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Abstract: Light field (LF) imaging has attracted attention because of its ability to solve computer vision problems. In this paper

we briefly review the research progress in computer vision in recent years. For most factors that affect computer vision

development, the richness and accuracy of visual information acquisition are decisive. LF imaging technology has made great

contributions to computer vision because it uses cameras or microlens arrays to record the position and direction information of

light rays, acquiring complete three-dimensional (3D) scene information. LF imaging technology improves the accuracy of depth

estimation, image segmentation, blending, fusion, and 3D reconstruction. LF has also been innovatively applied to iris and

face recognition, identification of materials and fake pedestrians, acquisition of epipolar plane images, shape recovery, and LF

microscopy. Here, we further summarize the existing problems and the development trends of LF imaging in computer vision,

including the establishment and evaluation of the LF dataset, applications under high dynamic range (HDR) conditions, LF image

enhancement, virtual reality, 3D display, and 3D movies, military optical camouflage technology, image recognition at micro-scale,

image processing method based on HDR, and the optimal relationship between spatial resolution and four-dimensional (4D)

LF information acquisition. LF imaging has achieved great success in various studies. Over the past 25 years, more than 180

publications have reported the capability of LF imaging in solving computer vision problems. We summarize these reports to

make it easier for researchers to search the detailed methods for specific solutions.
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1 Introduction

Light field (LF) imaging is a type of computa‐
tional photographic technology. In contrast to two-
dimensional (2D) imaging methods, a light field cam‐
era (LFC) can record the intensity and direction of
each ray, and multiple views of the scene can be

captured in one exposure. This capability brings new
possibilities for post-processing of an image. Many
studies have proven that LF imaging can greatly
improve the capabilities and performances of com‐
puter vision technologies, including digital refocus‐
ing, image segmentation, shape recovery, and saliency
detection.

LF imaging technology was pioneered by Lipp‑
mann (1908). Using an early LF imaging method
called integral photography (IP), he proposed that
true stereo images can be reconstructed based on the
reversibility principle of light rays. Later, Gershun
(1939) first defined the distribution of light rays as a
model. Then, Adelson and Bergen (1991) improved
this definition and proposed to name this model “the
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plenoptic function” based on the position, angle, wave‐
length, and time of each light ray. Numerous systems
of LF acquisition have been built, most of which are
composed of multi-cameras or camera arrays. For
these systems, the cameras or camera arrays are dis‐
tributed on a planar surface, and each camera records
the radiance of light rays on a single point. The first
handheld LFC, proposed by Ng et al. (2005), was
portable, cheap, and useful. In recent years, LFCs
such as the Lytro and Raytrix, have been made avail‐
able commercially. These cameras make it easy to
capture the information of the whole LF for common
users, and thus have attracted much interest. Because
of its outstanding performance, LF imaging technol‐
ogy has great potential in various fields of computer
vision research and application, such as biometric
detection and robotics vision.

2 Overview of related works

2.1 Summary

In the 120-year history of LF imaging, the rapid
application of optical field imaging technology to com‐
puter vision has occurred mainly in the last 25 years.
Therefore, the research studies summarized in this
report were selected primarily from this period. The
main developments over that period were as follows:
(1) from 1996 to 2010, initial development and appli‐
cation of LF imaging; (2) from 2010 to 2015, rapid
development of LF imaging in computer vision re‐
search; (3) from 2015 to 2021, peak period of LF
imaging. To our knowledge, however, there have been
few reviews of research on LF imaging calculations,
and very few focusing on the application of LF imag‐
ing to computer vision.

Recently, there has been a rapid development of
LF imaging technology in computer vision. In partic‐
ular, since 2015, the commercial promotion, devel‐
opment, and popularization of LFCs have accelerated.
Additionally, many innovative computer vision theo‐
ries and models have been proposed and applied,
such as LF depth estimation theory, LF super-resolution
theory, and face recognition models. We believe that
it is important to summarize the development of LF
imaging technology in computer vision, to provide
information for researchers.

After LFC was made available commercially in
2005, this topic has attracted many researchers. How‐
ever, reviews of recent advances are rare. In this pa‐
per, we summarize the development of LF imaging
technology in computer vision, and discuss the possi‐
ble research directions and challenges of LF vision.
In most cases, we provide a comprehensive list of
references to enable researchers to better select and
summarize the advanced ideas, along with the key
methods. We hope that our work may help relevant
workers to quickly understand the theoretical basis
and practical development needs of these directions.

2.2 Representatives

LF imaging technology is widely applied in com‐
puter vision tasks. The most substantial contributions
are hierarchical and can be divided into two catego‐
ries: LF image based and stereo visual cues based. To
clarify the relationship between LF imaging and com‐
puter vision tasks, we have used a diagram (Fig. 1) to
describe the contributions. In addition, the common
tasks and applications, as well as the common prob‐
lems and future trends, are shown in Figs. 2 and 3.

Studies of LF imaging in computer vision can
be divided into four subject areas: (1) LF processing

Fig. 1 The contributions of light field (LF) imaging to computer vision
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and image generation; (2) low-level vision; (3) middle-
level vision; (4) high-level vision. LF processing and
image generation research includes mainly the LF
function, optical schematic of LFC, and LF super-
resolution. Low-level vision research includes mainly
LF depth estimation and 3D reconstruction. Middle-
level vision research includes mainly image segmen‐
tation and blending. High-level vision research includes
mainly face recognition and material recognition or
detection.

3 Light field imaging technology

3.1 Light field function

For imaging convenience, traditional 2D imag‐
ing systems ignore the analysis of the angle informa‐
tion of the light rays. They directly analyze the direc‐
tion information of the light rays on which the lens
focuses, such as a pixel point (s,t) in a certain exposure
time recorded on a charge-coupled device (CCD) or
complementary metal-oxide-semiconductor (CMOS).
For the basic principle model of LF imaging (Fig. 4),
the LF information is determined by recording the
intersection points (u, v) and (s, t) information of
each light ray intersecting the lens plane and image
plane. Based on the above imaging principle, the
four-dimensional (4D) LF information can be regarded
as a summary of each light ray’s information.

In addition, the 4D LF can be expressed in a
visual way. The st plane is regarded as a group of cam‐
eras that can obtain light, and the uv plane is regarded
as the focal plane of the camera. Furthermore, the
two-plane LF model L(u, v, s, t) can demonstrate the
acquisition of LF in two different ways. First, the
camera captures all the light rays passing through the
st plane and forming the focus with the uv plane (a
set of rays at a certain viewpoint), and represents the
4D LF with a 2D array of images (Fig. 5a). Each 2D
image is called a subaperture image. Second, the
number of samples on the st plane is positively related
to the number of viewpoints, and the number of sam‐
ples on the uv plane is positively related to the resolu‐
tion of the camera. Therefore, in general, the s and t
dimensions are referred to as the angular dimensions,
and the u and v dimensions as the spatial dimensions.
By acquiring I

s∗,t∗(u,v ) and I
u∗,v∗( s,t ), slices E

v∗,t∗(u,s)
or E

u∗,s∗(v,t ) can be produced, also known as epipolar

plane images (EPIs).
When the camera (fixed s*t* plane) is kept sta‐

tionary, subaperture images I
s∗,t∗(u,v ) can be collected.

Similarly, when the u*v* plane is fixed, the LF sub-
views I

u∗,v∗( s,t ) composed of light rays from different

viewpoints can be collected. The EPI contains spatial
information and angular information about an LF. At
the same time, the points of different depths of an
object are generally regarded as lines with different
slopes in EPIs. The slope of a line represents the depth
information of a point in the object, and thus the EPI
is widely used in object depth estimation research.

3.2 Light field acquisition

In terms of structure, there are two main LF
acquisition types: multi-camera array structure and
single camera optical element structure. These two
LF acquisition methods with different structures can
effectively acquire LF scene information.

Fig. 4 A conceptual diagram of light field imagingFig. 2 Eight existing tasks and applications

Fig. 3 Seven existing problems and future trends
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3.2.1 Multi-camera array structure

Multi-camera array structure means that multi‐
ple cameras are placed at different viewing angles to
capture an image of same object and obtain the LF
information of different viewpoints. Levoy and Han‐
rahan (1996) installed a camera on an LF gantry to
acquire complete LF information, including the four
degrees of freedom of 2D translation and 2D rota‐
tion. Yang (2000) used an 8×11 lens array to conduct
multi-perspective imaging of a target, and then used
a flat plate scanner to complete a scan of the transver‐
sal image plane to finish recording all of the LF infor‐
mation. However, these two LF acquisition devices
are suitable only for LF acquisition of static objects.
To solve this problem, Zhang C and Chen (2004) pro‐
posed a multi-camera array structure that can adjust
the attitude independently. Each camera is fixed in a
mobile structure unit, which can adjust indepen‐
dently in the horizontal direction and a 2D rotation
direction. Wilburn et al. (2005) proposed several cam‐
era arrays with different configurations. By control‐
ling the time accuracy and relative position accuracy
of each camera, the LF can be processed accurately
in time and space to obtain high-quality synthetic
images (Fig. 6). At the same time, many studies have
proven that increasing the camera array improves
the viewing angle range of the imaging system. In
addition, synthetic aperture imaging technology has
more freedom and flexibility in focus selection and
depth of field adjustment. It is applicable to many
visual tasks, including recognition and classification.

3.2.2 Single camera optical element structure

The LF single camera optical element structure
acquisition method refers to adding optical modulation
elements to a single camera, and then changing the
imaging structure to redistribute the four-bit LF in‐
side the camera to a 2D plane. The optical path mod‐
el of the first handheld LFC (Plenoptic 1.0) is shown
in Fig. 7. The imaging device places a microlens
array at the focal plane of the traditional camera,

Fig. 7 Optical path model of the first handheld light field
camera (Plenoptic 1.0)
Reprinted from Ng et al. (2005), Copyright 2005, with
permission from the authors, licensed under CC BY-NC 4.0

Fig. 6 The different forms of camera arrays: (a) camera
array with independent attitude adjustment; (b) Stanford
camera array
Reprinted from Wilburn et al. (2005), Copyright 2005, with
permission from ACM

Fig. 5 The 4D LF and EPI: (a) a subaperture image; (b) LF sub-view I
u∗ ,v∗ ( s,t ); (c) EPI
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and the image sensor is placed at one focal length
from the microlens (Ng et al., 2005). Beams from dif‐
ferent directions at the same point can be recorded
by the image sensor through refraction of the main
lens and focusing on the microlens array. The posi‐
tion resolution of the LF recorded by the Plenoptic
1.0 camera is related to the number of microlenses.
The angular resolution of the LF is equal to the pixel
resolution of the LF. At the same time, the imaging
performance shows that each subaperture image is
consistent with the aperture shape of the main lens
and the regularly arranged sub-images.

Lumsdaine and Georgiev (2009) proposed the
Plenoptic 2.0 LFC. The optical path model of the
camera is shown in Fig. 8. The largest difference
from Plenoptic 1.0 is that the camera places micro‐
lens arrays before and after the focal plane position,
and the image sensor is placed at a certain distance
behind the microlens array for the image sensor to
realize early focusing or secondary focusing. The
pre-focused sub-image is a positive image, and the
secondary focused image is an inverted image. Each
sub-image represents the observation at the imaging
of the main lens. In addition, because the angular
resolution of the LF imaging model is directly related
to the relative distance of the main lens, microlens
array, and image sensor, there is a compromise between
angular resolution and position resolution.

Liang et al. (2008) proposed a programmable
aperture camera. As shown in Fig. 9, the camera sam‐
ples the subaperture of the main lens through multiple

exposures, and each exposure allows only the light at
the specific subaperture position to be captured on
the image sensor. For the selection of subapertures, a
specific binary coding form is adopted. The LF col‐
lected by the camera has the same spatial resolution
as the image sensor. However, this is at the expense of
long exposure time and a high image signal-to-noise
ratio, and the amount of additional data accrued by
multiple exposures is an additional burden.

3.3 Light field representation

The most widely used consumer LFC, the Lytro,
is composed mainly of a main lens, a microlens array,
and a photosensor. A microlens array is placed between
the main lens and a photosensor (Fig. 10) (Zhang J
et al., 2020). This microlens array structure can divide
the incident light rays in the main lens into many
small parts in space. At the same time, each micro‐
lens can carry out independent projection transforma‐
tion, and each part is focused on the focal plane by
the corresponding microlens to obtain the corre‐
sponding microlens image. Finally, a series of micro‐
lens images are represented as LF images.

Fig. 9 The programmable aperture
Reprinted from Liang et al. (2008), Copyright 2008, with
permission from ACM

Fig. 8 The optical path model of the Plenoptic 2.0 LFC:
(a) secondary focusing; (b) focus in advance
Reprinted from Lumsdaine and Georgiev (2009), Copyright
2009, with permission from IEEE

Fig. 10 Optical schematic of an LFC containing a main
lens, a microlens array, and a photosensor
Reprinted from Zhang J et al. (2020), Copyright 2020, with
permission from IEEE

1081



Jia et al. / Front Inform Technol Electron Eng 2022 23(7):1077-1097

As shown in Fig. 11, the generation of all LF
images results from the integration and summation
of all light ray information recorded on the refocus
plane:

EF( s,t ) =
1

F 2 ∬LF(u,v,s,t )dudv, (1)

where EF(s,t) represents the radiation intensity of pixel
(s,t), LF(u,v,s,t) denotes the light ray information, and
F represents the distance between the lens plane and
the sensor plane.

It is assumed that the intersection of the ray
propagating in a certain direction and the refocus
plane is (s, t). Based on the geometric relationship,
the intersection of the ray and the sensor plane is

(u, v, u +
s - u
α

, v +
t - v
α ). Because the radiation

energy remains unchanged during propagation under
the same light, the following can be obtained:

LF(u,v,s,t ) = LF(u,v,u +
s - u
α

,v +
t - v
α ) . (2)

Therefore, we have

LF(u,v,s,t ) = LF(u,v,u (1 -
1
α ) +

s
α

,v (1 -
1
α ) +

t
α ) .

(3)

When Eq. (3) is introduced into Eq. (1), the sec‐
tion image of the refocus plane can be obtained:

EαF( s,t ) =
1

( )αF
2 ∬LF(u,v,u (1 -

1
α ) +

s
α

,

v (1 -
1
α ) +

t
α )dudv, (4)

where u represents the lens plane, F′ =αF indicates
the distance between the lens plane and the refocus
plane, and α refers to the focusing coefficient for the
distance between the lens plane and the refocus plane
that needs to be adjusted. Different refocused images
can be obtained by changing the focusing coefficient.

4 Light field imaging processing

4.1 Digital refocusing

Ng et al. (2005) proposed the first handheld LFC
that can record the complete 4D LF information.
They suggested that each focus image based on a
microlens array is essentially a 2D slice representa‐
tion of the acquired 4D LF information. Further‐
more, they demonstrated digital refocusing and view‐
point manipulation, coupled with custom software
(Fig. 12). The experimental examples included human
portraits and high-speed action. In addition, Lumsdaine
and Georgiev (2009) proposed a new expression of
LF. They regarded the microlens array as a separate
imaging system. The focal plane of the imaging sys‐
tem was located on the main lens, and the final LF
data had a higher spatial resolution. Georgiev and
Lumsdaine (2010) proposed a real-time algorithm for
synthesizing full screen refocused images from dif‐
ferent viewpoints. Fiss et al. (2014) simplified the
solution mode of the digital refocusing problem and
directly projected the original information captured
by the LFC to the focus output plane. Benefiting from
the characteristics of LFCs with a large depth of field,
Guo XQ et al. (2015) proposed a barcode image cap‐
ture method that can refocus at different depths and
demonstrated the technology in practical applications.

4.2 Image blending and fusion

Image blending technology refers to the process

of producing a seamless high-resolution image using

Fig. 12 Reformed photographs: (a) refocused human
portraits; (b) refocused high-speed action
Reprinted from Ng et al. (2005), Copyright 2005, with permission
from the authors, licensed under CC BY-NC 4.0

Fig. 11 Schematic of LF refocusing
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multiple overlapping images. Traditional image blend‐
ing technology includes the following three main
parts: image pre-processing, image registration, and
image fusion. Traditional 2D image blending technol‐
ogy has been greatly developed, but most techniques
are complex and have a blending parallax in the verti‐
cal direction.

Afshari et al. (2012) introduced a new linear
blending technique based on spherical LFC. The spher‐
ical LFC was applied to provide multiangle infor‐
mation for different focal planes to improve the effec‐
tiveness of visual reconstruction. Due to the limita‐
tion of sensor resolution, the LFC often performs
sparse sampling in the spatial or angular domain.
Kalantari et al. (2016) introduced a novel convolu‐
tional neural network (CNN) based framework to
synthesize new views from a sparse set of input views.
Raghavendra et al. (2013b) proposed a new weighted
image fusion framework, which can adaptively assign
a higher weight to the better-focused image to ensure
the image fusion effect. Wang YQ et al. (2018) consid‐
ered that the traditional fusion algorithm would cause
color distortion when fusing multifocus images with a
small depth of field. Therefore, they applied the wave‐
let transform method to multifocus image fusion,
effectively ensuring visual performance. Nian and
Jung (2019) introduced a machine learning based multi‑
focus image fusion scheme using LF data (Fig. 13).
First, they used CNNs to extract the features of each
multi-focus image. Second, they trained the network
parameters of the multi-focus images together to
ensure consistency of features. Then, they put the fea‐
tures to the second CNN to obtain an initial focus map.
Finally, they performed morphological operations of
opening and closing to process the initial focus map
and then obtained the focus map. Based on the pro‐
cessed focus map, a full clear image was generated.

4.3 Image segmentation

Image segmentation divides the image into sev‐
eral regions according to features such as grey, color,
spatial texture, and geometry. These features show
consistency or similarity in the same region, but obvi‐
ous differences between regions. Unlike traditional
multiple view segmentation methods, the use of LF
images helps improve the accuracy of segmentation
due to the richness of data and the high correlation
between multiple views (Wu et al., 2017).

Berent and Dragotti (2007) proposed an EPI-
based energy minimization method for the occlusion
segmentation problem. Similarly, Sheng et al. (2016)
modified the structure tensor on the EPIs to compute
the disparity, and presented a remarkable segmenta‐
tion model based on superpixel segmentation, as well
as a graph-cut algorithm. Using the graph-cut theory
and Markov random field (MRF) framework, and ana‐
lyzing multiple views, Campbell et al. (2010, 2011)
proposed two automatic segmentation algorithms
in the voxel space and image space. Hog et al. (2016)
introduced a new graph representation for interactive
LF segmentation using MRF. The proposed method
exploited the redundancy in the ray space, decreasing
the running time for the MRF process. Moreover, for
multilabel segmentation, Wanner et al. (2013b) pro‐
posed a variable framework based on analyzing the
ray space of 4D LFs. They also proved that LF data
can not only be trained, but also provide available data
for labelling. Based on the analysis of depth informa‐
tion and the redundancy contained in LF data, Mihara
et al. (2016) proposed a supervised 4D LF segmenta‐
tion method. Considering that the rays are the basic
unit of each pixel, Zhu et al. (2017) presented a light
field superpixel (LFSP) method, which can effective‐
ly solve the ambiguity of the segmentation boundary.

Fig. 13 Machine learning based multi-focus image fusion
Reprinted from Nian and Jung (2019), Copyright 2019, with permission from IEEE
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Yücer et al. (2016) used densely sampled images
from different angles as input, and presented an avail‐
able automatic segmentation method for 2D and 3D
space. The depth information contained in the LF
focus region is easily accessible and is helpful for
segmentation. Gao et al. (2017) introduced pulse
coupled neural networks (PCNNs) for precise and
straightforward segmentation. Furthermore, to address
the background sensitivity problem in foreground
segmentation, Chen et al. (2015) presented an auto‐
matic foreground segmentation algorithm relying on
LF all-in-focus images. Lee and Park (2017) intro‐
duced an approach separating the foreground and
background using gradient information directly at the
pixel level, which can be effectively applied to the
processing of occlusion problems. To address the pro‑
blem of inaccurate segmentation of transparent objects,
Johannsen et al. (2015) presented a method apply‐
ing disparity and luminance information from LF
data to solve the problem of reflective or transparent
surface segmentation. Xu et al. (2015) proposed a seg‐
mentation framework for transparent objects, named
TransCut. This method uses the LF-linearity and occlu‐
sion detector rather than color and texture informa‐
tion to describe transparent objects. Moreover, Xu
et al. (2019) updated the LF-linearity algorithm and
proposed a new dataset for evaluation to obtain better
results. The new algorithm is automatic, requiring no
human interaction. Lv et al. (2021) introduced LFSP
technology, which improved the accuracy of occlu‐
sion boundary area segmentation.

4.4 Light field saliency detection

The main purpose of saliency detection is to
detect the most interesting objects in an area. How‐
ever, in the face of complex scenes such as those
with similar background color and depth, the existing
detection algorithms for 2D images cannot achieve
accurate detection results.

Li NY et al. (2014) first attempted to use LFs as
input for the saliency detection problem and devel‐
oped the first saliency detection algorithm for LFs.
The algorithm substantially improves the performance
of saliency detection in complex scenes by calcu‐
lating the image space and the structural similarity
between focal stack images, as well as using the prior
candidate knowledge of foreground and background.

Furthermore, they used the Lytro LFC to construct a
light field saliency dataset (LFSD), including the origi‐
nal 4D data and ground truth. The scenes in this dataset
were divided into indoor and outdoor parts. More‐
over, Li NY et al. (2015) processed LF depth informa‐
tion and focus information as one-dimensional visual
features, proposing a single saliency detection frame‐
work with strong robustness in multi-dimensional
data. Zhang J et al. (2015) proposed a novel saliency
detection model based on analyzing all LF cues to
improve their accuracy, and this proved to be benefi‐
cial for 2D and 3D saliency detection. Taking the
accuracy of saliency detection as an evaluation index,
Zhang XD et al. (2015) compared LF and 2D saliency
detection. Experimental results showed that LF sa‐
liency detection outperformed 2D saliency detection
in complex occlusions and background clutter. Wang
AZ et al. (2017) fused the useful visual cues con‐
tained in LF data and proposed an improved Bayesian
integration framework for saliency detection. Zhang
J et al. (2017) proposed an LF multiple cues based
saliency detection framework, with cues including
color and depth. Meanwhile, they established a real
data LF dataset, Hefei University of Technology-
light field saliency detection (HFUT-LFSD). Zhang M
et al. (2019) exploited LF combined with long short
term memory (LSTM) and constructed the largest LF
dataset, Dalian University of Technology-light field
saliency detection (DUT-LFSD). Piao et al. (2019a)
fully exploited the correlation of the information inher‐
ent in LF data and proposed a saliency detection frame‐
work based on depth-induced cellular automata (DCA).
The framework can effectively solve the main prob‐
lems of missed and false detection under complex
background conditions. The main flow of the frame‐
work is shown in Fig. 14. First, the focal stack, depth
map, and all-in-focus images are used as the overall
input of the framework. Second, the focal stack and
depth map are used to guide and obtain object-guided
depth and background seeds. Meanwhile, all-in-focus
images and object-guided depths are guided for seg‐
mentation. Third, the depth-induced saliency is ob‐
tained by multiplying the object-guided depth and
the contrast saliency. At the same time, a DCA model
is used to optimize the parameters, and optimized
saliency results are obtained. Finally, the Bayesian
framework is used to fuse depth-induced saliency
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and optimized saliency while conditional random field
(CRF) is used to obtain the final saliency map. To
explore the contribution of each focal slice to saliency
detection, Piao et al. (2021) proposed a patch aware
network (PANet) with a multisource learning module
and achieved optimal results at the same time.

Although some LF saliency detection datasets
have been established, most have limitations. There‐
fore, deep learning methods based on big data cannot
perform well; thus, the advantage of the rich LF image
information cannot be demonstrated. To solve this
problem, Wang TT et al. (2019) introduced a large-
scale dataset for 4D LF saliency detection. The data‐
set consisted of 1465 all-in-focus images. Each image
had a well-labelled ground truth and focal stacks. In
addition, they introduced a fusion framework based
on an attentive recurrent CNN, which improves the
performance for 4D LF saliency detection. Further‐
more, Piao et al. (2019b) used the Lytro LFC to con‐
struct a new 4D LF dataset for saliency detection with
1580 LF images. Each LF image consisted of multi‐
ple views and a pixelwise ground truth of the cen‐
tral view. Moreover, they presented an available
end-to-end CNN scheme based on LF synthesis and
LF-driven saliency detection to ensure the improve‐
ment in the final experimental results. In addition,
Zhang J et al. (2020) first proposed to analyze the
angular features with a CNN from an LF image for

saliency detection. Finally, to compare the perfor‐
mance of the algorithms comprehensively using three
datasets, we adopted four popular metrics, including
the Sα-measure, Es-measure, Fβ-measure, and mean
absolute error (MAE). The results of quantitative
comparisons are shown in Table 1.

The Sα-measure can evaluate the region-aware
and object-aware structural similarity between the
saliency map and ground truth. The definition of Sα
is given as

Sα = (1 - α) So(Sp,G ) + αSr(Sp,G ) , (5)

where So is the final object-aware structural similarity
measure, Sr is the final region-aware structural simi‐
larity measure, α∈[0,1] is a balance factor between So

and Sr, G is the ground truth map, and Sp is the pre‐
diction map.

The Es-measure can capture local pixel match‐
ing information and image-level statistics. The defi‐
nition of Es is given as

Es =
1

w × h∑x

w∑
y

h

s ( )Sp ( x,y ) ,G ( x,y ) , (6)

where w and h are the width and height of G respec‐
tively, symbol s is the enhanced alignment matrix,
and (x,y) are the coordinates of each pixel.

Fig. 14 The framework of depth-induced cellular automata for saliency detection
Reprinted from Piao et al. (2019a), Copyright 2019, with permission from IEEE
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The Fβ-measure is the harmonic mean of the
average precision and average recall. It is defined as

Fβ =
( )1 + β2 precision ⋅ recall

β2 ⋅ precision + recall
, (7)

where β is a parameter to achieve a trade-off between
recall and precision.

The MAE is the average difference between Sp

and G. The definition of MAE is given as

MAE =
1

w × h∑x

w∑
y

h

|| Sp( )x,y - G ( )x,y . (8)

4.5 Light field video

Traditional 2D video equipment cannot express
a scene’s real stereo effect because of the limitations
of imaging sensors. LF imaging technology can pro‐
vide complete LF video information, including the
required six degrees of freedom for natural scenes.

In early research, Wilburn et al. (2002) pro‐
posed a flexible and modular LF video camera. This
LF video camera is composed mainly of more than 100
controllable 2D cameras, and visual control is real‐
ized mainly by one computer at the same time. To solve
the problem of a shaky output video of a handheld
LF video camera, Smith et al. (2009) used the space‑
time optimization method to optimize the objects while
enabling the important image features in the input
video to move smoothly in the output video. Mean‐
while, they used LF video to provide the characteris‐
tics of multiple views and proposed an LF video
optimization method without path reconstruction.
Furthermore, to improve LF data capture, processing,
and display, Balogh and Kovács (2010) proposed an

end-to-end LF video rendering processing software.
The software includes multiple cameras, a high-
performance personal computer, and a high-speed
network. The LF rendering video processed by this
system is real-time, and has a high frame number
and high resolution. In particular, Tambe et al. (2013)
broke the trade-off between spatial resolution and an‐
gular resolution due to the prior knowledge of LFCs,
and introduced an LF video camera for dynamic high-
resolution LF video reconstruction using redundant
scene information. Furthermore, Sabater et al. (2017)
proposed a real-time, accurate pipeline for LF video
capture and processing, including depth estimation
algorithms and color homogenisation algorithms.

Wang TC et al. (2017) proposed a hybrid imag‐
ing system using a Lytro camera and a digital video
camera. A digital camera was used to capture the
temporal information, solving the problem of miss‐
ing a large amount of information between adjacent
frames. The Lytro camera was first combined with a
30-frame/s digital video camera (Fig. 15a). The inputs
in the system included a standard 2D video and a
3-frame/s LF sequence (Fig. 15b). Finally, combining
the angular information and temporal information ob‐
tained from the 3-frame/s LF sequence and 30-frame/s
2D video, a complete LF video with all angular views
could be obtained (Fig. 15c, left). This system imple‐
ments digital focus and parallax generation during
video playback. Mehajabin et al. (2020) proposed a
novel pseudo-sequence-based coding order, which
efficiently improves compression for LF videos.

4.6 Light field super-resolution

As a piece of new imaging equipment, the LFC
has a trade-off between spatial resolution and angular

Table 1 Quantitative comparisons of the Es-measure, Sα-measure, Fβ-measure, and MAE score on the 4D LF dataset

Algorithm

Zhang J et al. (2017)

Wang YQ et al. (2018)

Zhang M et al. (2019)

Wang TT et al. (2019)

Piao et al. (2019a)

Piao et al. (2021)

DUT-LFSD

Es↑
–

0.913

0.923

0.905

0.891

0.941

Sα↑
–

0.878

0.887

0.852

0.841

0.897

Fβ↑
–

0.833

0.843

–

0.801

0.892

MAE↓
–

0.055

0.053

0.070

0.076

0.042

HFUT-LFSD

Es↑
–

0.770

0.785

–

0.783

0.843

Sα↑
–

0.736

0.752

–

0.741

0.802

Fβ↑
–

0.620

0.627

–

0.615

0.704

MAE↓
–

0.096

0.095

–

0.098

0.073

Es↑
0.841

0.882

0.886

0.877

0.806

0.882

LFSD

Sα↑
0.749

0.820

0.830

0.826

0.737

0.842

Fβ↑
0.815

0.805

0.819

–

0.715

0.853

MAE↓
0.150

0.092

0.089

0.093

0.147

0.080

↑ The higher the index, the better the performance. ↓ The lower the index, the better the performance
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resolution. The image resolution generated by the
LFC is low, restricting the application of LF imaging
technology (Cheng et al., 2019). Recently, to solve
this problem, many super-resolution methods have
been proposed, including three main categories: LF
data structure based methods, learning-based meth‐
ods, and multisensor-based methods (see supplemen‐
tary materials, Sections 1.1.1, 1.1.2, and 1.1.3).

4.7 Depth estimation

The rich 4D LF data make LF depth estimation
research possible. The LFC is a single-sensor imag‐
ing device. Data acquisition is not affected by other
sensors operating in cooperation, which gives it sta‐
bility and convenience. In our summary, we divided
the methods of LF depth estimation into two catego‐
ries: data-based methods and learning-based methods.
The data-based methods can be divided further into
two parts: EPI-based methods and LF-image-based
methods. LF-image-based methods include the mea‐
surement analysis of the subaperture image and the
refocus image. Furthermore, they include some pro‐
cessing methods based on LF data for some unique
problems, such as occlusion and scattering medium (see
supplementary materials, Sections 1.2.1 and 1.2.2).

4.8 Light field image quality assessment

Many LF image processing methods and appli‐
cations have been proposed. LF images inevitably
struggle with various wide distortions, leading to a
reduction in image quality. Therefore, the quality
assessment of LF images is critical, and can better
guide the collection, processing, and application of
LF images. In recent decades, various image quality
assessment (IQA) algorithm models have been pro‐
posed, but these are used mostly to evaluate natural

images and screen images. Because different image
types have different characteristics, they are not suit‐
able for direct assessment of LF images. Therefore,
accurately evaluating LF image quality and efficiency
according to visual characteristics becomes an urgent
need.

Fang et al. (2018) presented a full reference LF
image quality assessment (FRLFIQA) algorithm. This
method predicts the LF image quality by measuring
the gradient similarity between the EPI of the original
LF image and the EPI of the distorted image. Huang
et al. (2018) proposed another FRLFIQA algorithm.
This algorithm estimates the LF image quality by fit‐
ting the distribution of the average difference between
each perspective of the original image and the dis‐
torted image. Furthermore, Tian et al. (2021) pro‐
posed a symmetry and depth feature based model for
LFIQA. The main idea was to use symmetry and
depth features to fully search the color and geometric
information. In addition, Paudyal et al. (2019) pro‐
posed a reduced-reference LFIQA (RR LFIQA) algo‐
rithm. This algorithm is based on the correlation
between the depth image quality of the LF image and
the overall quality of the LF image. It measures the
structural similarity between the depth image of the
original image and that of the distorted image to pre‐
dict the overall quality of the LF image. Further‐
more, considering that existing LF image quality
evaluation is closely related to the reliability and cor‐
relation of LF datasets, Paudyal et al. (2017) built
an LF image quality dataset composed mainly of the
original data, compressed images, and annotation
information. Shi et al. (2018) built an LF image data‐
set containing five degrees of freedom that can pro‐
vide depth cues and the most realistic LF display. At
the same time, they used the dataset as experimental

Fig. 15 The LF video hybrid imaging system: (a) system setup; (b) system input; (c) system output
Reprinted from Wang TC et al. (2017), Copyright 2017, with permission from ACM
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samples to verify the effect of the inherent LF proper‐
ties on the quality of the LF image.

The methods by Fang et al. (2018), Huang et al.
(2018), Tian et al. (2021), and Paudyal et al. (2019)
need to use the original image information, which
requires additional bits to transmit the information of
the original LF image. Therefore, in the past two
years, no-reference LF quality evaluation methods
that fully consider the influence factors of LF image
quality have been widely studied. Based on tensor
theory, Shi et al. (2019) explored the LF 4D structure
characteristics and proposed the first blind quality
evaluator of the LF image. Considering the influence
of angle consistency, chrominance, and luminance on
LF image quality, Zhou W et al. (2020) proposed a
novel LF image quality evaluation model, called the
tensor-oriented no-reference LF image quality evalu‐
ator. To reduce the impact of LF image quality degra‐
dation, Shi et al. (2020) measured EPI in the form of
local binary pattern (LBP) features to obtain angular
consistency features, which were used as the basis to
address the problem of LF image quality degradation.
Shan et al. (2019) constructed an LF image quality
assignment dataset with a total of 240 samples by
combining 4D decoding technology and human sub‐
jective feelings. At the same time, they used a sup‐
port vector regression (SVR) model to represent the
2D and 3D characteristics of the LF image and pro‐
posed a no-reference IQA metric. Meng et al. (2019)
proposed an accurate, time-efficient LFIQA frame‐
work based on the fact that the degree of distortion
of LF refocusing images can accurately reflect the
whole LF image quality. Cui et al. (2021) proposed
a macro-pixel differential operation method based on
spatial-angular characteristics to quantify the LF
image quality.

4.9 Three-dimensional reconstruction

LF information containing multiple data types
has great potential in 3D reconstruction. Levoy et al.
(2006) applied the theory of LF rendering to micro‐
scopic imaging and developed an LF microscope
(LFM), which can obtain object images of different
depths in an exposure and carry out 3D reconstruc‐
tion of the object. Broxton et al. (2013) proposed a
3D deconvolution method for 3D reconstruction by
decoding dense spatial-angular sampling. At the same

time, they demonstrated by experiment the high-
resolution characteristics of this method for object
reconstruction. Murgia et al. (2015) proposed a novel
algorithm that can reconstruct a 3D point cloud from
a single LF image through a sequential combination
of image fusion, feature extraction, and other technol‐
ogies. Sun et al. (2017) fully optimized the calibration
of focused LFCs based on the Levenberg-Marquardt
algorithm and proposed a 3D reconstruction method
for flame temperature based on the least-square QR-
factorization algorithm. Marquez et al. (2020) pro‐
posed a tensor-based LF reconstruction algorithm,
which shows better performance and lower computa‐
tional complexity than matrix-based methods. Through
the fusion of LF data and regression prediction, Cui
et al. (2021) proposed a 3D reconstruction algorithm
for bubble flow.

5 Tasks and applications

5.1 Iris recognition

Iris features are widely used in biometrics because
of their uniqueness and non-replicability. However,
most iris image collectors are affected by the limita‐
tion of a small depth of field, which leads to poor
quality of the collected iris images, and inevitably
affects recognition.

Recently, to address the above problems, the
use of LFCs was explored for iris recognition. Zhang
C et al. (2013) presented a new iris sensor based on
LF photography and constructed the first LF iris
image database using the sensor. Raghavendra et al.
(2013a) leveraged the LFC and provided useful infor‐
mation in terms of multiple depths (Fig. 16). They
collected a new iris and periocular biometric dataset,
and then proposed a new scheme for iris and periocu‐
lar recognition based on the LBP feature extraction
algorithm and the sparse reconstruction classifier. In
addition, to prevent spoof attacks on the biometric
system, Raghavendra and Busch (2014) presented a
novel way of addressing spoof detection by fully
exploiting the depth and focus information of the
LFC for visible spectrum iris biometric systems. Fur‐
thermore, because LFCs can hold additional informa‐
tion that is quite useful for biometric applications,
Raghavendra et al. (2016) carried out an empirical
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study for iris recognition using an LFC. They first

collected a new iris dataset in an unconstrained envi‐

ronment by simulating a real-life scenario, and then

explored the supplementary information available

from different depth images. These were rendered by

the LFC by either choosing the best focus from multi‐

ple depth images, or exploiting the supplementary

information by combining all of the depth images

using super-resolution. Finally, iris recognition results

with more than 90% reliability were reported from an

extensive set of experiments.

5.2 Face recognition, detection, and a light field

face dataset

As the most extensive biometric scheme, face

recognition is vulnerable to biological attacks (Sepas-

Moghaddam et al., 2018). There are two types of LF-

based methods for face recognition: texture-based

methods and focus and depth based methods (see

supplementary materials, Sections 2.1.1 and 2.1.2).

5.3 Material recognition

Although there have been few studies of mate‐
rial recognition based on LF data, the approach has
provided a wide range of ideas for related research.
The direct measurement method has been widely used
in traditional image material recognition research. The
principle is to analyze multiple views of a point simul‐
taneously. Wang TC et al. (2016a) proposed a 4D LF
material recognition system to prove whether the mul‐
tiple views obtained in LF data have a better effect
than traditional 2D images in material recognition
(Fig. 17). First, they used a Lytro LFC to collect a ma‐
terial recognition dataset containing 1200 images in
12 categories. Second, the images in the dataset were
used as experimental samples to extract information
from a total of 30 000 patches. Furthermore, this patch
information was input to a specially designed CNN
that can take the form of an LF as input and train the

LF information to obtain a patch model. Finally, the
patch model was fine-tuned in the full scene to obtain

Fig. 17 The material recognition system based on 4D LF information: (a) light field dataset; (b) CNN training procedure
for 4D light fields; (c) full scene material recognition
Reprinted from Wang TC et al. (2016a), Copyright 2016, with permission from Springer Nature

Fig. 16 The iris and periocular recognition scheme of Raghavendra et al. (2013a)
Reprinted from Raghavendra et al. (2013a), Copyright 2013, with permission from IEEE
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the fully convolutional network (FCN) model, and post-
processing was carried out to obtain the final recogni‐
tion results. Guo et al. (2020) proposed corresponden‑
ces in the angular domain to achieve the decoupling of
spatial-angular features for LF material recognition.

5.4 Detection on 2D printed photos

Many biological detection methods are based on
conventional 2D imaging devices, and are at the mercy
of imaging principles. Traditional 2D cameras will
lose stereo information during scene information
acquisition, thereby leading to a large number of 2D
printed photos attacking the authentication program.
The most substantial differences between the printed
photo and the original scene photo are the gradients of
epipolar lines and depth information. Compared with
the original scene photo, the gradients of the epipolar
lines of the printed photo remain unchanged, and the
printed photo does not contain depth information.

Based on this, Ghasemi and Vetterli (2014)
extracted an energy feature vector from epipolar
lines, and then distinguished the printed photo from
the original photo by distinguishing the feature vec‐
tor. Similarly, through the analysis of viewpoint and
light information of the subadjacent aperture image,
Kim et al. (2013) proposed a spoof attack detection
algorithm based on LBP and support vector machine
(SVM). This algorithm not only can detect printed
photos correctly, but also has good robustness for the
detection of gradient objects. Considering that the
system of pedestrian detection is easy to disturb by
many 2D printed fake photos, Jia et al. (2018) con‐
structed an LF pedestrian dataset including more
than 1000 images. They proposed a 2D fake pedes‐
trian detection framework based on LF imaging tech‐
nology and an efficient SVM classifier. In addi‐
tion, by analyzing the variation in the focus of depth

images generated by LFC, Raghavendra et al. (2016)
proposed a parallel spoof attack detection frame‐
work (Fig. 18). First, parallel face detection and pre-
processing operations were carried out for the acquired
images of different depths. The pre-processing opera‐
tion was designed mainly to filter out image noise
interference. Second, the focus measure operators
were obtained by applying different focusing mea‐
surement methods. Third, the relative and absolute
values of focus transformations were estimated. Fi‐
nally, the SVM classification method was used to dis‐
tinguish the relative value and absolute value.

5.5 Specular highlight removal

The removal of specular highlights from an image
can effectively ensure image quality. In recent years,
LFCs have been widely used to remove specular
highlights.

Through the decomposition of the EPI in LF,
Criminisi et al. (2005) found that EPI has a high reg‐
ularity. Therefore, they proposed an EPI framework
based on math characteristics for specular highlight
removal. Tao et al. (2015a) took advantage of this abi‑
lity to later modify the focus point in LF data, and
proposed an iterative method for specular highlight
removal. Furthermore, they first proposed an algo‐
rithm to determine the light source color by analyz‐
ing the angle pixels in LF data. Meanwhile, the spec‐
ular highlight can be removed by analyzing the light
source color. Wang HQ et al. (2016) proposed a com‐
bined specular highlight removal algorithm based
on depth estimation and specularity detection. First,
the depth map corresponding to the LF image with
specularity was obtained by analyzing 4D EPI data.
Then, each pixel of the image was classified as a
saturated or unsaturated pixel using the threshold-
based specularity detection method. Then the k-means

Fig. 18 A 2D printed face detection framework based on different focus images
Reprinted from Raghavendra et al. (2016), Copyright 2016, with permission from IEEE
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algorithm was used for pixel clustering, and the depth
map obtained before was used for refocusing and
filtering unsaturated pixels. Finally, the local color
refinement method was used to complete the color
correction of some saturated pixels. In addition, based
on the analysis of 4D LF data, Alperovich and Gold‐
luecke (2017) proposed a variational model based on
a review of additional data available in LF. The pro‐
posed model can remove specular highlights by sepa‐
rating the shadow and the albedo in the LF. Recent
works (Gryaditskaya et al., 2016; Sulc et al., 2016)
also analyzed the LF data structure or later edited
the composition to better complete specular high‐
light removal.

5.6 Shape recovery

Effective and accurate acquisition of multiangle
images of objects in a scene is the key to shape recov‐
ery. Completing an accurate shape recovery of crys‐
tals, ceramics, and other objects with glossy surfaces
is difficult. In recent years, LF imaging technology
has been widely used in shape recovery.

Tao et al. (2015a) presented a new photo consis‐
tency metric, line-consistency, for shape recovery,
revealing how viewpoint changes affect specular
points. Furthermore, they made full use of the defo‐
cus, correspondence cues, and shading in LF data.
They used defocus and correspondence cues for local
shape recovery and shading to further determine the
depth of the object and improve the accuracy of the
final shape recovery. Wang TC et al. (2016b) proposed
a bidirectional reflectance distribution function (BRDF)
invariant theory and invariant equation suitable for

LF data analysis, which can effectively complete the
shape recovery of different objects. The experimental
results for the methods report the excellent effect on
shape recovery. However, Li ZQ et al. (2017) found
that Tao et al. (2015a) failed to consider that texture
gradient information may play a complementary role
in shape restoration, and may distort the shape recov‐
ery of objects for non-Lambertian surfaces. They pro‐
posed a general energy minimization formulation with
autobalance ability, which can effectively recover the
shape of complex BRDFs using only one LF image.
Experimental results from a large number of studies
show that this formulation is more accurate and ro‐
bust than BRDF invariant reconstruction methods. In
addition, Zhou MY et al. (2020) proposed a fixed-
structure concentric multispectra LF (CMSLF) acqui‐
sition system. In this system, each concentric circle has
a fixed number of cameras to acquire the information
of multiple views. The proposed system was highly
effective for shape recovery under non-Lambertian
conditions based on the dichromatic Phong reflectance
model. A comparison of the experimental results with
state-of-the-art methods is shown in Fig. 19.

5.7 Light field microscopy

LF microscopy (LFM) is a new 4D LF imaging
technology that uses microlenses to achieve a bal‐
ance between spatial resolution and angular resolu‐
tion. The application of this technology can make
weakly scattering medium or fluorescence specimens
achieve the effect of high-speed imaging without
scanning. Levoy et al. (2006) demonstrated a proto‐
type LFM (Fig. 20), composed of a high resolution

Fig. 19 Comparison of the experimental results from state-of-the-art methods
Reprinted from Zhou MY et al. (2020), Copyright 2020, with permission from IEEE
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Nikon 2D camera and a custom microlens array. The
camera was placed at G, and the microlens array at F.
Each microlens array recorded the relevant, focused
image. They analyzed the optical performance of this
method and showed its advantages for capturing the
3D structure of micro-objects.

In addition, an optical model for LFM and a 3D
deconvolution method for LFM were proposed by
Broxton et al. (2013). Experimental results showed
that this model could help obtain a higher spatial res‐
olution with better optical sectioning in reconstructing
volumes. However, the spatial resolution reconstructed
by the LFM was nonuniform in depth information.
The resolution at most imaging centers was low, while
the resolution at the z plane was high. Wavefront cod‐
ing techniques were applied by Cohen et al. (2014)
to address this nonuniform resolution limitation by
including phase masks in the optical path of the mi‐
croscope. The performance of the LFM was improved.
Furthermore, to complete the observation of in vivo
specimens, a new 3D LFM with a high spatial resolu‐
tion was proposed by Zhang M et al. (2017) by add‐
ing a microlens array and relevant focusing optical
elements to a traditional microscope. The experimen‐
tal results showed that the 3D LFM can acquire seven
subaperture images from different perspectives. To
further expand the working range of the LFM, Hsieh
et al. (2018) proposed a system based on a multifocal
high-resistance liquid crystal microlens, which has
advantages such as short response time and low driv‐
ing voltage. Vizcaíno et al. (2021) applied fully CNN
architecture to reconstruct configurable microscopic

stacks from single LF images, which improved the
time efficiency and reconstruction accuracy.

6 Existing problems and future trends

Although LF imaging technology has been widely
studied and applied in computer vision, specific
research is still lacking. In combination with current
trending topics, we believe that researchers should
make efforts in the following areas.

1. Establishment and evaluation of the LF dataset
LF dataset construction is essential for the appli‐

cation of LF imaging technology to computer vision
tasks. Kim et al. (2013) constructed an LF dataset for
scene reconstruction from a high spatial-angular reso‐
lution. Wanner et al. (2013a) constructed an LF bench‐
mark dataset by densely sampling 4D LF data, Hei‐
delberg Collaboratory for image processing1 (HCI1).
Li NY et al. (2014) created an LFSD. Raghavendra
et al. (2016) constructed an LF dataset for face and
iris recognition. Tao et al. (2015a) built an LF dataset
for depth estimation. Wang TC et al. (2015, 2016a) con‐
structed an LF dataset for material recognition and
depth estimation under occlusion. Other kinds of
LF datasets have been proposed by Paudyal et al.
(2016) and Rerabek and Ebrahimi (2016), but there
was a notable lack of large LF datasets for computer
vision in previous studies. The datasets of Kim et al.
(2013), Tao et al. (2015a), and Wang TC et al. (2015)
each had fewer than 10 images. Moreover, part of the
LF dataset was not representative and proved only

Fig. 20 The first prototype light field microscopy
Reprinted from Levoy et al. (2006), Copyright 2006, with permission from ACM SIGGRAPH
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the rationality. Therefore, the establishment of rich
data and a wide range of LF datasets is a priority for
future research.

2. Applications under high dynamic range (HDR)
conditions: unmanned aerial vehicles (UAVs), unman‑
ned vehicles, unmanned boats

The key to the application of UAVs, unmanned
vehicles, and unmanned boats is that the imaging
equipment must accurately obtain the scene informa‐
tion under highly dynamic conditions for summary
analysis. When LFC is applied, it can accurately
obtain the complete 4D LF information of the scene
under conditions of high-speed movement. Simulta‐
neously, through the analysis and processing of 4D
LF information by software, clear images of different
focal planes can be obtained. However, because of
the high dimensionality of 4D LF and technical limi‐
tations, the 4D LF information collected by LFC can‐
not be analyzed in real time, and the imaging effect
is considerably reduced in HDR conditions. The HDR
conditions refer to areas with high brightness under
strong light sources (e. g., sunlight, lamps, or reflec‐
tion) and areas with low brightness such as shadows
and backlight. Therefore, leveraging LFC imaging,
solving the real-time problems of software and hard‐
ware, and limiting the use of LFC under complex
conditions are the key issues.

3. Light field image enhancement
LFC will be polluted by various kinds of noise

in image acquisition, transmission, and storage, which
will affect the quality of the LF image. Reducing the
influence of noise in the acquisition of LF images
and enhancing the known LF image to improve the
visual expression effect are important aims for future
research.

4. Virtual reality, 3D displays, and 3D movies
Accurate and efficient data acquisition in dynamic

environments is the core content of virtual reality,
3D displays, and 3D movies. However, the LFC has
poor applicability in harsh conditions, such as over‐
exposure, dim light, or occlusion. Widely used LFCs,
such as the consumer-Lytro or industrial-Raytrix,
which cannot meet the shooting effect higher than
30 frames/s, limit the development of 3D computer
vision tasks. Therefore, the development of strategies
to compensate for the shortcomings of LFCs while
making full use of 4D LF information is a future trend.

5. Military optical camouflage technology
In military optical camouflage research, the goal

is to reduce the optical differences between the target
and the surrounding background as much as possible,
making it difficult for reconnaissance instruments to
detect and distinguish. Therefore, the analysis and
application of 4D LF information to improve military
optical camouflage technology is a future trend.

6. Image recognition at the micro-scale
LFC can obtain the complete 4D LF informa‐

tion of an object at the expense of losing part of the
spatial resolution, restricting the development of image
recognition at the micro-scale. Ensuring the integrity
of 4D information acquisition without losing the
image resolution at the micro-scale is still an urgent
problem to resolve.

7. Image processing method based on HDR
Because the luminance contrast of the real visual

environment is far beyond the limits of the dynamic
range of image sensors, the performance of LFCs is
weak when there is a limited dynamic range, such as
with overexposure, strong light, or dim light. There‐
fore, using LFC to capture 4D LF information with
an HDR condition is an urgent problem.

8. Optimal relationship between spatial resolu‐
tion and 4D light field information acquisition

The image acquired by an LFC usually has a
low spatial resolution. If the spatial image resolution
is improved considering the axial resolution, higher
requirements are needed for the performance of the
photodetection device. Obtaining complete 4D LF
information without losing spatial image resolution
is one of the most vital aims of LF imaging research.
In addition, increased storage capacity and processor
speed are required because a huge amount of data will
be obtained in one exposure. Based on the above anal‐
ysis, the application of LF imaging technology in com‐
puter vision research still needs to resolve the follow‐
ing issues: the specific implementation, the balance be‐
tween the software process ability and hardware shoot‐
ing effect, commercialization costs, and convenience.

7 Conclusions

Light field imaging technology aims to establish
the relationship among light information in spatial
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domain, visual angle, spectrum and time domain, and
realize coupling sensing, decoupling reconstruction,
and intelligent processing.

In this paper, we have summarized the impor‐
tance of light field imaging technology for computer
vision tasks and listed representative contributions
from all interested researchers. The representative stud‐
ies were focused mainly on depth estimation, image
segmentation, saliency detection on light field, light
field image quality assessment, image blending, fusion,
face recognition, and light field super-resolution. Apply‐
ing spatial information, angular information, and epi‐
polar plane image information in the light field to
computer vision tasks was also investigated. Benefit‐
ing from the progress of software and hardware, light
field cameras are gradually applied to industrial detec‐
tion, unmanned systems, and virtual reality fields. It
has significant academic value and industrial applica‐
tion prospects.
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