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Abstract: Software developers often write code that has similar functionality to existing code segments. A code recommendation
tool that helps developers reuse these code fragments can significantly improve their efficiency. Several methods have been
proposed in recent years. Some use sequence matching algorithms to find the related recommendations. Most of these
methods are time-consuming and can leverage only low-level textual information from code. Others extract features from
code and obtain similarity using numerical feature vectors. However, the similarity of feature vectors is often not equivalent to
the original code ’s similarity. Structural information is lost during the process of transforming abstract syntax trees into
vectors. We propose an approximate sub-tree matching based method to solve this problem. Unlike existing tree-based
approaches that match feature vectors, it retains the tree structure of the query code in the matching process to find code
fragments that best match the current query. It uses a fast approximation sub-tree matching algorithm by transforming the
sub-tree matching problem into the match between the tree and the list. In this way, the structural information can be used for
code recommendation tasks that have high time requirements. We have constructed several real-world code databases
covering different languages and granularities to evaluate the effectiveness of our method. The results show that our method
outperforms two compared methods, SENSORY and Aroma, in terms of the recall value on all the datasets, and can be applied
to large datasets.
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1 Introduction

In software development, developers tend to re‐
use existing code which can achieve the desired func‐
tionality or behavior to assist their development pro‐
cedure. Research shows that, on average, software
developers spend about 19% of their development
time on web searches, looking mainly for code exam‐
ples for their tasks (Rahman et al., 2016). There‐
fore, an automatic code snippet recommendation tool

could help developers greatly improve development
efficiency.

However, searching instructive code based on a
user’s programming context is not always easy. Most
of the current code recommendation tools are based
on textual matching. They represent the context code
fragment as tokens or lines of code, calculating the
code similarity through sequence matching or a bag-
of-words model, and return the most relevant code
snippets (Ye and Fischer, 2002; Holmes and Murphy,
2005; Antunes et al., 2014; Rahman and Roy, 2014).
However, these methods fail to capture high-level
structural information, which means that it would be
hard to obtain the best result when there is no highly
similar match in the code repository.
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Abstract syntax tree (AST) carries the structural
information of code, but a traditional tree matching
process consumes too much time for code recom‐
mendation tasks. To solve this problem, some re‐
searchers proposed to extract features from the AST
of the code and used these, rather than trees, for match‐
ing (Jiang LX et al., 2007; Luan et al., 2018; Ďuračík
et al., 2020). However, because the ideal candidate
code length should be larger than the query code,
these candidate codes often contain more sub-tree
structures and feature patterns. That is to say, al‐
though two code snippets may obtain a high simi‐
larity score, they may not be related code because
the distribution of these features in candidate code
can be different from that in query code. Therefore,
methods using such techniques may bring more
false-positive results.

In this study, we propose a novel code recom‐
mendation method based on AST sub-tree matching.
Compared with methods that transform all ASTs into
multiple features, we retain the tree structure of the
query code in the matching process. A candidate
code with a complete query code structure will gain
a higher similarity score than those that share the
same feature sets but have different overall struc‐
tures, and thus will have a higher chance of being
recommended. We use hash values to record every
sub-tree in the AST and speed up the matching pro‐
cess by comparing the hash value only of sub-trees
with the same number of nodes. Our method in‐
cludes three stages: data processing, coarse-grained
search, and fine-grained re-ranking. First, we con‐
struct the code database using AST. In this stage, we
calculate the hash value and the number of nodes for
each sub-tree in AST, and store them using a list
structure. This helps reduce the costs of time and
space in the matching process. Second, we traverse
the AST of a given query code snippet to calculate
the similarity between the query code and the code‐
base’s candidate code. In this stage, the similarity
measurement of two code snippets is the number of
nodes in all the most similar sub-trees of their ASTs.
Based on the similarity score, a top-K candidate set
will be generated. Third, we obtain the AST preor‐
der traversal sequence for both the query code and
each top-K candidate code. We calculate their simi‐
larity using the Smith–Waterman (SW) algorithm to

fully mine the sequence and continuity information
in the code and re-rank the top-K list. In this way,
we can eventually obtain the recommending result
list.

We have carried out an extensive empirical eval‐
uation of our method applied to several large data‐
sets, covering different languages and granularities.
We compared our method with two strong baseline
studies, and the experimental results showed that our
method outperforms the two compared methods on
all the datasets.

This study has the following main contributions:
1. We introduce a new code recommendation al‐

gorithm based on sub-tree hashing and the SW algo‐
rithm. It takes programming context as input and rec‐
ommends relevant code snippets to assist developers
in software development.

2. We implement a code recommendation tool
for Java and C. Experimental results show that it has
good performance in terms of both time consumption
and accuracy for different recommending tasks.

2 Related works

In this section, we describe some related stud‐
ies, split into two categories: (1) tree similarity detec‐
tion; (2) code recommendation.

1. Tree similarity detection. Since tree-like data
structure has gained more popularity in recent years,
many studies have proposed to focus on similarity
detection on trees. However, since most existing
methods cannot be extended to large-scale datasets,
how to achieve fast tree similarity detection is still an
open question. Some researchers use tree edit dis‐
tances to measure the similarity (Zhang and Shasha,
1989; Shasha et al., 1994; Chen and Zhang, 2014).
Such edit-distance-based methods are widely used,
but they obtain the similarity through the difference
between two trees. This is inappropriate for tasks in
which one tree contains another, which happens fre‐
quently in code recommendation. Other researchers
have proposed to extract features from trees and
transform the tree similarity detection problem into
feature matching on numerical vectors, which is fast
and easy (Jiang LX et al., 2007; Luan et al., 2018;
Ďuračík et al., 2020). However, the similarity of feature
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sets is not equivalent to the similarity of trees. These
methods abandon the original structure of the trees
and the continuity information of nodes, and may re‐
turn false high similarity results.

2. Code recommendation. Code snippet recom‐
mendation is a hot issue that attracts many research‐
ers. Most researchers focus on improving the preci‐
sion and speed of recommending to improve the users’
experience. Techniques like information retrieval
(Sahavechaphan and Claypool, 2006; Jiang H et al.,
2019) and pattern matching (Jiang LX et al., 2007;
Ďuračík et al., 2020) are widely used in their work.
Most existing methods are based on textual informa‐
tion. They treat code snippets as a set of tokens or
code lines (Ye and Fischer, 2002; Holmes and Mur‐
phy, 2005; Antunes et al., 2014; Rahman and Roy,
2014; Ai et al., 2019). Some researchers parse the
code snippets into AST and use tree-based similarity
detection techniques to obtain recommendation re‐
sults (Luan et al., 2018; Ďuračík et al., 2020). The ad‐
vantage of such methods is that they exploit the syn‐
tax information of the code, but they often consume
more time.

3 Methods

Fig. 1 illustrates the overall architecture of our
framework. To use the codebase efficiently, we first
calculate and store the hash value and node number
of each sub-tree in their ASTs. Then, we traverse
the AST of the given query code to calculate the
similarity between the query code and all the candi‐
date code in the codebase. Multiple candidate code

segments with the highest similarity will be selected.
Finally, we calculate the AST preorder sequence simi‐
larity between the query code and the top-K candi‐
date code using the SW algorithm. We re-rank the
candidate code list based on the combination of two
kinds of similarity and return the final recommenda‐
tion result.

Next, we describe the details of each step using
the code fragment in Listing 1 as a running example.

3.1 Data processing

In this part, we show the procedure for data pro‐
cessing; i.e., how we transform candidate source code
files into the form needed for the recommendation.

3.1.1 Tree parsing

Since our method is based on AST, the first
thing we need to do is to parse the code. We parse Java
code with Javalang (https://github.com/c2nes/javalang),
and parse C code using Clang (https://clang.llvm.org/).
Our method can work at either the file level or the
method level. For individual Java methods, we add a
foo class so that the parser can process them, while
for file-level code, we exclude package declarations
and import statements, since they are often generated
by the integrated development environment (IDE)
and not relevant for recommending purposes.

Listing 1 A simple piece of code used as the run‐
ning example through Section 3

for (int i=0; i<10; i++)

a+=0.5;

end for

Fig. 1 The framework of code recommendation (Cand.: Candidate)
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3.1.2 Featurization

We first map each node in the AST to a hash
value. Fig. 2 visualizes the simplified parse tree and
the corresponding hash value for each node of the
code snippet in Listing 1. In principle, different AST
nodes should have different values. However, to im‐
prove the detection effect, we map similar nodes to
the same hash value to avoid the reduction of simi‐
larity caused by minor differences among similar
nodes (Yang et al., 2018). For example, in Fig. 2,

both FLOATING_LITERAL and INTEGER_LITERAL

belong to numerical types, so they are given the

same hash value of 13. We classify nodes according

to their functions. The specific mapping rules may

change according to different languages or parsers.

In our experiment, we use Javalang as the parser of

Java, and record the classification details in Appen‐

dix A.

Nodes under the same classification will be

mapped to the same hash value. In a specific imple‐

mentation, it can be supplemented or adjusted ac‐
cording to the required recommending effect.

Then we calculate the hash value of each sub-
tree in the AST. As Fig. 3 shows, we use a <node
number, hash value> tuple to represent the informa‐
tion of the sub-tree rooted at the current node. We re‐
cord the node number of each sub-tree and simply de‐
fine the hash value of a tree as the sum of the hash
values of each node in this tree. For the snippet i<10
in Listing 1, its hash value would be Hash(BINA‐

RY_OPERATOR)+Hash(DECL_REF)+Hash(INTE‐
GER_LITERAL)=2+17+13=32, and obviously its

node number is 3.

To speed up the subsequent matching and save
memory space, we discard the tree structure and
store sub-tree information in the form of lists. The
intermediate representation of the code fragment in
Listing 1 is shown in Fig. 4. The first dimension of
the list represents the number of nodes from 1 to N,
and the hash values of sub-trees with corresponding
node numbers are joined into one list. Each hash value
list is kept to speed up the search process. We also re‐
cord the index of code and the total number of nodes
in the tree at the start of the list.

3.2 Search

In this part, we calculate the similarity scores
between the query code and each candidate code,
and obtain a candidate code set containing K code
snippets with the highest similarities.

Like candidate code processing, we map the
AST of a given query code to a hash tree, similar to
Fig. 3. We first filter out the candidate codes that
cannot reach the size threshold according to the num‐
ber of nodes. We traverse the query hash tree in pre‐
order and search for the hash value of the current
node in the candidate hash value list. Since sub-trees
with different node numbers represent different struc‐
tures, only pairs of sub-trees with the same node
number need to be compared. For each sub-tree node

Fig. 2 AST and the hash value of each node for code in
Listing 1

Fig. 3 Hash tree for code in Listing 1, where each node re‐
cords the sub-tree information rooted at the current node

Fig. 4 Intermediate representation of candidate code in
Listing 1
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in the query hash tree, we obtain the hash value list
with the same node number and search for the target
hash value using a binary search. If found, the sub-
tree represented by the current node is regarded as a
match, and all its child nodes will be skipped in the
subsequent traversal. We take the total number of
nodes under all common sub-trees as the similarity
score and record K code fragments with the highest
score. Algorithm 1 shows the process of search, which
we will introduce in three parts: preliminary filtering,
sub-tree validation, and approximate matching.

3.2.1 Preliminary filter based on the node number

When applying code recommendations to real
tasks, the vast majority of code snippets in code data‐
bases are irrelevant to the query code. However, we
need to process all possible pairs of methods to find
out potential results. This can be extremely costly, es‐
pecially on very large datasets. For candidate code
fragments whose number of nodes is smaller than
that of the query code, their maximum similarity
score is the ratio of the number of common nodes to
the total number of query nodes. We use size-based
heuristics to aggressively eliminate unlikely candi‐
date code snippets upfront. The intuition is that two
methods with considerably different sizes are very
unlikely to implement the same, or even similar,
functionality (Saini et al., 2018). In addition, useful
code recommendations are usually larger than query
code so that developers can obtain a reference from
the extra part. So, for each candidate code, we first
judge whether it satisfies Eq. (1):

| candidate_n | > λ | query | , (1)

where |candidate_n| represents the node number of
the current candidate tree, |query| represents the node
number of the query tree, and λ is an adjustment factor.

If Eq. (1) is satisfied, subsequent matching will
be carried out; otherwise, the candidate code will be
omitted. This heuristic can lead to some false nega‐
tives, especially for code fragments with the same
function but differing in texture or structure (Saini
et al., 2018). However, in our experiments described
below in Section 4.2.3, we observe little or no impact
of this on the recall value of the final result under ap‐
propriate parameter settings.

3.2.2 Sub-tree validation

Since we use only one number to represent the
hash value, sub-trees containing different nodes may
be mapped to the same hash value, which we call a
hash collision. Generally, with the increase of the
node number of sub-trees, hash collision is more likely
to occur, and when the proportion of sub-trees in the
query tree increases, their influence on the final
result is more significant. For these sub-trees, addi‐
tional verification is performed. We adopt a simple
but effective method, that is, to verify whether the
subsequent nodes of this sub-tree root can also be
found in the candidate sub-trees. If they all can be
found, the two sub-trees are considered to be matched.
We use the following formula to decide the number
of nodes to be verified:

T (c,q) =
é

ë

ê
êê
ê 5c2

( )c + 10 q

ù

û

ú
úú
ú , (2)

Algorithm 1 The search algorithm
Input: query tree, Q; lists of candidate code, L; size of target
candidate set, K
Output: top-K result list, T
1 V←←∅
2 for each i in L
3 if sizeMatched(Q, i) // Filter based on the node number
4 V←V ∪{<i, traverseTree(Q, i)>}
5 end if
6 end for
7 T←Rank candidate set V and obtain the top-K result

// Traverse the query tree recursively
8 function traverseTree (N: sub-tree node, C: list)
9 totalNum←node number of the query tree
10 sub-treeNum←sub-node number of current tree N
11 matchedNum←0
12 if isSearched(N, C[sub-treeNum])

// Validate the sub-tree
13 if validated(totalNum, sub-treeNum, N, C)
14 return N
15 end if
16 end if

// If not found, traverse all the sub-trees
17 for each j in sub-tree of N
18 matchedNum←matchedNum+traverseTree(j, C)
19 end for

// Approximate matching for the current node
20 if exceedThreshold(matchedNum, sub-treeNum)
21 matchedNum←matchedNum+1
22 end if
23 return matchedNum
24 end
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where [t] denotes the largest integer no more than t, c
denotes the node number of the current sub-tree, and
q denotes the node number of the whole query tree.

We find that almost all false-positive recom‐
mending results caused by a hash collision can be
eliminated at a low extra cost using this verification
algorithm. The corresponding experimental results
are given in Appendix B.

3.2.3 Approximate sub-tree matching

We can obtain the total number of sub-tree nodes
repeated between the query code and each candidate
code through the matching process. However, exact
sub-tree matching cannot fully reflect the structural
similarity. Here, we use the query tree in Fig. 5 as an
example. For illustration, we mark the node ID and
omit the node number and hash value in this figure.

Consider a candidate code fragment whose AST
is almost the same as that of the query code, the only
difference being that node 10 is either missed or re‐
placed by a node with a different hash value. In this
instance, all sub-trees containing node 10 obtain dif‐
ferent hash values, which means that all sub-tree
nodes on the path from node 10 to the root of the query
tree cannot be successfully matched (Fig. 5a). Hence,
the similarity for this tree is only 7/12=58.3%, though
there is only a different node between the query code
and the candidate code. Such minor differences in
AST are common in software development (Baxter
et al., 1998), and it is reasonable to think that it will
be more evident for unfinished code.

So, rather than searching for identical sub-trees,
we prefer to find similar ones. We set a similarity

threshold T to judge whether a sub-tree is matched.
For each none-leaf node in the query tree, if no exact
match is found in the candidate hash list, additional
judgments will be made based on the sub-tree rooted
at the current node. That is, if the proportion of
matched nodes in the whole sub-tree exceeds T, the
current node will be deemed to be matched. For ex‐
ample, as Fig. 5b shows, if we set T as 80%, among
all nodes on the path from root node 1 to node 10,
nodes 1 and 4 are matched while nodes 5, 8, and 10 are
unmatched, and the similarity score should be 9/12=
75%, which is a better reflection of code similarity.

3.3 Re-ranking

According to our above algorithm, when the
number of common leaf nodes is fixed, code frag‐
ments with a similar structure to query code can ob‐
tain a higher similarity score. In some cases, although
some code fragments are quite different from the
structure of the query code, they may score higher
for similarity than related code because they contain
more common sub-trees. Such a situation can easily
occur when there is no near-exact matching for the
current query in the codebase. In addition, several
candidate codes may share the same similarity score,
in which case we cannot determine the order of these
methods in the recommendation list. To solve these
problems and reduce false positive results, we intro‐
duce a re-ranking method based on the SW algorithm.

The SW algorithm is used for sequence align‐
ment, which means finding a similar region between
two sequences. The purpose of the algorithm is not
to compare the whole sequence, but to find similar
fragments between the two sequences and determine
their similarity.

For query code and each candidate code, we tra‐
verse their hash tree in a depth-first order to generate
node sequences. Then we use the SW algorithm to
obtain the similarity scores between them. The de‐
tails of SW are presented as follows (Smith and Wa‐
terman, 1981):

Assume that A=a1a2…an and B=b1b2…bm are
node sequences to be aligned. A similarity is given
between sequence elements ai and bj:

s (ai,bj) =
ì
í
î

match, ai = bj,

mismatch, ai ≠ bj.
(3)

Fig. 5 A query tree example in a match without (a) and
with (b) approximate sub-tree matching (The solid circle
represents a matched node and the dashed circle repre‐
sents an unmatched node)
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We set up a matrix H whose size is (n+1)×(m+1).
Its first row and first column are initialized with 0.
Based on the initial value of scoring matrix H, the
scores of other elements are calculated using the fol‐
lowing formula:

Hi,j(i⩾2, j⩾2) = max ( Hi − 1, j − 1 + s (ai, bj ),

Hi − 1, j + gap, Hi, j − 1 + gap, 0 ).
(4)

The highest value of Hij’s is returned as the simi‐
larity score between two sequences.

We combine the SW sequence similarity with
the tree-list similarity obtained in the filtering phase
as the basis for the re-ranking process, rather than us‐
ing a single similarity score. This is because the SW
algorithm cannot deal with different code statement
orders, while tree-list similarity covers such cases
and can supplement the final result. The final similar‐
ity score is calculated using Eq. (5):

Score (query,candidaten ) = δ·TLSim (query,

candidaten ) + SWSim (query,candidaten ),
(5)

where TLSim denotes the tree-list similarity from the
search phase, SWSim denotes the SW sequence simi‐
larity from the re-ranking phase, and δ is an adjust‐
ment factor.

4 Experiments

In this section, we describe our evaluation of
the effectiveness of the method proposed in this
study. Our experiments were conducted on a 2.60 GHz
CPU (Intel i5) PC running Windows 10 OS with
8 GB memory.

4.1 Experimental design

4.1.1 Datasets

We used three real-world datasets to evaluate
the performance of our method on code recommenda‐
tion: a Java code repository IJaDataset (Svajlenko
and Roy, 2021) and two C code datasets, OJSystem
(Mou et al., 2016) and OJNUAA, from pedagogical
programming open judge (OJ) systems.

IJaDataset 2.0 is a large Java repository from the
SECold Project (https://sites.google.com/site/aseg‐
secold/projects/seclone), containing 25 000 open-source

Java projects. We extracted method-level code frag‐
ments and kept those with the number of executable
lines between 20 and 30. Then we randomly sampled
300 code fragments and manually created partial
code snippets by deleting 30%–50% of code lines
from the original code snippets, aiming to check
whether our method could produce appropriate re‑
commendations when an exacted match existed in the
code database. Three developers with three years of
Java project development experience were asked to
judge the returned results. If two or more developers
thought that the result corresponded to the query
code, then we took and recorded it.

OJSystem contains 104 programming problems
together with different source codes submitted by stu‐
dents for each problem. There are 500 files submitted
under each problem. Two different source codes un‐
der programming problems can be regarded as similar
if they realize the same functionality. We randomly se‐
lected 20 code files as queries under each program‐
ming problem and removed them from the candidate
set to see if our method could recommend other files
under the same problem according to these queries.

We constructed OJNUAA similar to OJSystem.
It contains 99 programming problems, each with
more than 200 files submitted from a school pro‐
gramming online judgment system. OJNUAA covers
a wide range of programming problems from simple
to complex, making the average length of code files
smaller than that in OJSystem, and the submitted
codes for fundamental problems are mostly similar
to each other. We also randomly collected 20 code
files as queries for each problem on this dataset.

The statistical information of the above datasets
(https://github.com/melond/RecommendationSamples)
is shown in Table 1.

4.1.2 Metrics

We chose Recall@K and the mean reciprocal
rank (MRR) as the measurement metrics to evaluate
the performance of our proposed method.

Table 1 Dataset size information

Project name
IJaDataset 2.0
OJSystem
OJNUAA

File/Method number
718 525

52 000
34 797

Lines of code
18 237 218

1 885 262
902 133
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Recall@K is defined as the percentage of query
code snippets for which the original method body is
found in the top-K methods in the re-ranked search
result list. Recall@K is calculated as

Recall@K =
|Relevence@K|

|Queries|
× 100%, (6)

where |Relevance@K| denotes the number of query
code snippets for which the original method body is
found in the top-K methods in the result list, and
|Queries| denotes the number of all queries.

MRR is defined as the average of the reciprocal
ranks for all queries, where the reciprocal rank of a
query is the inverse of the rank of the first relevant
result. A larger MRR value means a higher ranking
for the first relevant methods. MRR is calculated as

MRR =
1
Q∑q = 1

Q

FRank -1
q , (7)

where Q denotes the total number of query codes,
and FRankq denotes the rank of the first relevant re‐
sult for query q.

4.2 Results

We investigated two research questions (RQs)
to validate the effectiveness of our method.

RQ1: How effective is our method in recom‐
mending code snippets?

In this study, we attempted to propose a new
code recommendation tool. We introduced an approxi‐
mate sub-tree matching algorithm to search for candi‐
date code sets and used the SW algorithm to re-rank
the list. In this RQ, to verify our method’s effective‐
ness, we compared our experimental results with
those of two strong baseline works: SENSORY and
Aroma.

SENSORY (Ai et al., 2019) is a practical code
recommendation tool. It uses the granularity of code
statements rather than tokens as input, using the
Burrows–Wheeler transform (BWT) algorithm to per‐
form an ordered subsequence search. Since SENSORY
is a Java method level tool while OJ databases are
constructed by C files, we used Clang to parse the
AST, so SENSORY could process the C code.

Aroma (Luan et al., 2018) is a state-of-the-art
code recommendation tool. It vectorizes the AST

features and uses a bag-of-words-like strategy to cal‐
culate the similarity between the query code and code
in the database. It then re-ranks the result list and uses
an intersection phase to merge different code snip‐
pets in the result list. Since the intersection phase
will change the original code snippets from datasets,
a manual judgement may be required to assess the
correctness of the final result. It is hard to apply to
large-scale automated validation and may introduce
manual biases. Therefore, we did not adopt the final
intersection stage in the experiment, but obtained the
experimental results according to the previous part.

Table 2 shows the experimental results of these
three methods applied to different datasets. The re‐
sults show that our method outperformed the com‐
pared methods in most situations.

In the experiment on IJaDataset, we treated the
results corresponding to the query as a hit, and all
three methods achieved good performance. This
shows that these methods can make relevant recom‐
mendations when there is an exact match in the code
dataset in most cases. On OJSystem and OJNUAA,
our method performed the best, and SENSORY
performed poorly. This is because SENSORY uses a
strict code line matching strategy. Its matching pro‐
cess is based on textual information, while the OJ da‐
tasets are classified according to functionality. There‐
fore, it is difficult for SENSORY to recommend
the correct result when no exact textually similar
candidate code is in the codebase. Aroma chooses to
convert the AST into the form of feature vectors and
uses feature vectors to calculate the similarity. How‐
ever, this bag-of-words-like method ignores the

Table 2 The experimental results from different methods
over all datasets

Dataset

IJaDataset 2.0

OJSystem

OJNUAA

Metric

Recall@1
Recall@10
MRR
Recall@1
Recall@10
MRR
Recall@1
Recall@10
MRR

Value
SENSORY

100%
100%

1
67.3%
78.6%
0.723
81.5%
90.3%
0.909

Aroma
99%

100%
0.995
76.2%
86.7%
0.821
91.8%
95.5%
0.946

Our method
99.3%
100%
0.996
81.1%
92.1%
0.847
94.5%
97.3%
0.967
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distribution of features in the original AST. Many ir‐
relevant codes will appear with high similarity be‐
cause they contain similar features to the query
code, even though they may not be in the same dis‐
tribution. Such a phenomenon is more obvious for
large code fragments in the codebase and may cause
the actual more relevant code to be excluded, thus af‐
fecting the final result. In contrast, our method con‐
siders the code structure information and stores the
candidate codes in the form of sub-tree hash values,
so that the candidate codes with a more complete sub-
tree structure will have higher similarity. We believe
that these are the reasons why our method performed
the best on these datasets.

Recommending speed is also important for code
recommendation tools. The average time complexity
of our method for data processing and matching are
O(n) and O(mf) respectively, where n denotes the
total AST node number of all candidate codes, m de‐
notes the node number of the query tree, and f repre‐
sents the number of candidate code snippets after
size-based filtering. Table 3 shows the recommend‐
ing time cost of three methods applied to IJaDataset,
which contains 718 525 files and 18 237 218 code
lines. SENSORY is based on statement sequence
matching, so it is time-consuming and not scalable to
large datasets. Since Aroma computes similarity
based on numerical vectors, it had the best time per‐
formance. The time cost of our method was higher
than that of Aroma, but still acceptable on such a
large dataset.

Our method requires additional storage space to
store the hash representation of the AST nodes for code
snippets in the code database. Similarly, taking IJaDa‐
taset as an example, its source file occupies about
0.63 GB, while the intermediate representation in our
method occupies 2.47 GB, which is about four times
that of the code source file. The growth of additional
space is linearly related to the size of the code data‐
base, and it is acceptable for today’s data centers.

In summary, our code recommendation method
worked well at the method level and file level, and
outperformed the baseline methods over all datasets.
Also, our method had a good time performance and
can be applied to large datasets. Based on the experi‐
mental results, we believe that our method can help
developers quickly find the code they need.

RQ2: How do the parameters affect the experi‐
mental results?

To explore the effects of various parameters on
the experimental method, we performed a parameter
sensitivity experiment. We tested the two parameters
that have the greatest impact on the method: λ in
Eq. (1) and δ in Eq. (3). The parameters match, mis‐
match, and gap, required when using the SW algo‐
rithm, do not have a great influence on the experi‐
mental results (Yang et al., 2018). Therefore, we set
them to the empirical values 2, −2, and −1, respec‐
tively (Kamalpriya and Singh, 2018).

To answer RQ2, because recommendations
should be made repeatedly under each parameter
setting in our experiment, and the experiment using
IJaDataset needs much manual verification, we
chose only OJSystem and OJNUAA for automated
validation.

Our method uses Eq. (1) for the size similarity
filter. A larger adjustment factor λ can filter out more
candidate codes and speed up the overall recommen‐
dation, but may also lead to more false negatives. We
predefined the range of λ from 0 to 1.4 and used
Recall@1 as the metric to estimate the recommend‐
ing effect.

The experimental results are shown in Fig. 6.
The recall rate was close when λ was between 0 and
0.8, and a significant decrease occurred when λ was
greater than 0.8. We conclude that the size-based fil‐
tering had little or no impact on the final recommen‐
dation results when λ was lower than 0.8. At the
same time, to reduce unnecessary matching as much
as possible and speed up the recommendation, we de‐
cided to set λ to 0.8.

Our method uses Eq. (3) to combine tree-list
similarity and sequence similarity into one final
score. We balanced the influence of two kinds of sim‐
ilarity by parameter δ; e.g., the lower the value of δ,
the greater the influence of sequence similarity on the
final result. We re-ranked the first 50 code segments

Table 3 Time costs of three methods applied to IJaDataset

Approach

SENSORY

Aroma

Our method

Average recommending time (s)

232.3

0.4

2.1
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after the coarse-grained search due to the high time
consumption of the SW algorithm. We predefined the
range of δ from 0.1 to 100, and used Recall@1 as the
metric to estimate the recommending effect.

The experimental results over two datasets
using Recall@1 are shown in Fig. 7. The recall value
using OJNUAA was better than that using OJSystem.
This is because OJNUAA covers a broader range and
includes many fundamental programming problems.
The answers to these basic problems are similar, so
the recommendation will be much easier. In addition,
the boundaries of some programming problems in
OJSystem are not clear, and there are several prob‐
lems with similar or almost identical functionality,
which will also have a specific impact on the results.

Using the OJSystem dataset, our method achieved
the best recall results when δ was 0.6, and as δ con‐
tinued to grow, the recall rate finally dropped to around
0.7 (Fig. 7). Using OJNUAA, the recall reached the

maximum value when δ was set to 0.8. The reason
for this difference is that, since the average number
of lines of code for each file in OJSystem is larger
than that in OJNUAA, sequence similarity plays a
more critical role in the final result. The best selec‐
tion of δ was different for different datasets, but
when the value of δ was between 0.6 and 0.8, our
method achieved good results over both datasets.
Also, we conclude that the final recommendation re‐
sults can be significantly improved after the re-rank‐
ing phase.

In summary, the best selection of δ may change
according to the dataset, but our method can achieve
good results for both datasets when δ is between 0.6
and 0.8.

5 Limitations

In this section, we will discuss some limitations
associated with our work.

1. The query set. Our method is not being
directly implemented by developers in the actual
development process because such an experimental
setting needs a lot of manual validation and may in‐
troduce errors caused by individual biases. Instead,
we performed large-scale automated evaluations to
test the accuracy of our method. We constructed
three real-world code databases and carried out two
different types of experiments. On IJaDataset, we tested
whether the methods could recommend matching
code according to partial code, while for OJSystem and
OJNUAA, we evaluated the effectiveness of recom‐
mending systems when there may not be a near- ex‐
act match in the codebase. Although these two kinds
of experimental settings cannot fully cover real de‐
velopment scenarios, they can reflect the performance
of the code recommendation system in typical cases.

2. Parameter setting. During the experiment, we
set several parameters based on experience or exist‐
ing experimental results, such as the threshold T in
approximate sub-tree matching and score and penalty
parameters in the SW algorithm. We did not conduct
complete experiments to analyze the effect of each
parameter on the final result, which may have affected
the performance of our method to some extent. How‐
ever, since the experimental results under the current

Fig. 6 Results of our method with different λ values over
two datasets

Fig. 7 Results of our method with different δ values over
two datasets
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parameter settings were satisfactory, the parameters
in the experimental process should be reasonable. We
will fully investigate the effects of each parameter
and their combinations in our future work.

6 Conclusions and future work

In this study, we have presented a search-based
code recommendation technique that combines an ap‐
proximate sub-tree matching algorithm and a sequence
matching algorithm. Specifically, for each candidate
code, we first calculate and store the hash value and
node number of each sub-tree in their AST. Then, we
traverse the AST of the given query code to calculate
the similarity between the query code and all the can‐
didate codes in the codebase. Top-K candidate code
segments are selected according to a similarity score.
We also calculate the AST preorder sequence similar‐
ity between the query code and the top-K candidate
code using the SW algorithm. Finally, we re-rank the
candidate code list based on the two kinds of similarity
and return the final recommendation result. To evalu‐
ate the effectiveness of our method, we have conducted
experiments on several real-world code databases.
Experimental results have shown that our method
can recommend code with high recall and significantly
outperforms compared methods.

In the future, we will consider introducing a
clustering process to group functionally similar code
fragments together and accelerate the search. We will
also consider optimizing the storage structure of the
intermediate representation to further reduce the ad‐
ditional storage space required.
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Appendix A: Categories of node types for

Javalang

Appendix B: Recommendation results before

and after sub-tree validation

Eq. (2) is used to verify the sub-tree pairs that
may produce a hash collision. We tested Recall@1
before and after using hash verification on the OJSys‐
tem dataset and collected the false-positive results
that appeared in the first place in the recommenda‐
tion list. We analyzed the proportion of recommenda‐
tion errors caused by hash collision. The experimen‐
tal results are shown in Table B1.

Table B1 shows that 24.3% of the false-positive
results were caused by hash collisions without the
verification phase. After implementing hash valida‐
tion using Eq. (1), we observed very few cases
caused by hash collision. We conclude that the hash
verification process can largely eliminate the nega‐
tive impact of hash collision.

Table B1 Recommendation results before and after sub‐
tree validation

Condition

Without validation

With validation

Recall@1

75.8%

81.1%

False positives caused
by hash collision

24.3%

0.3%

Table A1 Categories of node types for Javalang

Class

Type

TypeParameter

Pair and Array

MemberDeclaration

VariableDeclaration

10

4

1

3

4

7

TypeDeclaration
ClassDeclaration
InterfaceDeclaration
Type
BasicType
ReferenceType
TypeParameter
Annotation
ElementValuePair
ElementArrayValue
MethodDeclaration
FieldDeclaration
ConstructorDeclaration
ConstantDeclaration
VariableDeclaration
LocalVariableDeclaration

Function
Number of
node types

Example

ExceptionHandle-
Clause

BasicStatement

BranchStatement

LoopStatement

LoopControl-
Statement

LoopControl

3

7

2

3

3

3

TryResource
CatchClause
CatchClauseParameter
Statement
BlockStatement
TryStatement
IfStatement
SwitchStatement
WhileStatement
DoStatement
ForStatement
BreakStatement
ContinueStatement
ReturnStatement
SwitchStatementCase
ForControl
EnhancedForControl

Table A1

Function
Number of
node types

Example

To be continued
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