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Abstract: In the practice of clinical endoscopy, the precise estimation of the lesion size is quite significant for diagnosis. In this 
paper, we propose a three-dimensional (3D) measurement method for binocular endoscopes based on deep learning, which can 
overcome the poor robustness of the traditional binocular matching algorithm in texture-less areas. A simulated binocular image 
dataset is created from the target 3D data obtained by a 3D scanner and the binocular camera is simulated by 3D rendering software 
to train a disparity estimation model for 3D measurement. The experimental results demonstrate that, compared with the tradi-
tional binocular matching algorithm, the proposed method improves the accuracy and disparity map generation speed by 48.9% 
and 90.5%, respectively. This can provide more accurate and reliable lesion size and improve the efficiency of endoscopic  
diagnosis. 
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1  Introduction 
 

It is tough to perceive spatial positioning with 
conventional endoscopes that provide only 
two-dimensional (2D) images, which will eventually 
affect the accuracy and safety of diagnosis and 
treatment. The binocular endoscope has the ability of 
three-dimensional (3D) imaging and measurement, 
which can provide depth information to assist en-
doscopists in operating the endoscope more  

accurately, efficiently, and safely (Ogino-Nishimura 
et al., 2015; Cai et al., 2018; Nomura et al., 2019; 
Omori et al., 2020). In clinical gastrointestinal en-
doscopy, the precise size of lesions such as polyps is 
of great significance for diagnosis (Furukawa et al., 
2014; Dimas et al., 2020). When operating 2D endo-
scopes, endoscopists mainly use subjective vision or 
specific measurement tools, such as endoscopic 
measurement rulers, to estimate the polyp size. Con-
sequently, the endoscopist’s subjective assessment 
often deviates greatly from the accurate value due to 
polyp morphology and optical distortion (Ahmad et 
al., 2016; Anderson et al., 2016; Shaw and Shaukat, 
2016; Sakata et al., 2018) and because endoscopic 
measurement rulers produce inaccurate results and 
are inefficient (Anderson et al., 2016). Therefore, it is 
necessary to develop an objective, accurate, and effi-
cient 3D measurement method to improve endoscopic 
surgery results (Furukawa et al., 2014). 
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At present, the binocular endoscope realizes 3D 
measurement mainly by determining the disparity 
between the left and right images using the binocular 
matching algorithm (Wang D et al., 2018) and cal-
culating 3D coordinates of each pixel by triangulation 
combined with the binocular camera parameters. 
Traditional binocular matching algorithms, such as 
the semi-global matching (SGM) algorithm 
(Hirschmüller, 2008), have a better matching result 
on images with rich texture information. However, 
most endoscopic images have inadequate areas that 
are texture-less or have a high gloss. The robustness 
of the SGM algorithm in such an area is poor, and its 
generated disparity map often has noise and mis-
matching errors, which will eventually affect the 
accuracy and stability of 3D measurement. To over-
come the shortcomings of traditional binocular 
matching algorithms, researchers began to explore the 
binocular disparity estimation model based on deep 
learning. Some proposed models (Žbontar and LeCun, 
2014; Kendall et al., 2017; Zhang et al., 2019) can 
effectively improve the accuracy of disparity predic-
tions in texture-less and high-gloss areas, and produce 
excellent results in the field of autonomous driving. 
However, because their application scenarios are 
quite different from the endoscopic environment, they 
are ineffective when directly applied in binocular 
endoscopic images. In addition, binocular endoscopic 
images with ground truth disparity are difficult to 
obtain, which limits the transfer learning ability of 
these models. 

In an effort to solve the above-mentioned prob-
lems, we propose a 3D measurement method for 
binocular endoscopes based on deep learning. A 
simulated binocular image dataset is created for a 
gastroscope scenario to train a disparity estimation 
model for 3D measurement. The experimental results 
demonstrate that the proposed method is superior to 
the traditional binocular matching algorithm in terms 
of stability, accuracy, and real-time performance. 

The contributions of this work are summarized 
as follows: (1) Given that the ground truth disparity of 
real binocular endoscopic images is difficult to obtain, 
we propose a new method for creating simulated 
binocular images that are very similar to real endo-
scopic images in terms of content and structure. (2) 
An end-to-end disparity estimation network, mainly 
based on Google’s StereoNet (Khamis et al., 2018) 

with minor adjustments, is trained on virtual binocu-
lar images and used for estimating the disparities of 
real binocular endoscopic images. The 3D measure-
ment result calculated from the estimated disparities 
is more stable and reliable. 

2  Three-dimensional measurement method 
based on deep learning 

The process of the proposed 3D measurement 
method based on deep learning is shown in Fig. 1a. 
The left and right images taken by the binocular 
camera of the 3D endoscope are used as the input of 
the disparity estimation model, which will output the 
disparity map corresponding to the left image. Then, 
3D coordinates of each pixel in the disparity map in 
the camera coordinate system can be acquired by 
triangulation combined with the binocular camera 
parameters. Finally, the target size is calculated using 
the 3D coordinates. The training process of the dis-
parity estimation model is shown in Fig. 1b. A 3D 
scanner is used to scan the stomach model to obtain a 
3D model file, which is then imported into the 3D 
rendering software. By using the simulated binocular 
system established in the 3D rendering software, a 
simulation dataset is created to train the deep convo-
lutional network for disparity estimation. 
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(a) and the training process of disparity estimation model 
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2.1  Simulation dataset 

Training a deep learning network requires a lot 
of data with labels. However, it is difficult to obtain 
endoscopic binocular images with ground truth dis-
parity, which limits the transfer training, and appli-
cation of deep learning models in the actual endo-
scopic environment. Therefore, a method for creating 
a simulated binocular endoscopic dataset is proposed 
in this paper. 

In previous research (Wang XZ et al., 2020), 
Blender, an open-source 3D animation production 
software, was used for building a simulated gastro-
intestinal model to generate a binocular endoscopic 
dataset. However, because the gastrointestinal model 
established by them is a pure virtual model with some 
disadvantages such as limited texture, the dataset was 
not sufficiently similar to the real gastroscopic image. 
By contrast, the simulated binocular dataset created in 
this study is more similar to the images taken by ac-
tual binocular endoscopes. The specific generation 
process is as follows: First, a 3D scanner is used to 
scan the actual stomach model to obtain its 3D model 
file, which is then imported into Blender. After that, a 
simulated binocular camera system similar to the 
actual 3D gastroscopic binocular camera is estab-
lished in Blender. Next, the relative position of the 
simulated binocular camera to the scanned stomach 
model is set close to the working state of the actual 3D 
gastroscope. Finally, the binocular image dataset with 
ground truth disparity is generated through the 
Blender rendering. Figs. 2c and 2d show the left and 
right images taken by the actual 3D gastroscope, 
respectively. Figs. 2e and 2f show the left and right 
images from the simulation dataset, respectively. It 
can be seen that the simulated images are very similar 
to the real images in terms of the gastric rugae texture 
and the disparity relationship. In particular, because 
only the depth of the scanned stomach model relative 
to the binocular camera can be obtained from Blender, 
the disparity d needs to be calculated as 

/ ,d fb z                            (1) 

where f is the focal length of the camera, b is the 
baseline of the binocular camera, and z is the distance 
from the scanned model to the plane of the camera’s 
optical center. The simulation dataset results are 
shown in Fig. 3, in which the image resolution is  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1280×800, and the disparity image corresponds to the 
left image. 

2.2  Disparity estimation network 

Our end-to-end disparity estimation network is 
mainly based on the StereoNet proposed by Google 
researchers (Khamis et al., 2018), which has the ad-
vantages of good performance in the weak area, low 
structure complexity, and high computational effi-
ciency. The pipeline mainly includes the feature ex-
traction network, cost volume filter network, and  

Fig. 2  Comparison of real and scanned models: (a) actual 
stomach model; (b) image obtained using the 3D scanned 
stomach model; (c) left image obtained using the actual 
stomach model; (d) right image obtained using the actual 
stomach model; (e) left image obtained using the scanned 
model; (f) right image obtained using the scanned model 
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Fig. 3  Examples of the simulation dataset: (a) left camera 
image; (b) right camera image; (c) ground truth disparity 
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details refinement network (Fig. 4). Here, we do not 
use the Siamese network in the cost volume filter and 
refinement stage, but only generate the disparities 
corresponding to the left image. 

At the feature extraction stage, we use the Sia-
mese network, which first employs three 5×5 con-
volution layers with a stride of 2 to down-sample the 
input images and then employs 6 residual blocks 
composed of 3×3 convolution, batch regularization, 
and leaky ReLu activations, to extract the features. 

A rough cost volume is obtained by subtracting 
feature vectors of the binocular images. Next, it is 
filtered through four 3D convolutions with a size of 
3×3×3, batch normalization, leaky ReLu activations, 
and one final 3×3×3 convolution layer. Then the 
coarse disparity map is generated from the disparity 
with the minimum cost at each pixel using differen-
tiable arg min. 

At the disparity optimization stage, the bilinear 
interpolation method is used to up-sample the coarse 
disparity map, and then the color information of the 
input RGB image is used for refining the 
high-frequency details. The details refinement net-
work takes the concatenated color and disparity as 
input and generates the 32-dimensional tensor 
through a 3×3 2D convolution. Then the tensor is 
passed through 6 residual blocks in which the dilation 
convolution is used and the dilation is set as (1, 2, 4, 8, 
1, 1). By applying a final 3×3 2D convolution layer, 
we finally obtain the refined disparity map. 

To adapt to the endoscopic images and improve 
the accuracy of disparity prediction, we adopt the 
invariant loss function proposed by other researchers 
(Wang XZ et al., 2020). The loss function is defined 
as follows: 
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where n is the total number of pixels in the disparity 
map, di is the predicted disparity, and di′ is the ground 
truth value at pixel i. 

2.3  Evaluation indicators 

To quantitatively evaluate the effect of the dis-
parity map generated from simulated binocular im-
ages, end-point-error (EPE) and K-pixel-error (KPE) 
are adopted as metrics (Wang XZ et al., 2020). EPE is 
the average Euclidean distance between the estimated 
disparity and ground truth, and KPE is the percentage 
of the EPE that exceeds K pixels. EPE and KPE are 
calculated as 
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where fi is counted only when the EPE of pixel i ex-
ceeds K pixels. However, in the evaluation of the 
disparity map generated from real binocular endo-
scopic images, EPE and KPE are not suitable for 
evaluating the results because of the lack of ground 
truth disparity. Therefore, we propose an indicator to 
evaluate the stability of 3D measurement achieved 
using the disparity map, which is the standard devia-
tion of the multiple measured lengths for the same 3D  
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4  The network architecture  
The binocular images flow into the network and output the disparity map 
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curve. The specific process is as follows: First, the 
gastric rugae with clear texture in the left image taken 
by a 3D gastroscope are selected as the curves to be 
measured, and the curves are fitted with a constant 
number of points. Then the 3D coordinates of these 
fitting points in the camera coordinate system are 
calculated from the generated disparity map using the 
following equations: 
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where xi and yi are the x- and y-coordinate of pixel i in 
the pixel coordinate system, respectively, f is the focal 
length of the camera, b is the baseline of the binocular 
camera, di is the disparity of pixel i, cx and cy are the x- 
and y-coordinate of the principal point of the camera 
in the pixel coordinate system, respectively, and X, Y, 
and Z are the 3D coordinates in the camera coordinate 
system. Finally, the curve length is acquired from the 
3D coordinates of the fitting points. 
 
 
3  Experiments and results analysis 

3.1  Experiment description 

The binocular endoscopic images were all taken 
with a self-developed 3D gastroscope prototype  
(Fig. 5). The prototype consisted of the 3D gastro-
scope body, the LED light source, and the signal 
processing circuit. At the tip of the gastroscope were 
two cameras, two lights, one forceps channel, and one 
air-water channel. The calibrated focal length of the 
binocular camera was 1059.6 pixels, the calibrated 
baseline was 5.9 mm, and the calibrated x- and 
y-coordinate of the principal point of the camera in 
the pixel coordinate system was 633.6 pixels and 
367.1 pixels, respectively. 

In this study, the Einscan-pro-2x-plus 3D scan-
ner from Hangzhou SHINING 3D Technology Co., 
Ltd. was used to scan the stomach model. The simu-
lation datasets generated by Blender contained the left 
image, the right image, and the ground truth disparity 

corresponding to the left image. Two thousand sets 
were selected as the training set and the remaining 
100 sets as the testing set. The deep learning model 
used the RMSprop optimizer, and the learning rate 
was 1e−3. The training process lasted 40 epochs, and 
the maximum disparity value of the model was set as 
192. 

A computer with an Intel Core i9-9900K CPU, 
an NVIDIA GeForce RTX 2080Ti GPU, and 32 GB 
of memory was used in our experiment. For compar-
ison, we implemented the traditional semi-global 
block matching (SGBM) algorithm, fine-tuned for 
optimal performance. The deep learning algorithm 
and SGBM algorithm were realized by the PyTorch 
1.9.1 deep learning framework in Ubuntu 19.04 and 
Microsoft Visual Studio 2017 in Windows 10,  
respectively. 
 
 
 
 
 
 
 
 
 
 
 
 

3.2  Experimental results and analysis 

First, the simulated binocular images were used 
to evaluate the effectiveness of the disparity map, and 
the results are shown in Fig. 6. It can be seen from  
Fig. 6 that the disparity map produced by the SGBM 
algorithm had a lot of noise in inadequate areas such 
as shadows, while the disparity map produced by the 
proposed method was closer to the ground truth dis-
parity map. KPE, EPE, and the single image runtime 
of each method were calculated as shown in Table 1. 
Both the KPE and EPE of the proposed method have 
been greatly improved compared to the SGBM algo-
rithm. The accuracy measured by EPE increased by 
48.9%. In particular, when K equaled 50, the KPE of 
the disparity map produced by the SGBM algorithm 
and our method were 2.22% and 0.46%, respectively, 
which shows that the probability that extremely se-
rious errors occurred in our method is much lower 

Fig. 5  The 3D prototype endoscope (a) and the tip of the 
3D endoscope (b) 
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than that with the SGBM algorithm. The runtime of 
the proposed method was 34 ms, which is 90.5% less 
than that of the SGBM algorithm. Hence, the pro-
posed method can be used for real-time processing. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Similarly, the real binocular endoscopic images 
were used to evaluate the effectiveness of the dispar-
ity map, and the results are shown in Fig. 7. Due to the 
more complicated imaging conditions in the actual 
environment, in the disparity map produced by the 
SGBM algorithm, a large amount of noise is densely 
distributed in the shadow and overexposed areas. By 
contrast, the disparity map generated by the proposed 
method had less noise and was smoother. In addition, 
the stability of 3D measurement by the proposed 
method and SGBM was compared. Three gastric 
rugae of the stomach model were selected as the 
curves to be measured (Fig. 8). According to their 
disparity maps, the length of each curve was meas-
ured 10 times, and the corresponding average and 
standard deviation were calculated as shown in  
Table 2, where the incorrect measurement results 

obtained using the SGBM algorithm were highlighted 
and eliminated when calculating the average and 
standard deviation. From Table 2, the measurement 
error rate of the SGBM algorithm was approximately 
50%, and the standard deviation was extremely large, 
which indicates that the noise generated by the SGBM 
algorithm will seriously affect the stability and relia-
bility of 3D measurement. In contrast, the proposed 
method had no serious errors and the standard devia-
tion was smaller, which demonstrates that the 3D 
measurement results of the proposed method are more 
stable and reliable. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The proposed method has the potential for 
further optimization and there are two possible major 
sources of the remaining errors in our approach: First, 
due to the unsatisfactory imaging conditions in the 
actual environment, there is a high probability that the 
real endoscopic images will contain texture-less areas 
such as overexposure and shadows, resulting in loss 
of image features in those local areas. Second, the 
discrepancy in shallow features, such as color and 
exposure, between the real endoscopic images and the 
virtual ones in the training sets affects the accuracy of 
network prediction. 

 

Table 1  Disparity map performance comparison among 
different methods 

Method KPE (%) 
5 pixels 7 pixels 9 pixels 50 pixels 

SGBM 2.57 2.48 2.42 2.22 
Ours 2.20 1.41 1.07 0.46 

Method EPE (pixel) Runtime (ms) 
SGBM 2.25 357 
Ours 1.15 34 

Fig. 8  Three-dimensional measurement curves in the 
experiment 

10 mm

 

Fig. 6  Disparity results of simulated binocular images: 
(a) input left image; (b) disparity map produced using the 
SGBM algorithm; (c) disparity map produced by the 
proposed method; (d) ground truth disparity map 

 

Fig. 7  Disparity results of real endoscopic images:  
(a) input image (left); (b) disparity map produced by the 
SGBM algorithm; (c) disparity map produced by our 
method 
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4  Conclusions 
 

In this paper, a simulated binocular dataset was 
generated by establishing a simulated gastroscope 
scenario through Blender to train a disparity estima-
tion model for 3D measurement. The effectiveness of 
the disparity maps generated from simulated images 
was evaluated, and the results demonstrated that 
compared with the SGBM algorithm, the proposed 
method improved EPE by 48.9% and reduced the 
runtime by 90.5%. In addition, the proposed method 
did not create serious errors and had better 3D meas-
urement stability. The method developed in this study 
further promotes the potential application of 3D 
measurement in the endoscopic environment and can 
provide accurate and reliable sizes to help endosco-
pists make accurate diagnoses. 
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