experimental setting 

1. Parameter setting 
The datasets are split into training (70%), vali-

dation (20%), and testing (10%) sets. We use the past 
10-h history data to predict the traffic flow in the next 
hour. The parameters are chosen based on their per-
formance on the validation set. We set the training 
epoch as 300 and learning rate as 0.0005 for all da-
tasets. The batch size is 64, 48, and 11 for the taxi, 
PBS, and DBS datasets, respectively. The neural 
network based models are implemented using 
PyTorch and trained via backpropagation and Adam 
optimization. They are trained and evaluated on a 
Windows server with AMD Ryzen 5-2600 CPU, 64 
GB memory, and NVIDIA GeForce GTX 1080 Ti 
GPU. The offline training process takes about 40 min, 
while the inference process takes just a few seconds, 
which is suitable for real-time traffic flow prediction. 

2. Evaluation metrics 
During the evaluation process, we re-scale the 

predicted value back to the normal value ˆ ,ty  and 
compare it with the ground truth value yt. The evalu-
ation metrics for testing datasets include the root 
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mean square error (RMSE) and mean absolute error 
(MAE): 

 
21 ˆRMSE ( ) ,t t

t
y y

N
= −∑                  (16) 

1 ˆMAE ,t t
t

y y
N

= −∑                         (17) 

 
where N is the number of all predicted values. 

3. Baselines 
We compare the performance of our 

MGCN-GRU model with those of the following 
baselines: 

(1) History average (HA) model, which uses the 
average traffic flow number in historical periods as 
the prediction. 

(2) ARIMA model, which is a widely used time- 
series prediction model. 

(3) LSTM model, which is effective for model-
ing long-range dependencies in temporal sequences. 

(4) GRU model, which is similar to LSTM with a 
relatively simple structure and fewer parameters. 

(5) MGCN model, which uses only MGCN to 
capture the spatial correlation while ignoring the 
temporal correlation. 

5.2  Experimental results 

5.2.1  Prediction accuracy comparison between dif-
ferent loss functions 

In the training process, we adopt the absolute- 
error loss, squared-error loss, and smooth L1 loss 
functions to optimize the parameters, and compare the 
prediction accuracies of different loss functions.  
Table 1 shows the prediction results. We observe that 
the smooth L1 loss function has a lower RMSE/MAE 
than the other two loss functions for all datasets. This 
indicates that the smooth L1 loss function is better for 
flow prediction tasks than the absolute-error loss and 
squared-error loss functions. 

 
 
 
 
 
 
 

5.2.2  Selection of the threshold 

Threshold influences the final prediction results. 
Therefore, choosing an optimal threshold value for 
different inter-region graphs is important. We use 
{start: step: end} to define the search space. For 
example, {0.1: 0.1: 0.4} represents the search space 
{0.1, 0.2, 0.3, 0.4}. 

Fig. 2 shows the change of prediction precision 
with different threshold values based on the taxi da-
taset. We first select the threshold using a rough 
search space {0: 0.1: 1.0} for all graphs (Fig. 2a), and 
then optimize the search space according to the results 
generated from the first round (Fig. 2b). The RMSE 
predicted by the original adjacency matrix without a 
threshold mechanism is shown as a horizontal line in 
Fig. 2a. For all graphs, we find that using the original 
adjacency matrices without a threshold mechanism 
cannot obtain the best results. In addition, considering 
all correlations among regions (thresd=1, threstSimi=0, 
thresinter=0) (that is to say, when all elements in the 
adjacency matrices are set as 1), the RMSE is very 
large. Therefore, the pre-definition of threshold is 
important. For the distance graph, it can be seen that 
the error is small when the threshold is [0, 0.2] (left of 
Fig. 2a). Then, we refine the search space as {0: 0.02: 
0.20}, and finally select thresd as 0.06 (left of Fig. 2b). 
For the temporal similarity graph, the error is small 
when the threshold is [0.8, 1.0] (center of Fig. 2a), and 
the search space is refined as {0.8: 0.02: 1.00}. We 
finally select threstSimi as 0.90 (center of Fig. 2b). The 
refined search space is set as {0.01: 0.01: 0.20} for the 
interaction graph (right of Fig. 2b), and thresinter is 
selected as 0.14. 

Fig. 3 shows the threshold selection results based 
on the PBS dataset. We adopt the same rough search 
space as that in the taxi dataset for the first-round 
selection (Fig. 3a). For the distance graph, the error is 
small when the threshold is [0, 0.2] (left of Fig. 3a). 
The refined search space is {0: 0.02: 0.20}, and fi-
nally thresd is selected as 0.04 (left of Fig. 3b). For the  
 

 
 
 
 
 
 
 

Table 1  Prediction accuracy comparison between different loss functions 

Loss function 
RMSE MAE 

PBS dataset Taxi dataset DBS dataset PBS dataset Taxi dataset DBS dataset 
Absolute-error function 3.2506 45.4916 11.8972 1.8023 24.5878 3.4953 
Squared-error function 3.2541 45.0784 11.1388 1.8037 24.3731 3.2802 
Smooth L1 function 3.1846 44.7117 10.6384 1.7818 24.1932 3.0705 

RMSE: root mean square error; MAE: mean absolute error. Best results are in bold 
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temporal similarity graph, the error is small when the 
threshold is [0.8, 1.0] (center of Fig. 3a). The refined 
search space is {0.8: 0.02: 1.00}, and threstSimi is 
selected as 0.90 (center of Fig. 3b). For the interaction 
graph, the error is small when thresinter is 0.13 (right of 
Fig. 3b). Similarly, we obtain thresd=0.20, threstSimi= 
0.70, and thresinter=0.10 based on the DBS dataset 
(Fig. 4). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The final values of threstSimi are relatively large, 
while the values of thresd and thresinter are small based 
on the three datasets. We further visualize the distri-
butions of element value in different adjacency ma-
trices of graphs based on different datasets (Figs. 5–7). 
The x axis represents the value interval and the y axis 
represents the number of elements in different inter-
vals. As seen from Figs. 5–7, we find that the element 
 

 
 
 
 
 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Fig. 3  Selection of different thresholds based on the PBS dataset: (a) rough search space; (b) optimized search space 
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Fig. 2  Selection of different thresholds based on the taxi dataset: (a) rough search space; (b) optimized search space 
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Fig. 4  Selection of different thresholds based on the DBS dataset: (a) rough search space; (b) optimized search space 
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Fig. 5  Distribution of the element value in different graphs based on the taxi dataset: (a) distance; (b) temporal similar-
ity; (c) interaction 
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Fig. 6  Distribution of the element value in different graphs based on the PBS dataset: (a) distance; (b) temporal simi-
larity; (c) interaction 
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Fig. 7  Distribution of the element value in different graphs based on the DBS dataset: (a) distance; (b) temporal simi-
larity; (c) interaction 
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value distributions in the distance graph are relatively 
dispersed. The values of thresd are relatively small, 
indicating that only adjacent regions are taken into 
consideration. For the temporal similarity graph, the 
element value distributions are dispersed based on the 
PBS and taxi datasets. The value of the interval [0, 0.1] 
is large for the DBS dataset. Because many regions 
have no bicycle flows, the temporal similarity values 
between these regions are 0. The values of threstSimi 
are relatively large for all datasets, which means that 
only the regions with the most similar temporal usage 
patterns are considered. For the interaction graph, 
most values concentrate on the interval of [0, 0.1], 
which indicates that most regions have little interac-
tion with others. The values of thresinter are equal to or 
larger than 0.1, indicating that only regions with 
stronger interactions are considered. 

5.2.3  Model comparison 

Table 2 demonstrates the results of MGCN-GRU 
and other baseline models based on these three da-
tasets. The proposed MGCN-GRU model outper-
forms other models on both metrics on different da-
tasets, proving the effectiveness of our model for 
traffic flow forecasting tasks. We summarize several 
findings from Table 2:  

1. The traditional methods such as HA and 
ARIMA have relatively low prediction precision, 
which suggests that the non-neural network based 
methods are unsuitable for complex spatio-temporal 
prediction tasks. 

2. The neural network based methods such as 
MGCN, LSTM, and GRU have better prediction 
precision than those of the HA and ARIMA models. 
For example, the RMSE of the GRU model shows a 
reduction of approximately 55.4%, 29.2%, and 32.8% 
compared with those of the HA model based on the 
PBS, taxi, and DBS datasets, respectively. The 
 

 
 
 
 
 
 
 
 
 

performance of LSTM is close to that of GRU using 
temporal dependency in the time series. 

3. The proposed MGCN-GRU model performs 
the best among various baselines, which captures the 
graph-based spatial features and the temporal de-
pendency simultaneously. For example, the RMSE 
shows a reduction of approximately 36.1%, 38.5%, 
and 40.3% compared with those of the MGCN model 
based on the PBS, taxi, and DBS datasets, respec-
tively. The MGCN model has lower prediction ac-
curacy, mainly because it models only the spatial 
correlations and ignores important temporal features. 
Compared with the GRU model, which captures only 
the temporal dependency, the RMSE of the MGCN- 
GRU model is decreased by approximately 7.35%, 
12.1%, and 20.7% based on the PBS, taxi, and DBS 
datasets, respectively, indicating that MGCN can 
capture the hidden spatial correlation among regions 
to further improve the performance. 

5.2.4  Effectiveness of multiple inter-region graph 
fusion 

To verify the effectiveness of multiple inter- 
region graphs and additional attributes, we compare 
five models with different adjacency matrices and 
additional attributes. All models adopt GRU to cap-
ture the temporal correlation. GCN_dis, GCN_inter, 
and GCN_tSimi are the models using only one graph 
(distance, interaction, and temporal similarity graphs, 
respectively) and do not use additional attributes for 
prediction. MGCN_noAttr is the model fusing the 
three graphs without additional attributes, and 
MGCN-GRU is the proposed model. 

Fig. 8 shows a comparison of model perfor-
mances. Compared to the models using a single graph, 
models fusing the three graphs (MGCN_noAttr, 
MGCN-GRU) perform consistently better. When 
adding the additional attributes, the prediction  
 

 
 
 
 
 
 
 
 
 

Table 2  Prediction accuracy comparison between different models 

Model 
RMSE MAE 

PBS dataset Taxi dataset DBS dataset PBS dataset Taxi dataset DBS dataset 
HA 7.7134 71.7902 19.9643 3.8163 34.4045 5.3395 

ARIMA 5.2191 88.2771 23.7872 2.7086 45.3036 6.8241 
MGCN 4.9874 72.6974 17.8231 2.6484 36.5174 6.2653 
LSTM 3.4460 50.8887 13.5471 1.9809 28.7526 5.3938 
GRU 3.4371 50.8379 13.4207 1.9629 28.3321 5.4848 

MGCN-GRU 3.1846 44.7117 10.6384 1.7818 24.1932 3.0705 
Best results are in bold 
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accuracy of the MGCN-GRU model is further im-
proved. In addition, the model performance depends 
on the datasets and the selected graph using one graph, 
although the differences are not obvious. By adopting 
the proposed method, analyzers do not need to select 
which graph to use, since the multi-graph convolu-
tional network can extract useful information from all 
inter-region graphs and improve the prediction  
accuracy. 

5.2.5  Visualization of the prediction results 

To further show the usability of our method, we 
visualize the predicted and real results through heat 
maps. We first compare the predicted outflows/ 
inflows and real outflows/inflows based on the taxi 
dataset on different days. Each region is rendered with 
a color related to its flow number. A gradient color 
scheme (purple-red-yellow-green) is used to encode 
the flow magnitude. A purple region indicates a re-
gion with a large number of flows. We can see from 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figs. 9 and 10 that the predicted values are very close 
to the real ones. The predicted popularity of regions 
has a similar trend compared to the ground truth. We 
can find the regions with large flow numbers from the 
heat maps. On a workday morning peak, region 1 has 
the largest numbers of outflows and inflows (Figs. 9a 
and 9c), since it contains a lot of office buildings and 
the busiest transportation hub (Grand Central Ter-
minal) in NYC. On the night of Christmas day, many 
regions have obvious inflows or outflows. As seen 
from Fig. 10c, region 2 has the largest number of 
inflows. Because region 2 contains many nightlife 
places, it is reasonable to suppose that many people 
will go there to enjoy life at night. 

We also visualize the flow differences through 
heat maps. A diverging color scheme (blue-yellow- 
red) is used to encode the difference in the inflow 
number and outflow number. If the inflow number is 
equal to the outflow number, the region is rendered 
yellow. If the inflow number is larger than the outflow 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
(a)                                              (b)                                                (c)                                                (d) 

Fig. 9  Visualization of the prediction and real results based on the taxi dataset on 7:00 to 8:00, Apr. 23, 2014 (workday): 
(a) predicted outflows; (b) real outflows; (c) predicted inflows; (d) real inflows (References to color refer to the online 
version of this figure) 

 
 

 

Fig. 8  Model performance comparison using different inter-region graphs and additional attributes: (a) PBS dataset;  
(b) taxi dataset; (c) DBS dataset 
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number, the region is rendered red. Otherwise, the 
region is rendered blue. Generally, the predicted flow 
differences (Figs. 11a and 12a) are similar to those of 
the real ones (Figs. 11b and 12b). The prediction for 
region 3 is not accurate (Figs. 12a and 12b). We can 
also know the region congestion conditions from 
Figs. 11 and 12. For example, a lot of people enter 
region 1 on workday morning (Fig. 11a). On the night 
of Christmas day, the nightlife area (region 2) has 
more inflows (Fig. 12a). Therefore, our method can 
help the traffic manager grasp the regional traffic 
conditions in advance. 
 
 
6  Conclusions and future work 
 

In this paper, we have proposed a novel deep 
learning based prediction model called MGCN-GRU, 
which combines the multi-graph convolutional net-
work and GRU to forecast traffic flows in irregular 
regions. The multi-graph convolutional network has 
been proposed to model the heterogeneous spatial 
relationships among irregular regions. The GRU has 
been used to capture the dynamic temporal depend-
ence of traffic flows and eventually fulfils the traffic 
flow prediction tasks. Compared with various previ-
ous methods, the MGCN-GRU model can success-
fully capture the spatio-temporal dependencies for 
irregular regions, and obtains the best prediction re-
sults on the three real-world traffic datasets. 

In future, we aim to further improve the model 
performance. We plan to add the spatial- temporal 
attention mechanism in the network structure to better 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

            
(a)                                                (b)                                              (c)                                             (d) 

Fig. 10  Visualization of the prediction and real results based on the taxi dataset on 24:00 Dec. 25, 2014 to 1:00 Dec. 26, 
2014: (a) predicted outflows; (b) real outflows; (c) predicted inflows; (d) real inflows (References to color refer to the 
online version of this figure) 
 

 
 

 

   
(a)                                              (b) 

 

Fig. 11  Visualization of flow differences based on the taxi 
dataset on 7:00 to 8:00, Apr. 23, 2014 (workday): (a) pre-
dicted flow differences; (b) real flow differences (Refer-
ences to color refer to the online version of this figure) 

   
(a)                                                (b) 

 

Fig. 12  Visualization of flow differences based on the taxi 
dataset on 24:00 Dec. 25, 2014 to 1:00 Dec. 26, 2014:  
(a) predicted flow differences; (b) real flow differences 
(References to color refer to the online version of this 
figure) 
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capture the spatial dependency and temporal dynam-
ics. In addition, it would be meaningful to consider 
more additional attributes, such as social events, in 
the prediction model. 
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