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In this paper, we present a multiple knowl-
edge representation (MKR) framework and discuss
its potential for developing big data artificial intel-
ligence (AI) techniques with possible broader im-
pacts across different Al areas. Typically, canonical
knowledge representations and modern representa-
tions each emphasize a particular aspect of trans-
forming inputs into symbolic encoding or vectors.
For example, knowledge graphs focus on depicting
semantic connections among concepts, whereas deep
neural networks (DNNs) are more of a tool to per-
MKR is an advanced Al
representation framework for more complete intelli-

ceive raw signal inputs.

gent functions, such as raw signal perception, feature
extraction and vectorization, knowledge symboliza-
tion, and logical reasoning. MKR has two benefits:
(1) it makes the current Al techniques (dominated
by deep learning) more explainable and generaliz-
able, and (2) it expands current Al techniques by
integrating MKR to facilitate the mutual benefits of
the complementary capacity of each representation,
e.g., raw signal perception and symbolic encoding.
We expect that MKR research and its applications
will drive the evolution of AT 2.0 and beyond.
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1 Multiple knowledge representation

In this section, we briefly revisit a few typical
knowledge representations, followed by the introduc-
tion of the MKR framework (Pan, 2020D).

1.1 Revisiting knowledge representations

A single knowledge representation (KR) scheme
usually emphasizes a particular aspect of transform-
ing inputs into symbolic encoding or vectors. We
first revisit two typical KRs, i.e., canonical knowl-
edge representation and modern deep representation.

1.1.1 Canonical knowledge representation

Canonical knowledge representation models
(e.g., generative representation, first-order logical
representation, and procedural representation) take
highly abstracted concepts as inputs and depict the
causal relationships among them. Typical knowl-
edge/information types abstracted/represented by
these models include the following:

1. Declarative knowledge (also known as de-
scriptive knowledge). This is usually expressed in
declarative sentences and may include concepts and
facts about the object of interest.

2. Procedural knowledge (also known as imper-
ative knowledge). Depending on the specified task,
this kind of knowledge consists of rules, strategies,
procedures, and agendas. It is more of a knowledge
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representation of reasoning.

3. Heuristic knowledge. Heuristic knowledge in-
cludes rules of thumb based on experts, experiences,
or other sources.

4. Structural knowledge. This describes the
relationships between concepts and objects. A clas-
sical knowledge graph is a typical representation of
structural knowledge.

1.1.2 Deep representation

The deep representation method takes raw sig-
nals (usually at relatively low abstraction levels, e.g.,
visual and auditory signals) as the input and en-
codes them in a feature vector through a DNN, such
as deep convolutional neural networks (Krizhevsky
et al.,, 2012; He et al., 2016) and Transformers
(Vaswani et al., 2017). DNN representation is the
major paradigm dominating big data Al research at
present.

Deep representation is competent in perceiv-
ing unstructured data such as images, videos, au-
dios, texts, or time sequence data for various tasks,
e.g., classification and prediction. Compared with
canonical representations, deep representation is
more capable of uncovering and extracting informa-
tion/knowledge from large volumes of data. How-
ever, unlike canonical representations, the current
form of DNN algorithms may not work well for
abstracting procedural knowledge and structural
knowledge, thereby limiting the DNN reasoning ca-
pacity. In addition, a major weakness of DNNs is
that, as criticized by researchers recently, the black-
box nature of deep representation learning makes the
output not explainable (Arrieta et al., 2020). This
weakness severely limits the application of DNNs;,
especially when trustworthiness becomes a concern,
e.g., in decision-making in medical scenarios.

1.1.3 Discussions

The aforementioned knowledge representations
have limitations as a single measure to extract knowl-
edge from input signals in many real-world prob-
lems. The canonical representation relies on pre-
symbolized knowledge as a prerequisite. Although
humans have accumulated abundant knowledge dur-
ing the long history of civilization, there are still sig-
nificant gaps between comprehensive cognition in the
real world and the symbolic system derived from hu-
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man knowledge. Computer-abstracted knowledge as
vectors and symbols cannot, therefore, faithfully and
fully extract all useful information for complete intel-
ligent computing. Deep representation, on the other
hand, can uncover perceptual and latent knowledge
from data, but lacks common sense, reasoning ca-
pacity, and procedural and structural knowledge in
its current form.

To comprehensively understand a concept, hu-
mans tend to combine multiple knowledge (Pan,
2020b) including intuitive perception, cognition,
highly abstract knowledge, and logic. Leveraging
the complementary benefits of many types of knowl-
edge derived from different sources is a common ap-
proach in intelligent human activities, such as learn-
ing and decision making. This implies that MKR,
which integrates multiple knowledge representations
via appropriate mechanisms (Pan, 2020b), could be
an option for advanced intelligent computing in the
era of Al 2.0 and beyond.

1.2 MKR framework

MKR is aimed to acquire, represent, and manip-
ulate knowledge at multiple abstraction levels, from
different sources or derived by different approaches.
Early examples can be found in the pioneering work
of Pan (2020b). Fig. 1 illustrates the main features
of MKR. It has the following connotations with pos-
sible extensions in characteristics.

Hierarchical abstractions

Symbolic knowledge

representation
Improve
MR generalization
Handcrafted

representation

Improve
explainability

Multiple knowledge
representation

Visual knowledge

Reduce data
bias

Deep representation

l Enable explicit
Knowledge graph reasoning

representation

Fig. 1 An example of the multiple knowledge repre-
sentation framework (MR: mutual reinforcement)

1.2.1 Multi-representation integration

MKR not only combines multiple knowledge
representations, but compounds these presentations
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via an appropriate mechanism. FEach knowledge
has its own advantages. The main available knowl-
edge representations for current MKR research in-
clude symbolic knowledge representation, knowledge
graph representation, handcrafted feature represen-
tation, and deep representation. The quantity of hu-
man knowledge resides in the aforementioned four
types of knowledge representations. Specifically,
symbolic knowledge representation explicitly relies
on expert-defined concepts and causal relationships
(sometimes such relationships can be very complex).
The knowledge graph consists of a collection of in-
terlinked descriptions of entities and depicts only the
relationship between entity pairs or entity chains.
These two representations favor highly abstract con-
cepts with emphasis on relationships (e.g., logical or
semantic relationships). Handcrafted feature repre-
sentation and deep representation are more of feature
representation of data, and are superior at raw sig-
nal perception. The data-driven property of deep
feature representation endows it with richer infor-
mation that extends beyond any existing symbolic
system. MKR is designed to leverage the advantages
of each knowledge representation while suppressing
their disadvantages, as discussed in Section 1.1. Note
that new types of knowledge can be integrated in the
future, e.g., visual knowledge (Pan, 2019, 2020a).

1.2.2 Multi-level knowledge abstraction

MKR encodes knowledge at different abstrac-
tion levels. In this subsection, the abstraction level
refers to the degree to which trivial details are re-
moved and elements of higher importance distilled.

In most cases, human perception and cognition
is a shallow-to-deep procedure. For example, when
recognizing an animal species, humans tend to first
observe its appearance and sounds, as an intuitive
perception. Information obtained by human senses,
such as color, size, and the shape of the animal’s
teeth, provides more details.
volves relatively low level abstraction. Higher-level
abstractions, such as the living habits and the under-
lying taxonomy, can then be obtained. In this exam-
ple, lower- and higher-level abstractions (e.g., animal

This information in-

appearance and habits) are indispensable and com-
plementary. Integration of these abstractions yields
a more comprehensive representation than using any
one abstraction alone.

MKR enables knowledge fusion at multiple ab-

straction levels. Recently, a majority of Al appli-
cations is still targeted at relatively low abstraction
levels. This is probably the reason why most re-
cent Al research favors deep representations. How-
ever, there are also cases where high-level abstraction
(e.g., common sense and logical reasoning) is also in-
volved. MKR combines representations at different
abstraction levels, therefore accommodating AT sys-
tems with more functions from perception, recogni-
tion to association, reasoning, and many more.

1.2.3 Multi-modal knowledge reinforcement

MKR enables multiple knowledge representa-
tions to reinforce each other through effective in-
teractions and deep entanglement of multiple rep-
resentations. MKR is not a simple combination of
multiple representations. For example, in computer
vision research, the feature representations, partic-
ularly the deep feature representation (He et al.,
2020; Sun et al., 2020), are robust for machine per-
ception. The deep feature contains information on
visual details, compared with symbolic knowledge.
On the other hand, symbolic knowledge can poten-
tially improve the generalization capability of deep
feature representation, which is a major weakness of
deep learning. For example, entangling the symbolic
knowledge that cars may be of different colors, and
the visual feature of a red car, an Al model would
easily detect a black car. Also, given the observa-
tion of cars with different colors, a symbolic system
would become more confident that an artifact may be
painted with different colors. Therefore, a key MKR
research issue involves how MKRs should reinforce
each other.

2 Applications and case studies

There is emerging research in areas that could
be regarded as early attempts at MKR, in terms of
either task objective or methodology.

1. Visual understanding (Pan, 2021). DNNs are
powerful feature extractors. Structural information
often provides sensible complementary cues to fa-
cilitate the understanding of visual contents. Struc-
tured representations are used in the process of struc-
tured visual understanding. For example, Xu et al.
(2017) represented visual scenes as graphs contain-
ing objects, attributes, and relationships. The scene
graph forms an interpretable and well-structured
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representation of images. Researchers also used
privileged information as auxiliary features to assist
model training. Various types of privileged infor-
mation can be exploited to facilitate learning. For
example, Yan et al. (2016) proposed to exploit both
visual and text features for active sample selection
by taking text as privileged information. A typi-
cal method of integrating multiple cues is to simply
apply late fusion. For example, fusion of the opti-
cal flow model and the RGB model has been widely
used since the two-stream action recognition model
was proposed (Simonyan and Zisserman, 2014; Zhu
et al., 2021). Recently, Wang et al. (2020) consid-
ered a multi-stream framework for ego-centric ac-
tion recognition. Multiple cues are adaptively inte-
grated with a symbiotic attention mechanism. Mu-
tual interactions are considered and intrinsic rela-
tions among these cues are explored. In multi-modal
analysis, e.g., visual dialog, narrative structures need
to be explored. Fan et al. (2020) proposed a dia-
log network to learn the contextual narrative struc-
ture. The network also transfers the knowledge from
a sentence-level discriminator to guide the training
of a generative model, which alleviates the problem
of word-level overfitting and improves the semantic
coherence.

2. Visual-knowledge-assisted computer graph-
ics. Computer graphics studies the process of digi-
tally synthesizing and manipulating visual content.
Recently, generative adversarial nets (GANs) (Good-
fellow et al., 2014) have provided an alternative for
visual generalization. Later works extended GANs
into text-to-image, image-to-text, text-to-video, and
video-to-text generalizations. As a deep learning
method, the GAN requires an astonishingly large
amount of training data and lacks interpretability.
In response to these weaknesses, some recent stud-
ies by Johnson et al. (2018) and Gogoglou et al.
(2019) considered adding structured knowledge to
better control the generative procedure. Specifically,
Gogoglou et al. (2019) controlled the position, at-
tributes, or category of the generated objects. John-
son et al. (2018) proposed to generate images from
scene graphs, which enabled explicit reasoning about
objects and their relationships.

3. Multimedia knowledge graph with abun-
dant knowledge resources. The rapid development
of the Internet has provided access to a large vol-
ume of multimedia data. To learn from these abun-
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dant knowledge resources, DBpedia (Auer et al.,
2007), Wikidata (Vrandeci¢ and Krotzsch, 2014),
and IMGpedia (Ferrada et al., 2017) establish knowl-
edge graphs. However, Internet data usually include
significant noise and bias. Low-quality image, video,
and audio data are much scarcer than text data, so it
is critical to mine the cross-media relationship using
MKR to improve the quality of multimedia knowl-
edge graphs.

4. Neural-symbolic network. Several researchers
have proposed to integrate DNNs and symbolic
representations into a hybrid network, called the
“neural-symbolic network.” Franga et al. (2014)
translated and encoded symbolic knowledge into net-
work weights. Specifically, the neural-symbolic net-
work uses background knowledge that is encoded as
an initial propositional logic program to build a re-
It also uses examples to
apply standard back-propagation learning. This in-
tegration inherits both parallel learning from neural
networks and explanatory power from propositional
logic. Serafini and d’Avila Garcez (2016) proposed
logic tensor networks, a uniform framework for in-
tegrating automatic learning and reasoning. Specifi-
cally, these networks implement “real logic” in DNNs
to simultaneously benefit from the deductive reason-

current neural network.

ing of symbolic knowledge and data-driven machine
learning.

Arguably, these works drew early attention to
the combination of symbolic knowledge and deep
feature representations. This combination may be
viewed as a special and degraded case of MKR, be-
cause MKR generally has a broader and deeper re-
search interest. In Table 1, we briefly compare the
representations that are used in existing works. As
explained in Section 1, MKR not only integrates mul-
tiple representations and different abstraction levels,
but also seeks mutual reinforcement among compo-
nents through deep entanglement.

Table 1 Representations used in a few recent works

Method S H V D K
Scene graph (Xu et al., 2017) vV ox x v X
IMGpedia (Ferrada et al., 2017) x v x X V
LTN (Serafini and d’Avila vV ox x v X

Garcez, 2016)
MKR (this paper) v vV v v
S: symbolic knowledge representation; H: handcrafted repre-
sentation; V: visual knowledge; D: deep representation; K:
knowledge graph representation




Yang et al. / Front Inform Technol Electron Eng 2021 22(12):1551-1558 1555

3 A shift from deep learning represen-
tation to MKR in big data Al

Over the past decade, deep learning with big
data has significantly advanced the development of
Al, with profound impact in both academia and
industry. Deep learning representation (DLR) has
reshaped the Al research, and is also dominating
many applications across domains, such as speech
recognition, computer vision, natural language pro-
cessing, and machine translation. However, the data-
driven and black-box nature of DLR also results in a
few problems and bottlenecks. MKR reinforces the
strengths of different presentations, and will provide
possible solutions to overcome the existing problems.
In this section, using generalization and explainabil-
ity as examples, we discuss how MKR could be used
to advance the Al research dominated by deep learn-
ing. There could be more cases for which MKR could
resolve the problems of any single representation.

3.1 MKR improves generalization

MKR improves generalization in two ways.
First, it reduces the data bias, often by using sym-
bolic knowledge, e.g., a knowledge graph. Second,
it facilitates useful knowledge transfer from richly
annotated data to poorly conditioned data or even
totally novel data.

1. Data bias is a type of error in which certain
elements of a dataset are more heavily weighted or
represented than others. Data bias is a prominent
challenge that hinders the generalization ability of
data-driven Al algorithms. It not only compromises
prediction accuracy, but at times may involve ethics
and fairness issues. A well-known example is that
the accuracy of a facial recognition algorithm has
a strong bias on the color of skin.
could be injecting a symbolic knowledge represen-
tation into the deep learning representation to avoid
color bias in face recognition. Another example is the
work of Tang et al. (2020), which integrates struc-
tural representation and deep learning representa-
tion to relieve inference bias.

One solution

2. Knowledge transfer adapts previously learned
knowledge to a new problem. The knowledge learned
from previous tasks is relevant to the new prob-
lem, but is always different from previous domains.
Knowledge transfer is an effective way of improv-
ing the model’s ability to generalize.
gaps between the previous and new tasks are ma-

The domain

jor problems to be confronted. MKR reinforces the
symbolic knowledge representation and deep learn-
ing representation, making it capable of disentan-
gling the domain gap into multiple underlying fac-
Then MKR filters out irrelevant factors from
the disentanglement outputs, and distills only use-
ful knowledge for the new problem. For example, in
the pedestrian detection task, a typical deep learn-
ing algorithm could be easily corrupted by clothing
style changes. With symbolic knowledge that cloth-
ing style is an irrelevant factor, the detection algo-
rithm will disregard clothing style information and
thus improve robustness. Moreover, recent research
shows that incorporating body structure representa-

tors.

tion in deep learning would improve the identifica-
tion of persons by using models trained on holistic
body images (Miao et al., 2021).

3.2 MKR improves explainability

Another limitation of deep learning is its “black-
box” nature. Even the model designers cannot figure
out why the algorithm arrives at a specific decision.
Without explainability, Al accountability is limited,
which in turn hinders the application of Al in certain
domains where safety is a major concern (Amodei
et al., 2016).

In contrast to a “black-box” Al system, a “white-
box” Al system or explainable AT (XAI) system is
a transparent model that can explain how an Al
decision was made. For this purpose, an Al sys-
tem should not rely solely on data, but must be
elevated with human-understandable mechanisms,
such as regularization mechanisms that reflect hu-
man knowledge. MKR provides a mechanism to en-
tangle representations of data-driven knowledge and
symbolic knowledge, making itself a highly attractive
option for establishing XAl systems.

3.3 Changes made by MKR

We discuss several recently attainable changes
for better generalization and explainability. First,
we show that the AI research methodology could be
changed by MKR. Then we discuss possible changes
to applications that are used to assess investments.

3.3.1 Injecting symbolic knowledge into synthetic
images for robustness

In computer vision, an approach for alleviat-
ing the burden of too many training data is to
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supplement the massive manually annotated data
with synthetic data (de Souza et al., 2017; Veer-
avasarapu et al., 2017; Singh and Zheng, 2020). Us-
ing MKR in this process increases data diversity and
injects some useful symbolic knowledge, which conse-
quently benefits the AI models to be trained. Three
examples are specified as follows:

1. By introducing climate and geography knowl-
edge, the image generative model can simulate
changes in the weather, scenery, and pedestrian
clothing style. Using such synthetic data for train-
ing, the corresponding Al system gains rich visual
knowledge from the image and the ability to deduce
the effects of seasonal changes.

2. With knowledge of animal body structures
and kinematics, the generative model will be able
to simulate animals based on static shape and the
dynamic postures of walking, running, and jumping.
These synthetic data allow the Al system to learn
the inherent relationships between different animals,
their movements, and body structure from the video.

3. Employing the principle of light refraction
and diffuse reflection, the image generation engine
can simulate the color and morphology of various
materials under different lighting conditions. This
allows the AI system to overcome the domain adap-
tation challenge that is created by different lighting
conditions in the current visual system.

3.3.2 Tackling automated student grouping for in-
telligent Al education

Automated student grouping is one of the major
problems in intelligent AI education systems. The
heterogeneous nature of educational data hinders the
development of automated student grouping algo-
rithms. Student grouping depends on multiple het-
erogeneous information in the form of audios, texts,
videos, and structured tables. The information in-
cludes individual activities on the learning platform,
cooperative dialogues among teammates, historical
student—teacher interactions, and other information
related to the students’ learning experience. The
quality of student grouping will rapidly influence the
students’ engagement, which has a high impact on
groupwork communication, teaching management,
etc. MKR enables a machine to automatically dis-
cover causal relationships and structural dependen-
cies among heterogeneous cues, through its embed-
ded graph operations and knowledge reinforcement

capabilities.

For example, when applying MKR to auto-
mated student grouping, we will first map student—
student interactions, student-teacher interactions,
and a heuristic education—expert knowledge graph
into a joint graph space. Second, a multi-knowledge
reasoning procedure will be used to extract causal
relations and abstract multi-level knowledge presen-
tations, guided by the symbolic knowledge graph.
Last, we will provide an explainable student—student
relation graph where graph edges represent the
grouping weights. Each grouping weight determines
a statistical correlation between two students, which
can be interpreted and explained via the students’
nearest node from the education-expert knowledge
graph. The final group recommendation can be
readily visualized for teachers’ decision making. In
this case, MKR can better align heterogeneous data
from student-student and student—teacher interac-
tions. MKR will benefit online education systems in
achieving automated student grouping and providing
knowledge-driven learning experiences.

3.3.3 Sound explainability provides better FinTech
for assessing investment opportunities

Robo-advisor is an important Al application in
the financial field. It recommends investments ac-
cording to a customer’s investment interest, based on
portfolio theory. Arguably, for personal investment
advice, the major objective is to maximize capital
benefits.
investment extend beyond capital growth. These re-
sponsibilities include balanced regional development,
regulating the poverty gap, environmental protec-
tion and sustainable development, and many other

In contrast, responsibilities for national

factors. To create responsible investment advice, one
possible solution would be to include MKR. Specif-
ically, one can use sociological knowledge (such as
economics, politics, and geography) to make inter-
pretable predictions and suggestions, and provide
interactive investment information for decision mak-
ers. For example, to balance regional development,
the robo-advisor needs to adjust its strategy accord-
ing to the MKR of geographical differences among
regions, industrial foundations, and even local resi-
dents. For appropriate and balanced development,
the robo-advisor should employ MKR with informa-
tion on biology and earth science to minimize the
risk of environmental damage.
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4 Conclusions

This paper introduces an MKR framework along
with application examples and case studies. MKR
is a new knowledge representation paradigm that
learns from different abstraction levels, different
sources, and different perspectives. These knowl-
edge representations are deeply entangled with, and
reinforced by, each other. Big data Al with MKR
not only improves the accuracy of classical tasks,
such as detection and recognition, but also equips
an Al system with more features and functions, such
as better generalization, explainable outputs, and
stronger reasoning capacity. We expect that MKR
will become a new tool of the AT 2.0 evolution and
beyond.
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