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Abstract:  Analyzing network robustness under various circumstances is generally regarded as a challenging problem.
Robustness against failure is one of the essential propertes of large-scale dynamic network systems such as power
grids, transportation systems, communication systems and computer networks. Due to network diversity and
complexity, many topological features have been proposed to capture speci ¢ system properties. For power grids, a
popular process for improving a network's structural robus tness is via the topology design. However, most of the
existing methods focus on localized network metrics, such s node connectivity and edge connectivity, which do not
encompass a global perspective of the cascading propagatio in a power grid. In this paper, we use an informative
global metric algebraic connectivity because it is sensitive to the connectedness in a broader spectrum of graphs.
Our process involves decreasing the average propagation ina power grid by minimizing the increase in its algebraic
connectivity. We propose a topology-based greedy strategy to optimize the robustness of the power grid. To evaluate
the network robustness, we calculate the average propagaton using MATCASC to simulate cascading line outages
in power grids. Experimental results illustrate that our pr oposed method outperforms existing techniques.
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1 Introduction many system properties such as robustness, dier-

ent partitions, and consensus problems, among other

Several important infrastructures, such as trans-
portation systems, telecommunication systems, and
electric power grid are modeled as networks (Pizzuti
et al., 2020). Such representations allow us to spec-
ify how the components are related to each other
through interconnections, and allows us to study

2 Corresponding author

" Project supported by the National Natural Science Foundati

of China (No. U1866602) and the National Key R&D Program

of China (Nos. 2019YFB1600700 and 2018AAA0101505)
ORCID: Supaporn LONAPALAWONG, https://orcid.org/

0000-0002-4032-7740

C Zhejiang University Press 2021

on

areas of interest (Tang et al., 2018).

Examining network robustness under various
situations such as internal failures or external at-
tacks is regarded as a dicult research topic, due
to the diversity and complexity of networks in gen-
eral. Several publications discuss how a network's
topology can be used to analyze and measure its ro-
bustness (Wang et al., 2020; Gu et al., 2020). Vari-
ous network topological features have been proposed
for measuring some network properties. These in-
clude simple network metrics, such as mean shortest
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paths, degree centrality, and clustering coe cient,
and network connectivity properties inferred from
spectral graph theory. Many of these metrics have
been studied in large-scale networks such as power
grids (Anghel et al., 2007), which are commonly
modeled as complex networks as shown in Fig. 1.
Power grid robustness is typically evaluated based
on abnormal events such as a cascading failure of
the transmission lines, which is the consequence of
the collective dynamics of a power grid (KoAS et al.,
2014). Because a power grid cascading failure starts
from the propagation of a single local failure, the
network topology can help us e ectively analyze the
robustness of the power grid.

However, power grid complexity goes beyond its
topology. Analysis that is based solely on topologi-
cal features may lead to inaccurate results, because
it fails to capture some of the peculiarities of power
networks described by Kircho 84€™s Laws (Cuadra
et al., 2015). Consequently, evaluation and valida-
tion of real cascading failure data are necessary to
verify the e ectiveness of topological methods. But
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There are many more variables that can be consid-
ered. For example, algebraic connectivity is consid-
ered an essential indicator of a network's resilience,
and it was used by Liu et al.(2009) to quantify the
importance of network nodes and lines. Laszka et
al.(2013) proposed a new metric called persistence,
which was used to mitigate attacks by controlling
node deployment, resulting in more robust network
topologies for wireless sensor networks. Liu et al.
(2012) converted the optimal sensor network design
problem into a multi-objective optimization prob-
lem to obtain a balanced result among the rigidity
and e ciency of the connections and the resilience
to node disconnections. A statistical model called
the branching process (Dobson et al., 2005; Dobson
et al.,, 2010; Qi et al., 2013; Dey et al., 2016) was
explored in later studies to help analyze system dy-
namics. It gives an accurate result of the average
propagation even for a smaller number of simula-
tions. Despite this progress, the following challenges
still need to be grappled with in designing robust
power grid topology: (1) Due to the large number

because cascading failures are rare events in a power Of nodes in real-world power grids, a highly scalable

grid, analyzing the system's properties directly from
cascading failure data is impractical. Existing stud-
ies commonly rely on simulation tools to inspect
how a power grid will behave in case of such rare
events. There are several tools that simulate cas-
cading failures and are capable of returning detailed
information that is useful for understanding how cas-
cades propagate, such as DCSIMSEP (Eppstein and
Hines, 2012; Rezaei et al., 2015), OPA (Carreras
et al., 2003), MATCASC (KoAS§ et al., 2013), and
COSMIC (Song et al., 2016). However, it should be
noted that, although these tools can give detailed
simulation results, they cannot provide any insight
into how the topology of a power grid a ects the
system's robustness.

In recent years, many studies have devoted ef-
forts to optimizing a network's structural robust-
ness by designing the network topology (Liu et al.,
2009, 2012; Laszka et al., 2013; Peng and Wu, 2016).
Several di erent optimization models have been pre-
sented to generate robust networks that could with-
stand random failures and attacks. A lot of research
has focused on localized networks, node connectiv-
ity, and edge connectivity, but these areas do not tell
the whole story of cascade propagation phenomena,
which encompasses the entire power grid network.

algorithm is required. (2) Although various methods
for evaluating robustness exist, there is a no widely
acknowledged robustness metric, and using di erent
metrics often leads to di erent optimized networks.

To address these issues, a global power grid per-
spective, rather than a local view, should be adopted
when designing a robust topology. Because the edges
are sparse in real-world power grids, removing exist-
ing edges often has undesirable e ects. It is natural
to optimize the topology by adding edges. However,
adding edges to real-world power grids is quite di -
cult due to resource constraints, and design planning
in advance is required. We propose a topology-based
power grid optimization strategy for selecting trans-
mission lines to add to the network, which optimizes
the grid's robustness. We use a more informative
metric algebraic connectivity of the power grid be-
cause it is sensitive to connectivity in a broader spec-
trum of graphs (Liu et al., 2009; Dey et al., 2016).
Because graph theory does not fully address a power
system's physical characteristics, power grid robust-
ness is currently evaluated mainly by power ow sim-
ulation (Azzolin et al., 2018) and veri ed by cas-
cading failure simulator-based power ow equations.
Average propagation is calculated to evaluate net-
work robustness using MATCASC to simulate cas-
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cading failures. Our experiments show that gener-
ally, the larger the algebraic connectivity is, the more
severe the propagation will be. We propose a greedy
algorithm to determine the optimal way to add lines
to the grid so the increase in algebraic connectivity is
minimized after new connections are added. As a re-
sult, cascading failure propagation after the addition
can also be expected to be low. Finally, we compare
our approach with existing strategies. To evaluate
our approach, we conducted case studies with real-
world datasets. The results proved the usefulness
and e ectiveness of our proposed strategy.

The contributions of this paper are as follows:

1. We optimize edge addition by using a modi ed
greedy algorithm to increase the e ciency of
the process and reduce the computational time
complexity.

2. We perform an empirical analysis of cascading
failures in several power grids based on algebraic
connectivity, using average propagation as the
main evaluation criteria.

The rest of this paper is structured as follows:
Other research papers related to our study are re-
viewed in Section 2. Then, we analyze cascading
failures in power grids in Section 3, followed by a de-
tailed description of our proposed cascading failure
reduction algorithm in Section 4. The experimen-
tal results are presented in Section 5, and nally,
we summarize the key points in Section 6 and also
outline some possible future work for topology-based
power grid design optimization.

Fig. 1 (a) The electrical diagram and (b) the network
graph of the IEEE 39 network.

2 Related Work

Our work is related to the study of the topolog-
ical analysis of networks and algebraic connectivity,

as well as cascading power grids failures. Here we and edge rewiring (Sydney et al., 2013).
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brie y review the related works in these elds of re-
search.

2.1 Topological Analysis of Network and Al-
gebraic Connectivity

The study of applied graph theory, also known
as complex network theory (Correa-Henao and
Yusta, 2015), is characterized by its theoretical rep-
resentation of a system as a network topology. This
facilitates study of the impacts of topology changes
on the robustness of the system with topological
measurements. Examples of these measurements
include the degree of connections (Holme et al.,
2002; Correa-Henao et al., 2013), betweenness (Guan
etal., 2011; Marsden, 2015), and centrality and mean
shortest paths (Dey et al.,, 2016). According to
Bigdeli et al.(2009), the betweenness, degree, and
clustering coe cient are all de ned on a single node.
To evaluate the robustness of the entire network,
these metrics need to be calculated on every node,
which may result in an ine cient computation pro-
cess. To above metrics explicitly leverage the graph
topology to quantify connectivity. In addition to
these metrics, there exists another group of indi-
cators, called spectrum-based measurements, which
are derived from the adjacency matrix and the Lapla-
cian matrix of a network (Mieghem, 2010; Ellens
et al.,, 2011). Spectrum-based measurements have
been shown to be associated with the inherent inter-
connectedness, partition ability, propagation range,
and convergence rates of dynamic network processes,
and thus have been widely used to quantify network
robustness.

Major progress in spectral analysis was pre-
sented by Fielder(1973), who introduced a metric
of graph connectedness called algebraic connectiv-
ity, which is the second smallest eigenvalue of the
Laplacian matrix of a graph. He showed that the
greater the algebraic connectivity, the more di cult
it is to cut the graph into smaller components. Exist-
ing studies indicate that high algebraic connectivity
results in robust networks, and attempt to maximize
the algebraic connectivity by adding edges (lines) to
the grid (Jamakovic and Uhlig, 2007; Sydney et al.,
2013). Many strategies have been proposed to op-
timize a network's algebraic connectivity including
edge addition (Jiang et al., 2011; Ji et al., 2016;
Wei et al., 2014), edge deletion (Wei et al., 2014),
Sydney



et al.(2013) studied edge rewiring on three kinds
of complex networks and compared edge rewiring
to edge addition. Wei et al.(2014) introduced the
ight routes addition/deletion problem and com-
pared three di erent methods to analyze and opti-
mize the algebraic connectivity of air transportation

networks. Recent years also witnessed some new ef-

forts in network optimization in industrial sectors
such as air transportation, satellite networks(Zheng

etal., 2017), and also in businesses where sensor net-

works are used (Laszka et al., 2013; Liu et al., 2012).
Due to limiting factors such as computational com-
plexity, most researchers employ the algebraic con-
nectivity of a network to quantify the importance of

a node or an edge in a localized view rather than a
global view.

2.2 Cascading Failure and Network Topology

Extensive literature exists on cascading failure.
Large-scale cascading failures are usually the result
of propagation from a single local failure into the
whole network (KoA§ et al., 2014). The existing
works can be divided into two basic categories: the
evolutionary approach and the holistic approach (Li
and Xue, 2019). The evolutionary approach mainly
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failures. Dey et al.(2016) proposed a novel approach
to investigate the relationship between the average
propagation of failures and the topological variations
occurring in the grid. Pahwa et al. (2012) studied
how topological changes can a ect the robustness of
the network against attacks and failures. However,
due to power grids complexity, there are still insu -
cient network optimization techniques to design ty-
pologies that are robust against cascading failure.
Because power grids are usually sparsely connected
and typical topological changes involve adding new
power lines, we consider optimizing the robustness
of a power grid against cascading failure with edge
additions.

3 Empirical analysis of cascading fail-
ures in power grids

In this section, we present an empirical analy-
sis of the relationship between cascading failure in
a power grid and its topology. In order to exam-
ine the e ects that topology has on a cascading sys-
tem, it is necessary to develop a cascade model as

focuses on the causes and consequences of cascack complex network where the generation, transmis-

ing failures (Chen et al., 2005; Bompard et al.,
2016). Flow analysis (Rei et al., 2000) and Markov
chains (Wang et al., 2012) are adopted in such stud-
ies. The holistic approach focuses on the topology
and the operation of power grids. This approach typ-
ically evaluates vulnerabilities to locate weak points
in power systems (Wang and Baldick, 2014; Chen
and Mili, 2013). Furthermore, with the development
of system engineering, cascading failures can be ana-
lyzed based on complex network theory (Saleh et al.,
2018), which is used to model a power grid's abil-
ity to handle cascading outages from a macroscopic
perspective (Carreras et al., 2004).

Most of the existing models for cascading fail-
ures in power grids are basic topological models.
Hardly any attention has been paid to quantifying
network robustness against cascading failure in terms
of the network's topological properties. Some re-
searchers studied both the topological features and
the e ect of ow dynamics on network robustness
in cascading failures. KoA§ et al.(2014) proposed
a topological metric that uses e ective graph resis-
tance to relate power grid robustness to cascading

sion, and load buses are modelled as nodes while the
transmission lines are represented as edges in accor-
dance to the circuit laws. We then discuss using
these models to run simulations of cascading failures
on power grids. This is followed by a detailed expla-
nation of average propagation.

Some existing research has already analyzed
power grid networks by attacking critical power lines
in the topology. The results often simulate the
worst-case scenarios by causing critical power lines
to fail (Pizzuti et al., 2020). However, most of the
time these results do not match the e ects that cas-
cading failures have on real-world networks, where
failures can be caused by several factors and the fail-
ure of critical lines is only one of the factors. In this
paper, we applied a random attack method to get
a better overall view of the impact of the cascade.
The results based on random attacks on power lines
are more acceptable than results from attacking crit-
ical lines. A comparison of di erent attack strategies
and their e ects on the robustness levels of the tested
networks are proposed in KoA§ et al. (2013)



Lonapalawong et al. / Front Inform Technol Electron Eng

3.1 Cascading Failure Simulation

A cascading failure occurs when the failure of
one part of an interconnected system results in the
failure of more parts, and eventually the whole sys-
tem. The concept is comparable to a set of falling
dominoes. In a power grid, each line has a re-
lay that protects it from permanent damage due
to events such as excessive current.To avoid perma-
nently damaing the line, an overcurrent relay noti es
a circuit breaker to trip a line when the line's cur-
rent exceeds its capacity limit and this violation lasts
long enough. As in (KOA§ et al., 2014), we assume
that the capacity C, of a transmission linel is pro-
portional to its initial power ow (when there is no
failure in the network) L,(0) as follows:

C = L0 (1)

where | is the tolerance level of the linel. Tra-
ditionally, power grid researchers have focused on
the robustness of a grid for a speci c grid tolerance
level of the grid. The study of the e ects of using
di erent tolerance levels is important in identifying
the robustness and vulnerability of real-life networks,
which (Wang and Rong, 2009) showed can be used
negatively, to cause damage by spreading rumours,
or positively to control epidemics.

For the sake of simplicity, this paper assumes
a deterministic model for the line tripping mecha-
nism, where the circuit breaker for a line trips at
the moment the ow of the line exceeds its capacity.
When isolated islands are created by the failure, the
cascading failure continues in each island in which
generators or loads are shed, respectively, to attain
a supply-demand balance. The cascade of failures
continues until no more components are overloaded.

Following the notation of (Dobson et al., 2006),
we assume that the cascading failure is started by
o > O initial failures in stage 0 and continues to
produce further failures 1; »; 3:::in stages 1, 2, 3,
. respectively. The simulation is repeatedK times
with di erent initial failures to produce K indepen-
dent instances of cascading failure.

We de ne Y{¥), as the total number of failures
up to and including stagen in the K simulation as

k) — (k k k k
Y= 04 P P 0@
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We apply MATCASC, a MATLAB-based cas-
cading failure analysis tool from (KoA§ et al., 2013)
to solve the power ow equations and analyze cas-
cading line outages in power grids.

3.2 Average Propagation

To deduce the growth of outages after they are
initiated, it is necessary to have an estimator to pre-
dict the blackout severity. We use average propa-
gation (AP), which is proposed by (Dobson et al.,
2006) to evaluate the scale of the cascading failure.
For cascade data obtained fronK simulations using
the methods described in Section 3.1, the average
propagation is expressed as

Pk K, K, .y (K
AP = ket 10T 2 FITE .
TP, 0y, ®)
k=1 0 1 s(k) 1

With a triggering event leading to more outages,
the chances that the entire system will collapse are
rare. Rather, small independent islands will form,
indicating that a few lines are still intact. Therefore,
in the above equation, s(k) depends on the satura-
tion S as in the following (Dobson et al., 2006):

n 0
s(k; S) = max ann(k)l <S and gk)l >0 (4)

We can see that the cascading failure simulation
stops when the number of failures in any stage is zero
or the total number of failures becomes at leass.

The average propagation can be divided into the
following cases: (1)AP < 1. Inthis case, the cascade
tends to die after a certain number of stages. (2)
AP > 1: Here, the cascade either ceases after some
stages with certain probability or proceeds until the
system is saturated.

3.3 Impact of Tolerance level and Saturation

We use simulations to evaluate the impact of
tolerance level and saturation. We set the initial
failure to be random attacks, where 4 randomly cho-
sen transmission lines (edges) are removed. Fig. 2a
shows the impact of the tolerance level on the aver-
age propagation for the IEEE 39 network. Data is
obtained with [ min =1; max = 4] subdivided with

= 0:1. The impact of the tolerance level in
Fig. 2a suggests that the average propagation de-
creases as increases. The larger the value of , the
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slower the decrease in average propagation. There-

fore, network robustness is positively correlated with
as measured by average propagation. However, in
reality, due to economic considerations, the safety
margins are limited and will not be very high. Fig. 2b
shows the e ect of saturation in a cascading failure
in terms of average propagation. We found that the

increase in saturation causes a decrease in average

propagation. It can be seen from the gure that
when the ratio of saturation to the total number
of edges reache®:6, the AP decreases much more
slowly as the saturation continues to increase.

Average Propagation

Average Propagation

Y omemneeteet T smton
a b
Fig. 2 Left: The impact of the tolerance level on the
average propagation for the IEEE 39 network. Right:
The impact of saturation ( S) on average propagation
for the IEEE 39 network, where M is the ratio of S to
the total number of edges.

We built a model with a line capacity tolerance
and saturation level that are similar to a proportional
model found in the related literature (Anghel et al.,

2007; Spiewak et al., 2016; Moussawi et al., 2017).

In our numerical evaluations in Sections 3.4 and 5,
we set the saturation S to 60% of the total number
of transmission lines in the system and the tolerance
level to =1:3for each line.

3.4 The Correlation between Average Propa-
gation and Algebraic Connectivity

The relationship between algebraic connectivity
and robustness is somewhat counter-intuitive. Dey
et al. (2016) reported that after the removal of a
line, the system tends to be less connected, thus in-
creasing the network sparsity.Links tend to act inde-
pendently of one another, which e ectively reduces
failure propagation. A system that has low algebraic
connectivity tends to be less connected and there
is a decrease in average propagation. Intuitively, a
densely connected network will result in more severe
propagation. As new connections typically charac-
terize a power grid's evolution, cascading failure is
an increasing concern for the power grid as it grows
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in size. From the summary given above, our under-
standing is that, in a sparsely connected network,
if network connectivity is increased, it may become
more prone to failure propagation. Thus, we need
to nd an optimal method to increase the network
robustness by edge addition, with minimal increase
in the failure propagation rate.

We conducted simulations on the IEEE 39 and
IEEE 118 networks to test and identify the impact of
algebraic connectivity on propagation. As explained
in Section 3.2, several simulations were performed
to estimate the average propagation using (3). In
each simulation, several random edges were added
to the grid. After the addition of edges, the con-
nectivity of the system is increased. Edges tend to
act independently of one another, which e ectively
increases the failure propagation range. We again
used random attacks to generate initial failures. The
relationship between the algebraic connectivity and
the average propagation is shown in Fig. 3. The cor-
relation in Table 1 shows that when the network be-
comes more connected (that is, has higher algebraic
connectivity), the average propagation of failures is
also increased. From these results, we can see an
obvious positive correlation between algebraic con-
nectivity and propagation spread. Because the cas-
cading spread is also a ected by some factors that are
not captured by topological metrics, some discrepan-
cies exist between algebraic connectivity and average
propagation, but the general tendency of correlation
is obvious.

Average Propagation
Average Propagation

oo o 1w 1B 1% olo o1s 23 o3
Algebraic connectivity Algebraic connectivity

a b

Fig. 3 Algebraic connectivity and average propaga-
tion in 20 simulations for the (a) IEEE 39 network
and (b) the IEEE 118 network.

4 Cascading Failures Reduction via Al-
gebraic Connectivity

In real life, there are few chances to construct
a totally new power grid network, either in a local
area or for a whole country. Instead, experts and en-
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Table 1 The correlation between algebraic connectiv-
ity and average propagation for the IEEE 39 network
and the IEEE 118 network obtained in 20 simulations.

Data Correlation
IEEE 39 0.686350
IEEE 118 0.713378

gineers are tasked with maintaining or nding ways
to improve the robustness of an existing network.

The actions of these engineers and experts are re-

stricted by a budget (e.g., adding a xed number of
edges) having to follow government regulations, and

other constrictions. These issues and concerns are

the major motivations of this work.
4.1 Problem Formulation

In this paper, we aim to optimize the alge-
braic connectivity of power grid networks to im-
prove robustness by minimizing the average prop-
agation. Consider the electrical network's physical
structure. Electric power is transferred from the gen-
eration buses to distribution substations through the
transmission buses, interconnected by transmission
lines. The graph of a power grid network can be de-
scribed by G(V; Ep), where the node seV represents
the generators, substations, and transformers in the
power grid, and the edge setE, contains the power
transmission lines. Letn denote the size of the set
V and m denote the size ofEg. The second small-
est eigenvalue of the Laplacian matrix of a graph is
called its algebraic connectivity »(L), and the corre-
sponding normalized eigenvector is called the Fiedler
vector (Fiedler, 1973). According to Ghosh and Boyd
(2006), the Laplacian matrix L can be represented
by the dot product summation of edge vectors. For
an edgee connecting two nodesi and j, we de ne
the edge vectorhg 2 R" ashe(i) = 1, he(j) = 1,
and all other entries equal to0. Then the Laplacian
matrix L of G isthen n matrix:

L =

e=1

hehd (5)

The objective of this paper is to reduce the prop-
agation of a cascading failure by minimizing the in-
crease in algebraic connectivity after a xed number
k of edge additions.

All possible edges that can be added are given in
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a pre-determined setP. We denote the edges chosen
to be added as a setE . Thus, the edge addition
problem can be formulated as:

min > (G(V;Eo+ E ))
JE j=k
E P;P\ Eo=;

s.t.

(6)

4.2 Minimizing Algebraic Connectivity using
Greedy Edge Addition

Ghosh and Boyd (2006) presented a greedy lo-
cal heuristic, where they addedk edges to the grid
based on the Fiedler vector. In a sparsely connected
network, adding k edges all at once may not produce
an optimal result. By extending their method, we
present an algorithm called Modi ed Greedy Edge
Addition (MGEA) to reduce the propagation range
by adding k edges using a selection criteria, and min-
imizing the increase in algebraic connectivity.

According to Mohar (1991), the algebraic con-
nectivity can be computed by:

T
. L .
»(L (X)) = min yTﬂjyeo;fy:o @)
y'y

wherey is ann 1 non-zero vector and it is
orthogonal to the all-one vector 1. Furthermore, (7)

can be transformed into:

yTL(X)y j
kyk?2

in which we replace vector y with the normalized
vector v = y=kyk and we have Eq. 9

2(L(x)) = min y60;1"y=0 (8)

2(L(x))=min v L(x)vikvk=1;1Tv=0 (9)

The normalized vector v in (9) is the Fiedler

vector, because
2(L(X))v = L(X)v (10)

We multiply v' to the left of both sides of (10)

vl LX)V = v LX)V (11)
Because vectow is normalized,
VI 2LV = 2(L(x) VTV
= 2(L(x) (12)

Therefore, if v is a Fiedler vector, the minimum
in (9) can be achieved.

2(L(x)) = VI L(x)v (13)
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Based on (5),
edge addition is:

the Laplacian matrix after the

i
L0+ heh-le—
=1

Lo+ LO

Lnew =

(14)

o= PiPip nT visaFi
whereL”= (1] hehg . If vis a Fiedler vector,
we can obtain the algebraic connectivity as

2(Lnew) = VTLnewV
=viLov+ vILY
> a(Lo)+ 2(L9 (15)

So, minimizing 2(Lhew ) can be relaxed to min-
imizing 2 (LY. Note that E P , and minimizing
2 (GY is equivalent to selecting edges from P that
have the lowest impact on ,(Lp). If G is a large
graph with many edges, adding one edge has only an
insigni cant impact on its second eigenvector. Ac-
cording to (13),

2(Lnew) = V{Lnew )LneW V(L new )

VT Lew V

] new ) ] (16)
=V Lov+Vv' heghg v
= 2L+ (v v)?

Because(v; v; )2 > 0, we can see that adding

in press

Fig. 4 The relationship between the value of (Vi v )2
and the increase in AC after adding the edge for the
(a) the IEEE 118 network and (b) the IEEE 2383

network.

Algorithm 1 Modi ed Greedy Edge Addition
1. given graph G (V; Eo), candidate edge set P

2. let E = Eog

3: for 1to k do

4:  calculate >(G(V;E)) and its Fiedler vector v
5 g =argmine 2p (Vi Vj)?

6: E=E+ g

7. P=P g

8: end for

9:

output G(V;E)

5 Experiments and Results

Determining the optimal location of a new edge
is challenging. The added edges should increase the
power grid's robustness by minimizing failure propa-
gation. In this section, we will review the results from
the experiments that we conducted to evaluate the
greedy edge addition algorithm's ability to improve
the robustness of power grid networks. Our study
is intended to examine the following question: Does

an edge can never decrease the algebraic connectiv-MGEA outperform the other four baseline strate-

ity. Fig. 4 shows 200 random instances of edge ad-
dition for the IEEE 118 network and the IEEE 2383
networks. From the result, we can see that there
is a strong positive correlation between the value of
(Vi v )? of an edge and the increase in the algebraic
connectivity ( ») after adding the edge. Therefore,
we believe that it is appropriate to apply our method

gies?
5.1 Experimental Protocol
5.1.1 Datasets

Four datasets IEEE 39, IEEE 57, IEEE 118 and
IEEE 2383 are used in our experiments. Some prop-

to increase the robustness of the system, because it erties of the datasets are presented in Table 2. We

leads to small algebraic connectivity after the edge
addition, and thus reduces the failure propagation
range.

In summary, the Modi ed Greedy Edge Addi-
tion algorithm picks one edge from the candidate set
with the minimal (v; v;)® at each iteration, where
v and v; are the i and j" items of the Fiedler
vector v of the current Laplacian L. The complete
algorithm is listed in Algorithm 1.

will evaluate the performance of our algorithm in
terms of (1) minimizing the algebraic connectivity in-
crease and (2) reducing the average propagation rate.
Considering the issue of protecting the grid against
random failures or targeted attacks, in our exper-
iments, cascading failures are triggered by random
attacks, where 4 randomly chosen transmission lines
(edges) are removed. For the IEEE 2383 dataset,
which has a total of 2896 edges, we remove 10 lines
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instead, to compensate for the large number of edges
compared to the other three datasets. Because dif-
ferent initial attacks can lead to di erent results, we
performed 200 iterations when calculating the aver-
age propagation (i.e.K =200 in (3)).

The number of lines removed randomly in each
cycle was a value determined by experiments. Based
onN k contingency analysis (Wei et al., 2019), we
narrowed down the initial powerline removal number
to be between 2 and 20. We found that removing 4
edges in a small network and 10 edges in an extensive
network satis ed the needs for computational e -
ciency while also preserving the experimental results’
trends. In real-world networks, most changes are re-
stricted by limitations and budgets, such as limits on
the number of powerlines that can be added and the
need to comply with government regulations, among
other restrictions. Based on real-world power grid
topologies, our simulations return the top 20 edges
that can be added to the original network, which can
help simplify a human engineer's decision making to
improve the grid's robustness. How those edges are
chosen in each strategy is explained below.

Table 2 The number of nodes and edges in each
dataset.

Dataset #Node #Edge
IEEE 39 39 46
IEEE 57 57 80
IEEE 118 118 186
IEEE 2383 2383 2896

5.1.2 Baseline Strategies

We compare MGEA with the following baseline
strategies. Table 3 summarizes the strategies and
their corresponding computational complexity.

Random (RD) : The random addition strategy
simply chooses an edge from the candidate set at
random. It is often selected as a reference to be
compared with other edge addition strategies.

Degree Product (DP) (Marsden, 2015): The de-
gree of a node is the simplest centrality metric
that re ects a node's importance in its local-
ity (Marsden, 2015). For an undirected network,
the degree of a node is equal to the number of
edges connected to it. The edge in the candidate
set with the lowest degree product is added.
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Betweenness (BT) (Guan et al., 2011; Jiang
et al.,, 2011): Betweenness is one of the most
important metrics to evaluate the routing strat-
egy performance of the network (Jiang et al.,
2011). We de ne the betweenness product of
an edge(i;j ) in the candidate set as(Cg (i) +

1) (Cg(j)+1), whereCg(V) is the between-
ness centrality of the nodev as de ned in (Guan
et al., 2011). Note that 1 is added to the be-
tweenness before calculating the product be-
cause the betweenness for some nodes can be
0. The edge in the candidate set with the lowest
betweenness product is added.

E ective Resistance (ER) (Mieghem, 2010;
KoA§ et al., 2014): According to Ohma€™s
Law, the e ective resistanceRj; is the potential
di erence between nodesi and j when a unit
current is injected at node i and withdrawn at
nodej (Mieghem, 2010). The edge in the candi-
date set with the highest e ective resistance is
added.

Note that each algorithm is repeated multiple
times, adding one edge each time, until the target
number of edge additions is reached. For all the ex-
periments performed in this paper, the candidate set
is chosen to be the set of all possible edge additions
that do not lead to self-loops or parallel edges.

5.2 Performance Comparison

Tables 4 7 present the values of the algebraic
connectivity and average propagation for each algo-
rithm on the four datasets we used. Overall, we can
see that the random, degree product, and e ective
resistance algorithms are far inferior to the modi ed
greedy edge addition algorithm proposed in this ar-
ticle. The performance of the betweenness algorithm
is similarly to our algorithm when the rst few edges
are added. However, after more edges are added,
our algorithm surpasses the betweenness algorithm
substantially.

5.2.1 Algebraic connectivity

As shown in Figs. 5a 8a, the results suggest
that the modi ed greedy edge addition algorithm
performs better than other baseline methods in all
four datasets in terms of minimizing the increase in
algebraic connectivity. Fig 5a shows that the results
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Table 3 A summary of the strategies and their computational c omplexity

Strategies Edge Addition Criterion Complexity
Random (RD) Random selection O (kM)
Degree Product (DP) arg min (di dj) O kN?
Betweenness (BT) argfijmin ((Cg(i)+1)(Cg(j)+1) O kN3
E ective Resistance (ER) arglfj.max (Rjj) O kN3
Greedy Addition (MGEA) arglyjmineii ap (Vi vj)? O kN3

k is the number of edges to be added,

of the betweenness algorithm are relatively close to
our algorithm initially.

However, after 10 edges are added, the distinc-
tion becomes clear, with our algorithm having the
best results. Therefore, for the IEEE 39 network,
we can say that the performance of the MGEA algo-
rithm proposed in this paper is the best among the
ve we tested. In addition, we nd that the topol-
ogy of the IEEE 39 network and some grid-related
parameters are relatively close to the IEEE 118 net-
work, so it is reasonable for it to be similar to the
IEEE 118 in experiment results.

For the IEEE 2383 network, Fig. 8a shows that
the performance of the MGEA algorithm that we
propose is also better than that of the baseline algo-
rithms. We can conclude that these results support
our intuition that the ve algorithms tested each add
lines that are dierent from the other algorithms
to the network, and each line added in uences the
topology's overall strength in a di erent way. The
MGEA algorithm appears to be the most successful
one among the ve tested in improving the overall
robustness of the whole network.

5.2.2 Average Propagation

We can see from the results that among all the
strategies tested, the MGEA algorithm yields the
most robust network con guration against cascading
failures, as measured by average propagation. How-
ever, as shown in Fig 6b, the results from using the
DP algorithm are comparable to the results of our
algorithm except for the last few edges, where the
performance of the DP algorithm deteriorates. Elec-
tric power is transmitted from the generation buses
to the load buses through intermediate (transmis-
sion) components, which deliver electric power from
the generators to the consumers. We believe this
may be because the DP algorithm only adds edges

N is the number of nodes, and

M is the number of edges in the initial grid.

from one of the two nodes in the initial grid with
very small degrees to the other nodes. When these
edges fail, there are more neighboring lines around
the edges that can carry the fault. The load makes
the edges of the surrounding nodes less prone to over-
loading and failure, so the AP of the cascading failure
is relatively small. Another possible reason is that,
after studying the IEEE 57 network, we found that
its topology is slightly di erent from the other net-
works. The generators are concentrated in one area,
and the generator degrees are very low. If a new line
is added to a generator, then the AP of the cascading
failure may be smaller than the addition of such a line
in a network with a di erent topology. For the IEEE
2383 network, the di erence among the algorithms is
not very obvious when adding the rst ten edges, due
to the large number of the existing edges. Also, be-
cause the electrical characteristics of power grids are
not captured in the algorithms, the tendency of the
results is not uniform. However, after the addition
of a signi cant number of edges, the performance of
the MGEA algorithm proposed in this paper shows
more superiority against the other algorithms tested.

6 Conclusion

In this paper, we studied topology-based de-
sign optimization strategies for selecting transmis-
sion lines to add to a power grid, to increase its
robustness in terms of average propagation. Experi-
mental results on four power grid datasets show that
our proposed Modi ed Greedy Edge Addition algo-
rithm outperforms all the compared algorithms. We
expect our algorithm to help experts better design
and maintain power grid systems in the future.

At the same time, it is noted that algebraic con-
nectivity is a topological measurement that is widely
used to assess network characteristics. Although a
topological approach is appropriate to evaluate the
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power distribution grid, purely topological metrics
fail to capture some inherent electrical character-
istics of power grids. In our work, the network
modelled does not fully distinguish di erent types

of buses in the system because buses in a power grid

can be categorized into di erent categories such as
generation, transmission, or load buses etc. We will
leave that to the future work to incorporate more
electrical properties in a power grid model.
Furthermore, power grids of the same struc-
ture can also display dierent robustness in prac-
tice. Among existing studies, the robustness of a
power grid network can be related to various fac-

tors, such as the consumersa€™ accessibility to gen-

erators Zhang and Tse (2015), tolerance factors Liu
et al. (2019), electrical properties such as resistance
and power ow KoA§ et al. (2014), and other fac-
tors. Discovering such relationships is an important
direction for future research.

Fig. 5 The (a) algebraic connectivity (AC) and (b)
average propagation (AP) after edge additions for the
IEEE 39 dataset.

Fig. 6 The (a) algebraic connectivity (AC) and (b)
average propagation (AP) after edge additions for the
IEEE 57 dataset.
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Table 4 The values of the corresponding algebraic connectiv ity (AC) and average propagation (AP) when
edges are added for IEEE 39.

Edge Addition

Algebraic Connectivity Average Propagation

RD DP BT ER MGEA RD DP BT ER MGEA

1 0.08398 0.07697 0.07674 0.08405 0.07619 0.87429 0.858%500 0.93096 0.84380
2 0.093000.098750.07681 0.11871 0.07619 0.90371 0.868%808 1.07730 0.86588
3 0.101930.09941 0.07732 0.14387 0.07619 0.96063 0.973&107 1.07800 0.88959
4 0.11636 0.13996 0.07732 0.17590 0.07619 0.98347 0.99%®H01 1.06909 0.88340
5 0.12736 0.14697 0.077330.193200.07619 1.00818 1.1143405 1.10074 0.86973
6 0.139990.147400.07733 0.26056 0.07619 1.06062 1.168¥AG6 1.134750.91513
7 0.152700.15252 0.09314 0.28577 0.07619 1.07186 1.121BM0¥2 1.23976 0.90049
8 0.16509 0.18658 0.09355 0.28592 0.07619 1.10232 1.12@8504 1.22778 0.89892
9 0.172930.18676 0.09391 0.29241 0.07619 1.114721.12531513 1.19048 0.92362
10 0.186800.19049 0.16415 0.36548 0.07620 1.127051.139811 73 1.20144 0.90970
11 0.20067 0.19608 0.18120 0.419350.07620 1.15652 1.1563835 1.21605 0.95474
12 0.215050.20859 0.18120 0.43491 0.07621 1.171301.16111181 1.18911 0.93186
13 0.233230.208720.19628 0.43677 0.07622 1.18188 1.1418671 1.19645 0.97922
14 0.24198 0.211750.19890 0.44581 0.07624 1.18958 1.16319838 1.23552 1.01124
15 0.25736 0.22324 0.25138 0.49299 0.07626 1.19507 1.2021298 1.22109 1.00666
16 0.282450.22451 0.25215 0.60467 0.07627 1.20748 1.1882M35 1.27734 0.98951
17 0.301410.22842 0.28823 0.63326 0.07628 1.21731 1.1324077 1.27748 0.98532
18 0.31632 0.22856 0.28829 0.65532 0.07630 1.236101.17429851 1.28593 1.00881
19 0.338530.22902 0.28832 0.65743 0.07632 1.23718 1.19.4%350 1.31381 0.99563
20 0.35144 0.229150.28910 0.66588 0.07633 1.24283 1.1765%H80 1.31820 1.00442
Table 5 The values of the corresponding algebraic connectiv ity (AC) and average propagation (AP) after

edges are added for IEEE 57.

Edge Addition

Algebraic Connectivity Average Propagation

RD DP BT ER MGEA RD DP BT ER MGEA

O© O ~NO UL WNBRP

R e e e e e e
QO OW~NOUNWNEREO

0.09656 0.13847 0.13208 0.12525 0.08822 1.01810 1.049%4¥7 0.99776 1.00051
0.107540.14437 0.13216 0.13762 0.08822 1.03472 1.0298295 1.03994 1.00850
0.117310.14646 0.13248 0.13768 0.08822 1.03802 0.9906202 1.06764 0.99752
0.130610.14816 0.13254 0.15949 0.08822 1.05719 1.0213266 1.11342 0.98045
0.13667 0.15504 0.13254 0.17665 0.08822 1.05537 1.02436%¥¥7 1.09282 1.03505
0.14608 0.16272 0.13277 0.18482 0.08822 1.05287 1.03@MA50 1.06404 1.03071
0.157550.16607 0.13277 0.18485 0.08822 1.08225 1.0408349 1.10635 1.03246
0.16574 0.16877 0.13954 0.19056 0.08822 1.08064 1.05138556 1.11134 1.03350
0.179310.175190.13966 0.19105 0.08822 1.10048 1.0550472 1.15793 1.07071
0.187100.17521 0.13973 0.20069 0.08822 1.09843 1.0609250 1.19068 1.03774
0.194030.17946 0.14006 0.23349 0.08822 1.10436 1.06(8496 1.10824 1.04914
0.201380.179500.14033 0.23882 0.08823 1.11821 1.054i83.04 1.13920 1.08274
0.21038 0.17967 0.14050 0.23951 0.08823 1.12498 1.0405870 1.14477 1.06820
0.21907 0.19372 0.20049 0.24315 0.08823 1.14004 1.0636146 1.21722 1.10145
0.226000.194450.21915 0.24342 0.08823 1.14123 1.06748667 1.22636 1.06773
0.234350.20012 0.22148 0.24342 0.08823 1.14131 1.08713223 1.21610 1.07852
0.247800.20020 0.22639 0.30037 0.08823 1.15367 1.0883#65 1.13081 1.07978
0.26054 0.20061 0.24687 0.31573 0.08823 1.15399 1.1416828 1.14168 1.06830
0.269110.201320.27912 0.31689 0.08823 1.16185 1.1366043 1.18411 1.07154
0.28026 0.20235 0.28612 0.34030 0.08823 1.16100 1.111125984 1.20759 1.05268
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ity (AC) and average propagation (AP) after

Edge Addition

Algebraic Connectivity

Average Propagation

RD DP BT ER MGEA RD

DP BT ER MGEA

O© O ~NO OIS WNPRP

N R R R R R R R R R
OO OW~NOUNWNEREO

0.033450.02863 0.02713 0.03878 0.02713
0.03868 0.02872 0.02720 0.05791 0.02713
0.042730.03377 0.02720 0.06669 0.02713
0.04888 0.03377 0.02734 0.06873 0.02713
0.05387 0.033790.02741 0.07077 0.02713
0.05950 0.03422 0.02742 0.07996 0.02713
0.06468 0.03463 0.02759 0.08141 0.02713
0.06876 0.03463 0.02767 0.09437 0.02713
0.074130.03467 0.031990.11077 0.02713
0.07975 0.03468 0.05021 0.12310 0.02713
0.08353 0.03468 0.05254 0.12353 0.02713
0.08921 0.03480 0.05336 0.13143 0.02713
0.09440 0.03497 0.06877 0.14491 0.02713
0.10094 0.03504 0.07055 0.15965 0.02713
0.10583 0.03506 0.07216 0.16998 0.02713
0.11217 0.03532 0.07250 0.18002 0.02713
0.11948 0.03532 0.07354 0.20006 0.02713
0.122720.03532 0.07451 0.20123 0.02713
0.12901 0.03532 0.07469 0.20917 0.02713
0.13490 0.03541 0.08777 0.20958 0.02713

1.09533 1.07585b23 1.10565 1.06203
1.10580 1.115%282 1.13524 1.08194
1.11614 1.11@9347 1.15252 1.08659
1.119751.1366b88 1.14770 1.07218
1.12717 1.1366D06 1.16086 1.07883
1.14093 1.146W183 1.15388 1.07786
1.14565 1.12991780 1.18966 1.08040
1.15517 1.1648268 1.26891 1.08717
1.15980 1.1393%19 1.18610 1.08806
1.16426 1.1439977 1.18768 1.07209
1.16763 1.143%016 1.17065 1.06836
1.173831.126¥849 1.19623 1.07045
1.18108 1.12117/852 1.24081 1.07117
1.190131.123685r43 1.24383 1.07374
1.18957 1.130/A®05 1.21932 1.08309
1.19631 1.1638075 1.21951 1.08255
1.19706 1.1532¥06 1.21862 1.06893
1.201831.15681687 1.24914 1.07693
1.208501.1334638 1.24961 1.06303
1.20770 1.128991 1.22549 1.06265

Table 7 The values of the corresponding algebraic connectiv

edges are added for IEEE 2383.

ity (AC) and average propagation (AP) after

Edge Addition

Algebraic Connectivity

Average Propagation

RD DP BT ER MGEA RD

DP BT ER MGEA

O© O ~NO UL WNBRP

R e e e e e e
QO OW~NOUNWNEREO

0.00343 0.00354 0.00322 0.00325 0.00323
0.00364 0.00374 0.00323 0.00327 0.00323
0.00380 0.00374 0.00323 0.00330 0.00323
0.00400 0.00424 0.00326 0.00341 0.00323
0.00414 0.00455 0.00331 0.00341 0.00323
0.00432 0.00469 0.00332 0.00351 0.00323
0.00452 0.00504 0.00333 0.00351 0.00323
0.00468 0.00532 0.00378 0.00358 0.00323
0.00483 0.00547 0.00414 0.00360 0.00323
0.00496 0.00548 0.00416 0.00366 0.00323
0.00522 0.00556 0.00416 0.00368 0.00323
0.00541 0.00568 0.00416 0.00369 0.00323
0.00557 0.00573 0.00416 0.00372 0.00323
0.00571 0.00574 0.00416 0.00387 0.00323
0.00590 0.00574 0.00416 0.00387 0.00323
0.00605 0.00578 0.00416 0.00389 0.00323
0.00614 0.00576 0.00416 0.00395 0.00323
0.00630 0.00577 0.00417 0.00396 0.00323
0.00642 0.00577 0.00417 0.00412 0.00323
0.00657 0.00579 0.00417 0.00414 0.00323

1.00105 1.00(3®F8 1.00346 0.99924
1.00173 0.9968021 1.00021 0.99982
1.00247 0.9968H83 1.00124 0.99966
1.00227 1.00@x1294 0.99940 0.99955
1.00254 1.001613 0.99957 1.00168
1.00192 1.001H655 1.00205 1.00174
1.00200 1.00Z¥%98 1.00214 1.00075
1.00228 1.0090857 1.00430 1.00037
1.00260 1.00806383 1.00497 1.00174
1.00279 1.0060%56 1.00324 1.00112
1.00336 1.0061%515 1.00269 1.00269
1.00347 1.0048)¥764 1.00492 1.00139
1.00293 1.0051%91 1.00381 1.00130
1.00313 1.003%839 1.00622 1.00163
1.00345 1.0048%32 1.00463 1.00201
1.00396 1.0028%29 1.00815 1.00192
1.00430 1.004%3684 1.00838 1.00224
1.00352 1.005%668 1.00717 1.00159
1.00386 1.0068824 1.00429 1.00145
1.00380 1.0008%42 1.00554 1.00043

13



14 Lonapalawong et al. / Front Inform

12:985-994.
https://doi.org/10.1063/1.1505810

Chen J, Thorp JS, Dobson I, 2005. Cascading dynamics
and mitigation assessment in power system disturbances
via a hidden failure model. International Journal of
Electrical Power and Energy Systems , 27(4):318-326.
https://doi.org/10.1016/j.ijepes.2004.12.003

Chen Q, Mili L, 2013. Composite power system vulnera-
bility evaluation to cascading failures using importance
sampling and antithetic variates. IEEE Transactions
on Power Systems, 28(3):2321-2330.

Correa-Henao G, Yusta J, 2015. Representation of electric
power systems by complex networks with applications
to risk vulnerability assessment. DYNA , 82:68-77.
https://doi.org/10.15446/dyna.v82n192.48574

Correa-Henao GJ, Yusta JM, Lacal-ArAjntegui R, 2013.
Using interconnected risk maps to assess the threats
faced by electricity infrastructures. International
Journal of Critical Infrastructure Protection , 6(3):197 -
216.
https://doi.org/https://doi.org/10.1016/j.ijcip.201

Cuadra L, Salcedo-Sanz S, Del Ser J, et al., 2015. A critical
review of robustness in power grids using complex net-
works concepts. Energies, 8(9):9211-9265.
https://doi.org/10.3390/en8099211

Dey P, Mehra R, Kazi F, et al., 2016. Impact of topology
on the propagation of cascading failure in power grid.
IEEE Transactions on Smart Grid , 7(4):1970-1978.
https://doi.org/10.1109/TSG.2016.2558465

Dobson |, Carreras BA, Newman DE, 2005. Branching pro-
cess models for the exponentially increasing portions of
cascading failure blackouts. Proceedings of the 38th
Annual Hawaii International Conference on System Sci-
ences, p.64a-64a.

Dobson |, Wierzbicki KR, Carreras BA, et al., 2006. An esti-
mator of propagation of cascading failure. Proceedings
of the 39th Annual Hawaii International Conference on
System Sciences, 10:245c¢-245c.

Dobson I, Kim J, Wierzbicki KR, 2010. Testing branching
process estimators of cascading failure with data from a
simulation of transmission line outages. Risk Analysis ,
30(4):650-662.
https://doi.org/10.1111/j.1539-6924.2010.01369.x

Ellens W, Spieksma F, Van Mieghem P, et al.,, 2011.

E ective graph resistance. Linear Algebra and its
Applications , 435(10):2491 - 2506 (Special Issue in
Honor of Dragos Cvetkovic).
https://doi.org/https://doi.org/10.1016/j.l1aa.2011. 02.024

Eppstein MJ, Hines PDH, 2012. A &€cerandom chem-
istrya€e algorithm for identifying collections of multi-
ple contingencies that initiate cascading failure.  IEEE
Transactions on Power Systems , 27(3):1698-1705.

Fiedler M, 1973. Algebraic connectivity of graphs.
Czechoslovak Mathematical Journal , 23:298-305.

Gu Y, Yang H, Sun W, et al., 2020. Hierarchical control of
dc microgrids robustness and smartness. CSEE Journal
of Power and Energy Systems, 6(2):384-393.

Guan ZH, Chen L, Qian TH, 2011. Routing in scale-free
networks based on expanding betweenness centrality.
Physica A: Statistical Mechanics and its Applications
390(6):1131 - 1138.
https://doi.org/https://doi.org/10.1016/j.physa.201

3.10.002

0.10.002

Technol Electron Eng in press

Holme P, Kim BJ, Yoon CN, et al., 2002. Attack vulnera-
bility of complex networks.  Phys Rev E, 65:056109.
https://doi.org/10.1103/PhysReVvE.65.056109

Jamakovic A, Uhlig S, 2007. Inuence of the network struc-
ture on robustness. 2007 15th IEEE International
Conference on Networks, p.278-283.

Ji X, Wang B, Liu D, et al., 2016. Improving interdepen-
dent networks robustness by adding connectivity links.
Physica A, 444:9-19.
https://doi.org/10.1016/j.physa.2015.10.010

Jiang Z, Liang M, Guo D, 2011. Enhancing network per-
formance by edge addition. International Journal of
Modern Physics C, 22:1211-1226.
https://doi.org/10.1142/S0129183111016841

KoAg§ Y, Verma T, Araujo NAM, et al., 2013. Matcasc: A
tool to analyse cascading line outages in power grids.
2013 |IEEE International Workshop on Intelligent En-
ergy Systems (IWIES), p.143-148.
https://doi.org/10.1109/IWIES.2013.6698576

KoA8§ Y, Warnier M, Mieghem PV, et al., 2014. The
impact of the topology on cascading failures in a power
grid model. Physica A: Statistical Mechanics and its
Applications , 402:169 - 179.
https://doi.org/https://doi.org/10.1016/j.physa.201

Laszka A, Buttyan L, Szeszlér D, 2013. Designing robust
network topologies for wireless sensor networks in adver-
sarial environments. Pervasive and Mobile Computing ,
9(4):546-563.
https://doi.org/10.1016/j.pmcj.2012.05.001

Li C, Xue Y, 2019. E ects of cascading failure intervals on
synchronous stability.  International Journal of Electri-
cal Power and Energy Systems, 106:502-510.
https://doi.org/10.1016/j.ijepes.2018.10.036

Liu J, Zhang H, Qiao W, et al., 2019. Dc (optimal) power
ow-based models for simulation and mitigation of over-
load cascading failures. North American Power Sym-
posium (NAPS), p.1-5.

Liu W, Sirisena H, Pawlikowski K, et al., 2009. Utility
of algebraic connectivity metric in topology design of
survivable networks. p.131-138.
https://doi.org/10.1109/DRCN.2009.5340016

Liu Z, Zhang H, Smith P, et al., 2012. Optimizing weighted
graph topology for robust network information dissem-
ination. Proceedings of the IEEE Conference on Deci-
sion and Control, p.3329-3334.
https://doi.org/10.1109/CDC.2012.6426594

Marsden PV, 2015. Network Centrality. Elsevier, Oxford,
p.532 - 539.
https://doi.org/https://doi.org/10.1016/B978-0-08-
097086-8.43115-6

Mieghem Pv, 2010. Graph Spectra for Complex Networks.
Cambridge University Press.
https://doi.org/10.1017/CB09780511921681

Moussawi A, Derzsy N, Lin X, et al., 2017. Limits of
predictability of cascading overload failures in spatiall y-
embedded networks with distributed ows. Scienti c
Reports, 7.
https://doi.org/10.1038/s41598-017-11765-1

Peng GS, Wu J, 2016. Optimal network topology for struc-
tural robustness based on natural connectivity.  Physica
A: Statistical Mechanics and its Applications , 443:212-

220.
https://doi.org/10.1016/j.physa.2015.09.023

4.01.056



Lonapalawong et al. / Front Inform Technol Electron Eng

Pizzuti C, Socievole A, Van Mieghem P, 2020. Comparative
network robustness evaluation of link attacks. Studies
in Computational Intelligence , 881 SCI(1):735-746.
https://doi.org/10.1007/978-3-030-36687-2_61

Qi J, Dobson I, Mei S, 2013. Towards estimating the
statistics of simulated cascades of outages with branch-
ing processes. IEEE Transactions on Power Systems ,
28(3):3410-3419.

Rei AM, Leite da Silva AM, Jardim JL, et al., 2000. Static
and dynamic aspects in bulk power system reliability
evaluations. |EEE Transactions on Power Systems ,
15(1):189-195.

Rezaei P, Hines P, Eppstein M, 2015. Estimating cascading
failure risk with random chemistry. |IEEE Power Energy
Society General Meeting, p.1-1.

Saleh M, Esa Y, Mohamed A, 2018. Applications of complex
network analysis in electric power systems. Energies,
11(6):1-16.

Song J, Cotilla-Sanchez E, Ghanavati G, et al., 2016. Dy-
namic modeling of cascading failure in power systems.
31(3):2085-2095.

Spiewak R, Buldyrev S, Forman Y, et al., 2016. A study
of cascading failures in real and synthetic power grid
topologies using dc power ows. Network Science, 6.
https://doi.org/10.1017/nws.2018.14

Sydney A, Scoglio C, Gruenbacher D, 2013. Optimizing
algebraic connectivity by edge rewiring.  Applied Math-
ematics and Computation , 219(10):5465-5479.
https://doi.org/10.1016/j.amc.2012.11.002

Tang Y, Huang Y, Wang H, et al.,, 2018. Framework for
arti cial intelligence analysis in large-scale power grid s
based on digital simulation. =~ CSEE Journal of Power
and Energy Systems, 4(4):459-468.

Wang J, Wei J, Zhu Y, et al., 2020. The reliability and
operational test system of a power grid with large-scale

in press 15

renewable integration. = CSEE Journal of Power and
Energy Systems, 6(3):704-711.

Wang JW, Rong LL, 2009. Cascade-based attack vulnerabil-
ity on the us power grid. Safety Science, 47(10):1332-
1336.
https://doi.org/10.1016/j.ssci.2009.02.002

Wang Y, Baldick R, 2014. Interdiction analysis of elec-
tric grids combining cascading outage and medium-
term impacts. IEEE Transactions on Power Systems ,
29(5):2160-2168.

Wang Z, Scaglione A, Thomas RJ, 2012. A markov-transition
model for cascading failures in power grids. 2012 45th
Hawaii International Conference on System Sciences,
p.2115-2124.

Wei P, Chen L, Sun D, 2014. Algebraic connectivity max-
imization of an air transportation network: The ight
routes' addition/deletion problem. Transportation Re-
search Part E: Logistics and Transportation Review
61:134€"27.
https://doi.org/10.1016/j.tre.2013.10.008

Wei X, Gao S, Huang T, et al., 2019. Identi cation of two
vulnerability features: A new framework for electrical
networks based on the load redistribution mechanism of
complex networks. Complexity , 2019:1-14.

https://doi.org/10.1155/2019/3531209
Zhang X, Tse CK, 2015. Assessment of robustness of power

systems from a network perspective. |IEEE Journal on
Emerging and Selected Topics in Circuits and Systems
5(3):456-464.

Zheng Y, Zhao S, Liu Y, et al.,, 2017. Weighted algebraic
connectivity maximization for optical satellite networks
IEEE Access, 5:6885-6893.
https://doi.org/10.1109/ACCESS.2017.2697818



	Introduction
	Related Work
	Topological Analysis of Network and Algebraic Connectivity
	Cascading Failure and Network Topology

	Empirical analysis of cascading failures in power grids
	Cascading Failure Simulation
	Average Propagation
	Impact of Tolerance level and Saturation
	The Correlation between Average Propagation and Algebraic Connectivity

	Cascading Failures Reduction via Algebraic Connectivity
	Problem Formulation
	Minimizing Algebraic Connectivity using Greedy Edge Addition

	Experiments and Results
	Experimental Protocol
	Datasets
	Baseline Strategies

	Performance Comparison
	Algebraic connectivity
	Average Propagation



