
134 Bie et al. / Front Inform Technol Electron Eng 2022 23(1):134-144

Frontiers of Information Technology & Electronic Engineering

www.jzus.zju.edu.cn; engineering.cae.cn; www.springerlink.com

ISSN 2095-9184 (print); ISSN 2095-9230 (online)

E-mail: jzus@zju.edu.cn

Anenergy-efficient reconfigurable asymmetric modular
cryptographic operation unit forRSAandECC

Mengni BIE†1, Wei LI†‡1, Tao CHEN1, Longmei NAN2, Danyang YANG1

1Information Engineering University, Zhengzhou 450001, China
2State Key Lab of ASIC and System, Fudan University, Shanghai 200000, China

†E-mail: raspberry0213@126.com; liwei12@fudan.edu.cn

Received July 6, 2020; Revision accepted Dec. 22, 2020; Crosschecked Oct. 12, 2021

Abstract: RSA and ellipse curve cryptography (ECC) algorithms are widely used in authentication, data security,
and access control. In this paper, we analyze the basic operation of the ECC and RSA algorithms and optimize their
modular multiplication and modular inversion algorithms. We then propose a reconfigurable modular operation
architecture, with a mix-memory unit and double multiply-accumulate structures, to realize our unified, asymmetric
cryptosystem structure in an operational unit. Synthesized with 55-nm CMOS process, our design runs at 588 MHz
and requires only 437 801 µm2 of hardware resources. Our proposed design takes 21.92 and 23.36 mW for 2048-
bit RSA modular multiplication and modular inversion respectively, as well as 16.16 and 15.88 mW to complete
512-bit ECC dual-field modular multiplication and modular inversion respectively. It is more energy-efficient and
flexible than existing single algorithm units. Compared with existing multiple algorithm units, our proposed method
shows better performance. The operation unit is embedded in a 64-bit RISC-V processor, realizing key generation,
encryption and decryption, and digital signature functions of both RSA and ECC. Our proposed design takes 0.224
and 0.153 ms for 256-bit ECC point multiplication in G(p) and G(2m) respectively, as well as 0.96 ms to complete
1024-bit RSA exponentiation, meeting the demand for high energy efficiency.

Key words: Modular operation unit; Reconfigurable; High energy efficiency
https://doi.org/10.1631/FITEE.2000325 CLC number: TP331.2; TN918.2

1 Introduction

Some well-known international communication
organizations, such as 5G Infrastructure Public Pri-
vate Partnership (5G PPP), Next Generation Mo-
bile Networks (NGMN) Alliance, and Global System
for Mobile Communications Assembly (GSMA) In-
telligence, have published their respective 5G White
Papers (GSMA Intelligence, 2014; NGMN, 2015; 5G
PPP, 2016), indicating that “5G mobile communica-
tion needs to provide rapid response and ubiquitous
network access for the development of the Internet
of Things, which brings a lot of new security require-

‡ Corresponding author
ORCID: Mengni BIE, https://orcid.org/0000-0003-2446-6692;

Wei LI, https://orcid.org/0000-0002-6597-0142
c© Zhejiang University Press 2022

ments and risks to 5G security.” Protecting sensitive
information when it is transmitted via insecure com-
munication channels has become essential in this en-
vironment. Asymmetric cryptography, such as RSA
and elliptic curve cryptography (ECC), has been in-
vestigated for this purpose. At present, the most
mature and widely used asymmetric cryptography
algorithm is RSA. This is simple in principle and is
convenient to use. The new public-key cryptogra-
phy algorithm ECC requires much shorter keys and
has wider application prospects. Although the ECC
algorithm has been widely used in the actual pro-
tocols for small devices, the RSA algorithm is still
widely available in the market because of its wider
application and greater compatibility. The above
two cryptographic algorithms are the main popular

www.jzus.zju.edu.cn
engineering.cae.cn
www.springerlink.com

Bie et al. / Front Inform Technol Electron Eng 2022 23(1):134-144 135

secure socket layer (SSL) protocol encryption algo-
rithms. Consequently, on one hand, the integration
of dual-field (prime and binary fields) ECC using
any width and RSA into a reconstruction framework
would be important. On the other hand, there is a
great need to balance resources and performance on
resource-limited embedded devices. We have devel-
oped a reconfigurable modular operational unit for
high energy efficiency, compatible with both RSA
and dual-field ECC, supporting their applications in
different encryption demand scenarios.

As a basic operation of public key cryptog-
raphy, modular operation has been the subject of
many studies, but it is relatively targeted. For mod-
ular multiplication of the RSA algorithm, Kuang
et al. (2013, 2016) designed a modular multiplier
based on an adder, which achieved better perfor-
mance within a small area. Miyamoto et al. (2011)
proposed three high-radix Montgomery algorithms
with three different carry modes, and realized mod-
ular multipliers with different algorithms and differ-
ent operating units. The above studies have com-
pleted the encryption and decryption function of the
RSA cryptographic algorithm based on the modular
multiplier, but the key generation function cannot be
realized because of the lack of a modular inversion
operation.

For an RSA modular inversion operation, re-
search on the design is scant, and the research into its
reconstruction with modular multiplication is even
more deficient. This is mainly because the modular
operations of RSA are in the even field, making its
performance far worse than that of modular multi-
plication. Xia (2016) proposed a modular inverter
suitable for RSA using a special formula. It converts
modular inversion on the even field into two multipli-
cations and a modular inversion on the prime field.
In this way, parameter E in the key of the RSA algo-
rithm is fixed to a special prime number, which re-
duces the applicability of the algorithm. The conven-
tional extended Euclidean algorithm is still needed
for the converted one-step modular inversion.

For the ECC algorithm, modular inversion is an
operation in the binary field or the prime field. The
particularity of the field optimizes the performance
of the modular inversion algorithm. Therefore, re-
search on the modular operation unit of the ECC
algorithm is plentiful. Gu and Li (2019) improved
the Montgomery modulator for the prime field and

binary field, but it cannot compute the modular in-
version. Ibrahim and Gebali (2017) and Li et al.
(2019) proposed unified structures for modular mul-
tiplication and its inversion operation for the prime
field and binary field operations of the ECC algo-
rithm, but their solutions can be applied only to a
single scenario. Also, Li et al. (2019)’s approach can
be applied only to the 256-bit ECC algorithm and
has poor scalability and limited application. Chen
GH et al. (2010) proposed a unified structure for
ECC dual-field modular multiplication and the inver-
sion operation, but it is suitable only for fixed-width
data. Liu et al. (2017) proposed a flexible structure
of dual-field modular multiplication and its inversion
based on adders, with a small area but long operation
time. In summary, many researchers have explored
single functional modular operational units that per-
form well in certain scenarios, but they are unable to
combine the operations required by different public
key algorithms into one unit.

In this paper, we analyze a combined struc-
ture of RSA and ECC using modular operations to
perform basic operations on finite fields along with
other operations. Our contributions are highlighted
here:

1. We propose an optimized dual-field high-
radix Montgomery modular multiplication algo-
rithm and dual-field extended Euclidean modular
inversion algorithm that are more efficient for RSA
and ECC.

2. We propose a reconfigurable public key oper-
ation unit, with a memory unit as the center and
double multiply-accumulate structures. The unit
can complete all of the operations needed by the
ECC and RSA public key cryptography algorithms,
including modular addition, modular subtraction,
signed addition and subtraction, unsigned addition
and subtraction, shift, data load, equality, modular
multiplication, modular inversion, and other opera-
tions. Taking modular multiplication and modular
inversion as examples, we discuss how to do efficient
computation based on this unit.

3. We design the instruction set of efficient
modular operation. This proves that the unit can
be applied in the processor, and we realize the
key generation, encryption and decryption, and
digital signature functions of RSA and ECC by
programming.

136 Bie et al. / Front Inform Technol Electron Eng 2022 23(1):134-144

2 Dual-field high-radix Montgomery
modular multiplication algorithm

The classical Montgomery algorithm transforms
the modular multiplication of any modulus into a rel-
atively simple modular operation suitable for hard-
ware design. The operations of the algorithm on
the prime and binary fields are similar, and they
are suitable for our dual-field modular multiplica-
tion algorithm. However, this classical algorithm is
based on multiplication, but the delay caused by the
multiplier increases rapidly with the increasing data
width. Consequently, this design will have greatly
limited processing speed in an embedded system.
Fortunately, a high-radix Montgomery algorithm has
been derived from this algorithm to solve this prob-
lem. By dividing operations on large-width data
into repeated operations on small-width data, this
improved algorithm avoids a large critical path de-
lay caused by large data widths. The representative
algorithms include finely integrated operand scan-
ning (FIOS) and coarsely integrated operand scan-
ning (CIOS) algorithms (Kaya Koc et al., 1996).

Miyamoto et al. (2011) analyzed the delay dis-
tribution in the implementation of the high-radix
Montgomery algorithm, and then successfully pro-
posed a high-radix Montgomery algorithm suit-
able for semi-carry storage of the RSA algorithm.
Miyamoto et al.’s algorithm splits the last level of
the carry propagate adder (CPA) in the multiplier,
separates carry from the results of the current opera-
tion, and cuts the operation width of CPA by half, as
shown in Algorithm 1. However, this approach does
not consider the compatibility with ECC modular
multiplication. Although the modular multiplica-
tion of the ECC prime field is quite similar to that of
RSA, differences exist in the modular multiplication
of the binary field. We build on this algorithm, tak-
ing the compatibility of the two kinds of finite field
operations in ECC into consideration. We simplify
the steps for the ECC binary field and propose a
dual-field high-radix Montgomery modular multipli-
cation algorithm as shown in Algorithm 2.

3 Dual-field extended Euclidean mod-
ular inversion algorithm

Existing methods of modular inversion in fi-
nite fields incorporate Fermat’s little theorem, the

Algorithm 1 High-radix Montgomery algorithm
suitable for semi-carry storage
1: Input: X = (xm−1, . . . , x1, x0)2r , Y =

(ym−1, . . . , y1, y0)2r , N = (nm−1, . . . , n1, n0)2r ,
w = −N−1 mod 2r

2: Output: Z = XY · 2−rm mod N

3: Z = 0, v = 0

4: for i=0 to m− 1 do
5: (cs1a + cs2a + eca, z0) = z0 + xiy0
6: ti = z0w mod 2r

7: (cs1b + cs2b + ecb, z0) = z0 + tin0

8: for j=1 to m − 1 do
9: (cs1a+cs2a+eca, zj) = zj +xiyj+cs1a+cs2a+eca

(cs1b+cs2b+ecb, zj−1) = zj+tinj+cs1b+cs2b+ecb
10: end for
11: (v, zm−1) = cs1a + cs2a + eca + cs1b + cs2b + ecb + v

12: end for
13: if Z > N then
14: Z = Z −N

15: end if

Algorithm 2 Dual-field high-radix Montgomery
modular multiplication algorithm
1: Input: X = (xm−1, . . . , x1, x0)2r , Y =

(ym−1, . . . , y1, y0)2r , N = (nm−1, . . . , n1, n0)2r ,
w = −N−1 mod 2r

2: Output: Z = XY · 2−rm mod N

3: Z = 0, v = 0

4: for i=0 to m− 1 do
5: (cs1a ⊕ cs2a ⊕ eca, z0) = z0 ⊕ xi ⊗ y0

// “⊕” means addition and XOR on the prime field
// and binary field, respectively
// “⊗” means multiplication on the prime field and
// binary field

6: ti = z0 ⊗w mod 2r

7: (cs1b ⊕ cs2b ⊕ ecb, z0) = z0 ⊕ ti ⊗ n0

8: for j=1 to m − 1 do
9: (cs1a ⊕ cs2a ⊕ eca, zj)

= zj ⊕ xi ⊗ yj ⊕ cs1a ⊕ cs2a ⊕ eca
10: (cs1b ⊕ cs2b ⊕ ecb, zj−1)

= zj ⊕ ti ⊗ nj ⊕ cs1b ⊕ cs2b ⊕ ecb
11: end for
12: (v, zm−1) = cs1a ⊕ cs2a ⊕ eca ⊕ cs1b ⊕ cs2b ⊕ ecb ⊕ v

13: end for
14: if Z > N & field = 1 then
15: Z = Z −N

16: end if

extended Euclidean algorithm, or Montgomery’s al-
gorithm. Modular inversion algorithms using Fer-
mat’s little theorem and Montgomery’s algorithm
require the modulus to be prime, making them un-
suitable for the RSA algorithm when the modulus is
even. In contrast, the extended Euclidean algorithm
has no requirements for the modulus and can deter-
mine the existence of the inverse modulus and return
an error if it does not exist. This feature makes it
possible to integrate the greatest common divisor
(GCD) operation in RSA into the modular inversion

Bie et al. / Front Inform Technol Electron Eng 2022 23(1):134-144 137

operation, saving hardware resources. Furthermore,
the extended Euclidean modular inversion algorithm
itself is compatible with binary field operations, mak-
ing it more suitable for designing a dual-field modu-
lar inversion algorithm for arbitrary modulus values.

The original extended Euclidean algorithm is
based on the multiplication of large integers, requir-
ing greater hardware resources. Because of this,
the binary system extended Euclidean algorithm has
been proposed, replacing division with simple shift,
addition, and subtraction operations. However, in
the calculation process, the values of A, B, C, and D

may be greater than the modulus value due to accu-
mulation, or even exceed the limit of data bit width,
resulting in data loss. The addition of carry storage
will lead to an increase in area overhead. Thus, we
use this extended Euclidean algorithm and increase
the modular operation after each round of accumula-
tion to ensure that its value is less than the modulus
value. The improved algorithm is shown in Algo-
rithm 3, in which the individual operations have also
been optimized.

4 Reconfigurable modular unit

4.1 Arithmetic and logic unit

Further analysis of the modular multiplication
and modular inversion algorithm shows that the ba-
sic operation in Algorithm 2 is a multiply-accumulate
operation with a word length fixed, while the basic
operations of Algorithm 3 are addition, subtraction,
and shift operations. By adopting complementary
operations, addition and subtraction can be unified
as an addition operation, so an operation unit with
multiply-accumulate and shift operations can per-
form modular multiplication and modular inversion
operations at the same time. However, given that
the modular multiplication operation uses unsigned
ones for its addition and subtraction and that the
corresponding operations in the modular inversion
algorithm use signed ones, we select several groups
of operations involved in Algorithm 3 to study the
relationship between the addition and subtraction
of signed and unsigned quantities. The results are
shown in Table 1.

According to Table 1, the numerical part of all
signed number operations can be completed by un-
signed numeric addition and subtraction operations,

Algorithm 3 Dual-field extended Euclidean modu-
lar inversion algorithm
1: Input: X = (xm−1, . . . , x1, x0)2r , Y =

(ym−1, . . . , y1, y0)2r
2: Output: Z = Y −1 mod X or error
3: if X is even and Y is even then
4: return error
5: end if
6: u = x, v = y, A = 1, B = 0, C = 0, D = 1

7: while u �= 0 do
8: if u is even then
9: u = u � 1

10: if A is even and B is even then
11: A = A � 1, B = B � 1

12: else
13: A = (A⊕ y) � 1, B = (B � x) � 1

// “⊕” and “�” mean addition and subtraction
// on the prime field respectively, and both of
// them mean XOR on the binary field

14: end if
15: end if
16: if field = 0 and u is even then go to line 8
17: else go to line 19
18: end if
19: if v is even then
20: v = v � 1

21: if C is even and D is even then
22: C = C � 1, D = D � 1

23: else
24: C = (C ⊕ y) � 1, D = (D � x) � 1

25: end if
26: end if
27: if field = 0 and v is even then go to line 19
28: else go to line 30
29: end if
30: if u ≥ v then
31: u = u� v, A = A� C, B = B �D

32: if field = 1 then
33: A = A mod x, B = B mod x

34: end if
35: else
36: v = v � u, C = C � A, D = D � B

37: if field = 1 then
38: C = C mod x, D = D mod x

39: end if
40: end if
41: end while
42: if v �= 1 then return error
43: else if D ≤ 0 & field = 1 then z = x+D

44: else z = D

45: end if

while the symbolic part depends only on the original
symbol and carry.

When lines 8 and 19 in Algorithm 3 are ex-
ecuted, the symbols of A, B, C, and D can
be expressed as Asym = Asym&(∼ J), Bsym =

Bsym| (∼ J), Csym = Csym&(∼ J), Dsym =

Dsym| (∼ J) (here, J represents the carry value of the

138 Bie et al. / Front Inform Technol Electron Eng 2022 23(1):134-144

Table 1 Sign relationships between addition and subtraction of signed number operations

Operation in symbolic form Operations in Algorithm 3 Result sign Result carry Result value

Positive+positive A+ y, C + y Positive J Z

Positive−positive B − x, D − x, A− C, C −A, B −D, D −B J 0 Z

Positive+negative None J 0 Z

Positive−negative A− C, C −A, B −D, D − B Positive J Z

Negative+negative None Negative J Z

Negative−negative A− C, C −A, B −D, D − B J 0 Z

Negative+positive A+ y, C + y J 0 Z

Negative−positive B − x, D − x, A− C, C −A, B −D, D − B Negative J Z

J represents the carry value of the unsigned number operation with two complements. Z represents the result of the unsigned
number operation with two complements

unsigned number operation with two complements).
When line 30 is executed, the form of the operation
is similar, and its symbolic relationship can be ex-
pressed as Ssym = (∼ (J |P)) | (Asym&P). The sym-
bols of Ssym, Asym, Bsym, Csym, and Dsym represent
the sign of S, A, B, C, and D, respectively. If it is
a positive number, its logic is 0; if it is negative, its
logic is 1.

Based on the above analysis, we can design a set
of symbols and carry registers so that unsigned addi-
tion and subtraction operations complete the signed
addition and subtraction operations, with register
values updated synchronously with each operation.
In this way, the main structure of modular multi-
plication and modular inversion operations can be
unified using only unsigned multiply accumulation.

The parallel multiplier consists of three parts:
partial product generator (PPG), partial product
adder (PPA), and carry propagation adder (CPA).
Miyamoto et al. (2011) analyzed the delay of these
three parts and proposed a half carry storage multi-
plication scheme. It also split the 2n-bit result gener-
ated by the PPA, allowed the high n-bit result to go
to the next round of addition without any process-
ing, and obtained the current round result simply by
adding the low n-bit data, reducing the CPA delay
by half. However, this method makes the multiplica-
tion and accumulation of signed number operations
impossible. If the high n-bit data is not processed,
the positive or negative results of this round are not
obtained, leading to chaos in the carry and borrow
stage. To deal with this flaw, we use a carry se-
lect adder to calculate the carry sum synchronously,
adding only one multiplexer delay. Fig. 1 shows the
improved unsigned multiply-accumulate structure.

There are many PPG and PPA design schemes.
In this study, we adopt a Radix-4 Booth code

C
a_

ou
t[0

]

zoutsela

zoutse
la_reg

zouta_reg

xa_in

Xa_out

PPG
...

PPA

CPAZ

zs1 zs2

pp0 pp1 pp31 pp32

ec_out

z_out

sub
inv

CPAC0CPAC1

cs1 cs2

1'b1 1'b0

c0_outc1_out

Ca_out

ya_in

Ya_out

za_in

za_out

Fielda

mux 4 to 1 mux 17 to 1 mux 14 to 1
...

Zouta_regCa_reg Xa_reg Ya_reg Za_reg

... ...

1 0

ca_in

Fig. 1 Structure of the unsigned multiply-accumulate
stage (PPG: partial product generator; PPA: partial
product adder; CPA: carry propagation adder)

multiplier (Chen HM et al., 2012) and a 4-2 and
3-2 compression mixed Wallace tree design PPA.

In our work, there are only two equality tests: U
being equal to 0 and V being equal to 1 in the mod-
ular inversion operation. Therefore, the handling of
576-bit data can be achieved at one clock cycle. If
the data width is greater than 576 bits, we keep the
lowest 64-bit data unchanged and reconstruct and
fill the high bits to complete the equality.

The preceding analysis proves that a single set of
registers is essential for the addition and subtraction
of signed number operations to store the sign and
the carry temporarily. If there is a shift after carry,
two cases may result: shift the sign or shift the carry,
which requires another set of registers for temporar-
ily storing the possible shift. In Algorithm 3, only
one-bit data of the shift is needed, because modu-
lar operations would be performed for the results in
each round. Algorithm 3 also requires the determi-
nation of parity and modular inversion. Thus, a set
of parity state registers and modular inversion error
registers must be used, forming a state register heap.

Bie et al. / Front Inform Technol Electron Eng 2022 23(1):134-144 139

4.2 Block storage structure

In the ECC encryption algorithm, a small key
meets common security requirements, while RSA
uses larger keys. Static random-access memory
(SRAM) is thus a better fit for RSA, having a smaller
area than a comparable register, but with poorer per-
formance. In contrast, registers are more suitable for
ECC. For compatibility, we adopt a hybrid memory
design of shift registers and SRAM.

The block storage structure includes 8×4096-
bit SRAM and 8×576-bit shift registers. One SRAM
corresponds to one shift register, and each SRAM
interacts only with its corresponding SRAM. Fig. 2
shows the design.

RAM A, B, C, D, U, V, X, Y

Y8 … Y1 Y0

A8 … A1 A0

C8 … C1 C0

U8 … U1 U0

V8 … V1 V0

X8 … X1 X0

B8 … B1 B0

D8 … D1 D0

Fig. 2 Block storage structure

4.3 State control circuit

To improve the parallel degree of operation, we
use a two-way multiply-accumulate structure to form
the multiply-accumulate circuit. The difference be-
tween the two way structures lies in the X , Y , and
Z data selection entries. Our design performs lines 9
and 10 of Algorithm 2 in parallel, and likewise the
addition and subtraction steps of Algorithm 3.

We use a finite state machine (FSM) as the con-
trol circuit to generate control signals and to drive
shift registers and memory units to provide the cor-
responding data words for the operation unit. We
employ shift registers to complete the pipeline struc-
ture. For modular multiplication, SRAMs X , Y , B,
D, V , and A store data X , Y , N , W , Z, and T from
Algorithm 2, respectively. For modular inversion,

memory blocks X , Y , U , V , A, B, C, and D store
data Z, Y , U , V , A, B, C, and D from Algorithm
3, respectively. For any modular operation whose
width is fewer than 576 bits, the memory block uses
the shift registers only and bypasses the SRAMs.
For any modular operation whose width is within
4096 bits (2048×2048), it uses SRAMs to store big
data and shift registers as operational cache. In the
following paragraphs, we analyze the modular multi-
plication and inversion of 512-bit and 2048-bit data.

We first consider the modular multiplication of
512 bits, i.e., 8×64-bit words, using the structure
proposed in this study. We calculate the first step of
external cycle by taking the lowest 64 bits of the X ,
Y , and V shift registers. We take the lowest 64 bits
of the D shift register and the results of this round
as the input to the next operation. The inner layer
of the modular multiplication operation is divided
into two directions in parallel, known as a-way and
b-way. The a-way operation takes the lowest 64 bits
of the X shift register and the fourth 64 bits of Y
and V shift registers (the lowest is the first 64 bits)
and stores the results in the fourth 64 bits of the V

shift register. The b-way operation takes the lowest
64 bits of the A shift register and the third 64 bits of
the B and V shift registers (the lowest is the first 64
bits) and stores the results in the second 64 bits of
the V shift register. After that, the V shift register
is synchronized with the Y and B shift registers,
moving 64-bit data to the right to enter the next
cycle. At the end of each external cycle, the X shift
register moves the 64-bit data to the right to enter
the next cycle. When the external cycle ends, all
data is rotated to the initial position. At this time,
the lowest 64-bit data of the V andB registers is used
for the subtraction operation. After each 64-bit data
calculation, the data is rotated to the right. After
eight cycles, the results are stored in the X shift
register. If the subtraction result is negative, the
value of the V shift register is output. Otherwise,
the value of the X shift register is output. Fig. 3
shows the overall process.

Next, we consider modular multiplication of
2048-bit data, i.e., 32×64-bit words, and use the
structure described in the previous example with
RAMs added. RAMs remove the data needed for
the next operation one clock cycle in advance and
send it to the corresponding shift registers. Fig. 4
shows the flow of an example loop.

140 Bie et al. / Front Inform Technol Electron Eng 2022 23(1):134-144

V1V2

A0

B2

V2

X0 Y3 V3

V3

Y8 Y1…

V8 V1…

B8 B1… B0

V0

Y0

V7

B7

Y7

Y0 V0X0 A0 D0

A0

X8 X1… X0X7

External cycle

V1

Inner layer cycle

Fig. 3 Operation flow of the internal modular
multiplication

V1V2 B2

V2

X0 Y3 V3

V3

V8 V1… V0V7

A0

Inner layer cycle

V2V3

RAM V

B8 B1… B0B7 B2B3

Y8 Y1… Y0Y7 Y2Y3

V1

Addr V

RAM BAddr B

RAM YAddr Y

Fig. 4 Modular operation flow when the data length
is over 576 bits

Now, we consider the modular inversion of 512-
bit data, i.e., 8×64-bit words. Algorithm 3 succes-
sively performs equality, shift, addition, and subtrac-
tion operations. The operation logic has two 576-bit
equality units and can determine data equality in one
clock cycle. Operations on data within 576 bits are
stored in the shift registers, enabling the data shift to
end within one clock cycle. Addition and subtraction
operations use 64 bits as the basic operation length,
completing 512-bit data addition and subtraction in
eight clock cycles.

Finally, we consider the modular inversion of
2048-bit data, i.e., 32×64-bit words. The modular
operation unit can determine the equality of 8×64-
bit data in nine clock cycles from low to high bits.
After completing the operation on the low 9×64 bits,
the lowest 64-bit data is kept unchanged, with 8×64-

bit words written into the high shift register. This
continues until the equality check of the 2048-bit
data is finished. The shift operation proceeds from
high to low bits and completes a 64-bit data shift in
one clock cycle. The addition and subtraction oper-
ations are similar to those described in the previous
paragraph, with the data in RAMs sent to the shift
registers for calculation one clock cycle in advance.

4.4 Overall architecture

The overall architecture, with block storage as
the center, is composed of three parts: operation,
control, and block storage. The architecture is shown
in Fig. 5. The operation unit includes a 64-bit
double-multiply-accumulate module, a 576-bit data
equality module, and a state register heap. The con-
trol unit can perform basic operations on 64-integer-
multiple bit width, including multiplication, addi-
tion, subtraction, shift, and equality. Modular in-
version can also be realized through the combination
of these basic operations. The block storage unit
is composed of eight 64×64-bit SRAMs and eight
shift registers corresponding to block SRAMs. The
shift registers are used as SRAM cache to balance
the performance and area overhead of different bit
width data requirements.

Control

Shift_Reg
RAM

(register
file)

Addr

Shift_en

Interface

RSA/GF(p)_mul

RSA/GF(p)_inv

GF(b)_mul

GF(b)_inv

m
ux

 4
 to

 1

w/r

Equal_block Muladd_block

Status_register

Mode

Fig. 5 General architecture of the reconfigurable
modular units

5 Functional test and performance
evaluation

5.1 Performance comparison and analysis

The architecture has been synthesized using a
55-nm CMOS process at TT corner (1.2 V, 25 ◦C).

Bie et al. / Front Inform Technol Electron Eng 2022 23(1):134-144 141

The public key operation unit occupies 437 801 µm2

of hardware resources with a maximum clock fre-
quency of 588 MHz. We also perform power simula-
tion with random input patterns. Table 2 provides
the performance results for each operation.

Our design supports modular operations on any
data width. Table 2 shows the performances of
RSA modular multiplication, RSA modular inver-
sion, ECC dual-field modular multiplication, and
ECC modular inversion for different data widths.

Fig. 6 shows that the time consumed by the
modular inversion operation does not increase sig-
nificantly with increasing data width, showing its
adaptability to large data width. The time required
by the modular multiplication operation increases
exponentially with the increase in the operation data
width. However, the overall time is short, showing
high performance with any data width.

Tables 3 and 4 compare our proposed unit with
others. Not all the literature provides power con-
sumption data, so we use speed area product as the
power substitution parameter for comparison. We

also select some literature that provides power con-
sumption data for comparative analysis. The results
are shown in Table 5. To facilitate comparison with
other works, we introduce the speed area factor “AT”
(Lee et al., 2014; Choi et al., 2018; Ding et al., 2019).

The speed area product of our proposed RSA
modular multiplication operation is 1/5 that of
Kuang et al. (2016). The performance of our de-
sign with RSA modular inversion is 1/20 that of Xia
(2016), but our unit has more functions as the speed
area product is six times that of Xia (2016).

Chen GH et al. (2010) proposed the reconstruc-
tion design of modular multiplication and inversion
operation for dual-field ECC. Our design reduces the
speed area product of the modular multiplication
operation by about 50%, improves the performance
of the modular inversion operation by 10%, and in-
creases the area cost by about four times. The im-
provements are possible because the proposed opera-
tion unit completes not only the ECC algorithm but
also the RSA key generation without additional pre-
calculated parameters, making it more convenient

Table 2 Public key operation unit performance

Operation Number of clock cycles Operation time Power (mW)

2048-bit RSA modular multiplication 1251 2.12 µs 21.92
2048-bit RSA modular inversion 303 502 0.50 ms 23.36
512-bit ECC prime-field modular multiplication 115 195.50 ns 16.16
512-bit ECC prime-field modular inversion 15 476 26.31 µs 15.88
512-bit ECC binary-field modular multiplication 105 178.50 ns 16.01
512-bit ECC binary-field modular inversion 16 665 28.33 µs 15.88

512 1024 2048 4096
Data length (bit)

Ti
m

e

9

8

7

6

5

4

3

2

1

0

Area RSA mul (μs)
RSA inverse (ms)

0.19
0.63

2.12

0.105
0.028

0.516

1.957

7.73

256 320 384 448 512 576
Data length (bit)

Ti
m

e

300

250

200

150

100

50

0

Area Prime mul (μs)

Prime inverse (ms) Binary mul (μs)

Binary inverse (ms)

(a) (b)

8.17 11.97 15.59 22.56 28.33 33.37

32.1326.31
8.1 11.57 15.41 20.54

73.1

62.9

98.6

86.7

127.5

113.9

159.8

144.5

195.5

178.5

234.6

215.9

Fig. 6 Performance of RSA (a) and ECC (b) modular operations

142 Bie et al. / Front Inform Technol Electron Eng 2022 23(1):134-144

Table 3 Performance comparison of 2048-bit RSA modular multiplication and modular inversion operations

Method Process (nm) Area
Speed AT

mul inv mul inv

Kuang et al. (2016)’s 90 950 184 µm2 7.64 µs None 14.443 s · µm2 None
Xia (2016)’s 130 3770 gates None 2.62 ms (1024-bit) None 13.67 s · gates
Ours 55 137 801 µm2 2.12 µs 0.105 ms (1024-bit) 3.037 s · µm2 81.1 s · gates

(2.36×105 gates)

AT=speed×area×180/process with the unit of s · µm2 or s · gates; mul: modular multiplication; inv: modular inversion

Table 4 Performance comparison of 256-bit ECC modular multiplication and modular inversion operations

Method Process Area
Speed1 AT1 (s · gates) Speed2 AT2 (s · gates)

(nm) (×103 gates) mul inv mul inv mul inv mul inv

Chen GH et al. (2010)’s 180 51.83 2110 ns 25.36 µs 0.11 1.32 2110 ns 25.36 µs 0.11 1.32
Li et al. (2019)’s 130 77.1 360 ns None 0.038 None None None None None
Ibrahim and 45 2.23 None None None None 299 ns (233-bit) 0.449 µs 0.002 0.004

Gebali (2017)’s
Ours 55 236 73.1 ns 8.1 µs 0.056 6.20 62.9 ns 8.17 µs 0.048 6.25

AT = speed× area× 180/process with the unit of s · gates; mul: modular multiplication; inv: modular inversion. The superscript
“1” means for G(p) and superscript “2” means for G(2m)

Table 5 Power comparison with other literature

Method Process (nm) Operation Energy

Ours 55 1024-bit RSA modular multiplication 12.17 nJ
1024-bit RSA modular inversion 2.28 µJ
256-bit ECC prime-field modular multiplication 1.04 nJ
256-bit ECC prime-field modular inversion 114 nJ
256-bit ECC binary-field modular multiplication 0.88 nJ
256-bit ECC binary-field modular inversion 113 nJ
256-bit ECC prime-field point multiplication 3.36 µJ
256-bit ECC binary-field point multiplication 2.29 µJ

Gu and Li (2019)’s 65 256-bit modular multiplication for both RSA and ECC 2.01 nJ∗

90 1024-bit modular multiplication for both RSA and ECC 18.54 nJ∗∗

Liu et al. (2017)’s 55 256-bit ECC dual-field point multiplication 49.7 µJ
∗2.01 nJ=1.95 nJ×(55/65)2 × 1.22; ∗∗ 18.54 nJ=34.48 nJ×(55/90)2 × 1.22

and complete to use. Li et al. (2019) put forward
a single type of ECC operation design for the prime
field, with better performance and area optimization.
However, the data they provided does not contain
storage resources and the structure they proposed
is not scalable, while our approach has a multifunc-
tional reconstruction design with greater flexibility
and wider application. Ibrahim and Gebali (2017)
proposed an ECC operation design on the binary
field with small areas, causing the speed area prod-
uct to be much less than ours. We offer three reasons
for this. First, Ibrahim and Gebali’s design cannot
be applied in the prime field, nor could it perform
the RSA operation. Second, the structure they pro-
posed is a 233-bit array. It can only do operations
smaller than 233 bits. Last but not the least, they

just gave the area for the operation array and did
not cover the storage area. However, the area that
we are giving includes storage units.

Overall, the controllable area and performance
cost of our proposed unit support the basic opera-
tions of RSA and ECC public key cryptography al-
gorithms with arbitrary data widths. It satisfies the
energy-efficiency requirements of various public key
algorithms.

As shown in Table 5, for RSA modular multi-
plication, our work consumes 65% of the energy of
Gu and Li (2019). When performing modular mul-
tiplication of ECC prime fields, our work consumes
60% of the energy of Gu and Li (2019). Since we
test only the power consumption of a modular oper-
ation unit, we integrate the unit into the processor to

Bie et al. / Front Inform Technol Electron Eng 2022 23(1):134-144 143

collect the time consumption of the point multiplica-
tion operation. We obtain the energy consumption
through calculation and compare it with that of Liu
et al. (2017). The comparison results show that the
energy consumption of Liu et al. (2017) is more than
10 times that of our unit. To sum up, our proposed
modular operation unit meets the requirement for
high energy efficiency.

5.2 Verification and analysis on the system
level

We use an open-source, single-core PULPino 64-
bit RISC-V processor to extend the public key oper-
ation unit and construct a test platform. Based on
the test platform, we extend the modular operation
instructions using the original RISC-V instruction
set and realize the key generation, encryption and
decryption, digital signature, and other functions of
RSA and ECC programmatically. The extended in-
structions are shown in Table 6.

Taking the ECC point multiplication and RSA
encryption as examples, Table 7 summarizes the per-
formance comparision of this design to others. We
use the traditional RL power algorithm to achieve
RSA encryption. The ECC point multiplication is
calculated from left to right under the affine coordi-
nate system.

According to the data in the preceding table,
the energy efficiency of our proposed unit is twice as
high as that of Kuang et al. (2013) for RSA modu-
lar exponentiation. Compared with Li et al. (2019),
our design is faster but requires twice as much area,
causing the speed area product to be lower. How-
ever, Li et al.’s work can complete the ECC prime
field point multiplication operation only up to 256
bits, which needs fewer area resources. Compared
with Liu et al. (2017), the speed area product of
our unit has been increased by more than five times,
meeting the demand for high energy efficiency.

6 Conclusions

We have proposed a reconfigurable public key
operation unit, with a memory unit as the center
and double-multiply-accumulate structures. The key
delay has been reduced by the fusion structure of
the condition select adder and semi-carry storage
multiplier, and the structure of unsigned multiply-
accumulate has been improved to apply to the mul-
tiply accumulator of signed number operations. In
memory processing, we have used SRAMs and shift
registers to balance the performance area conflict
caused by small-data-length ECC operations and
large-data-length RSA operations. In addition to

Table 6 Extended instructions for modular operation

Instruction Operand A Operand B Result Description

SETMMI Length (6-bit) Mode (2-bit) None The operation mode setting instruction specifies the
operation length and operation mode. There are
four modes: ordinary modular multiplication,
ordinary modular inversion, modular multiplication in
the binary field, and modular inversion in the binary
field. The length is a multiple of 64.

STARTMMI None None None Starting operation instruction
WMMI Datain (64-bit) Addr (2-bit) None Indicating the address of the four parameters (X, Y ,N ,W)
RMMI None None Dataout Output instruction

Table 7 Overall performance comparison of RSA and ECC designs

Method
Process

Area
Speed (ms) AT

(nm) G(p) G(2m) RSA G(p) G(2m) RSA

Li et al. (2019)’s 130 7.71×104 gates 0.86 None None 91.8 s · gates None None
Kuang et al. (2013)’s 130 714 676 µm2 None None 2.36 None None 2335.15 s · µm2

Liu et al. (2017)’s 55 350 000 µm2 1.45 1.45 None 1660.90 s · µm2 1660.90 s · µm2 None
Ours 55 437 801 µm2 0.224 0.153 0.96 320.95 s · µm2 219.22 s · µm2 1375.49 s · µm2

(2.36×105 gates) (173.01 s · gates)
AT=speed×area×180/process with the unit of s ·µm2 or s · gates; G(p): 256-bit ECC (G(p)) point multiplication; G(2m): 256-bit
ECC (G(2m)) point multiplication; RSA: 1024-bit RSA exponentiation

144 Bie et al. / Front Inform Technol Electron Eng 2022 23(1):134-144

modular multiplication and modular inversion, our
proposed structure can complete modular addition
and subtraction, signed addition and subtraction,
unsigned addition and subtraction, shift, and equal-
ity, which can complete the RSA or ECC crypto-
graphic algorithm by programming. Our proposed
unit took 21.92 mW and 23.36 mW for 2048-bit RSA
modular multiplication and modular inversion re-
spectively, as well as 16.16 mW and 15.88 mW to
complete 512-bit ECC dual-field modular multipli-
cation and modular inversion respectively. It took
0.224 ms and 0.153 ms for 256-bit ECC point multi-
plication in G(p) and G(2m) respectively, as well as
0.96 ms to complete 1024-bit RSA exponentiation.
The results showed that our modular unit is more
efficient and flexible than existing designs.

Contributors
Mengni BIE, Wei LI, and Tao CHEN performed the in-

vestigation, participated in the formulation of research plans,

and designed the research. Mengni BIE and Danyang YANG

processed the data. Mengni BIE drafted the paper. Wei LI

and Longmei NAN helped organize the paper. Wei LI revised

and finalized the paper.

Compliance with ethics guidelines
Mengni BIE, Wei LI, Tao CHEN, Longmei NAN,

and Danyang YANG declare that they have no conflict of

interest.

References
5G Infrastructure Public Private Partnership (5G PPP),

2016. View on 5G Architecture. White Paper.
https://5g-ppp.eu/

Chen GH, Zhu JM, Liu M, et al., 2010. Dual-field modular
multiplication algorithm and modular inversion algo-
rithm with VLSI implementation. J Electron Inform
Technol, 32(9):2095-2100 (in Chinese).
https://doi.org/10.3724/SP.J.1146.2009.01258

Chen HM, Li Z, Xie TD, 2012. Optimal design of multi-
plier based on Radix-4 Booth encoding. Comput Eng,
38(1):233-235 (in Chinese).
https://doi.org/10.3969/j.issn.1000-3428.2012.01.076

Choi P, Lee MK, Kim JH, et al., 2018. Low-complexity ellip-
tic curve cryptography processor based on configurable
partial modular reduction over NIST prime fields. IEEE
Trans Circ Syst II, 65(11):1703-1707.
https://doi.org/10.1109/TCSII.2017.2756680

Ding JN, Li SG, Gu Z, 2019. High-speed ECC proces-
sor over NIST prime fields applied with Toom–Cook
multiplication. IEEE Trans Circ Syst I, 66(3):1003-
1016. https://doi.org/10.1109/TCSI.2018.2878598

GSMA Intelligence, 2014. Understanding 5G: Perspectives on
Future Technological Advancements in Mobile. White
Paper. https://www.gsma.com/

Gu Z, Li SG, 2019. A division-free Toom–Cook
multiplication-based Montgomery modular multiplica-
tion. IEEE Trans Circ Syst II, 66(8):1401-1405.
https://doi.org/10.1109/TCSII.2018.2886962

Ibrahim A, Gebali F, 2017. Scalable and unified digit-
serial processor array architecture for multiplication
and inversion over GF(2m). IEEE Trans Circ Syst
I, 64(11):2894-2906.
https://doi.org/10.1109/TCSI.2017.2691353

Kaya Koc C, Acar T, Kaliski BS, 1996. Analyzing and com-
paring Montgomery multiplication algorithms. IEEE
Micro, 16(3):26-33. https://doi.org/10.1109/40.502403

Kuang SR, Wang JP, Chang KC, et al., 2013. Energy-efficient
high-throughput Montgomery modular multipliers for
RSA cryptosystems. IEEE Trans Very Large Scale
Integr Syst, 21(11):1999-2009.
https://doi.org/10.1109/TVLSI.2012.2227846

Kuang SR, Wu KY, Lu RY, 2016. Low-cost high-performance
VLSI architecture for Montgomery modular multipli-
cation. IEEE Trans Very Large Scale Integr Syst,
24(2):434-443.
https://doi.org/10.1109/TVLSI.2015.2409113

Lee JW, Chung SC, Chang HC, et al., 2014. Efficient power-
analysis-resistant dual-field elliptic curve cryptographic
processor using heterogeneous dual-processing-element
architecture. IEEE Trans Very Large Scale Integr Syst,
22(1):49-61.
https://doi.org/10.1109/TVLSI.2013.2237930

Li B, Lei BJ, Zhang YL, et al., 2019. A novel and high-
performance modular square scheme for elliptic curve
cryptography over GF(p). IEEE Trans Circ Syst II,
66(4):647-651.
https://doi.org/10.1109/TCSII.2018.2867618

Liu ZL, Liu DS, Zou XC, 2017. An efficient and flexible
hardware implementation of the dual-field elliptic curve
cryptographic processor. IEEE Trans Ind Electron,
64(3):2353-2362.
https://doi.org/10.1109/TIE.2016.2625241

Miyamoto A, Homma N, Aoki T, et al., 2011. Systematic de-
sign of RSA processors based on high-radix Montgomery
multipliers. IEEE Trans Very Large Scale Integr Syst,
19(7):1136-1146.
https://doi.org/10.1109/TVLSI.2010.2049037

Next Generation Mobile Networks (NGMN), 2015. NGMN
5G. White Paper. https://www.ngmn.org/

Xia JF, 2016. Design of RSA Key Pair Accelerating Circuit
for Smart Card. MS Thesis, Huazhong University of
Science and Technology, Wuhan, China (in Chinese).

	Introduction
	Dual-field high-radix Montgomery modular multiplication algorithm
	Dual-field extended Euclidean modular inversion algorithm
	Reconfigurable modular unit
	Arithmetic and logic unit
	Block storage structure
	State control circuit
	Overall architecture

	Functional test and performance evaluation
	Performance comparison and analysis
	Verification and analysis on the system level

	Conclusions

