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Abstract: Methods in programs must be accurately named to facilitate source code analysis and comprehension.
With the evolution of software, method names may be inconsistent with their implemented method bodies, leading
to inaccurate or buggy method names. Debugging method names remains an important topic in the literature.
Although researchers have proposed several approaches to suggest accurate method names once the method bodies
have been modified, two main drawbacks remain to be solved: there is no analysis of method name structure,
and the programming context information is not captured efficiently. To resolve these drawbacks and suggest
more accurate method names, we propose a novel automated approach based on the analysis of the method name
structure and lexical analysis with the programming context information. Our approach first leverages deep feature
representation to embed method names and method bodies in vectors. Then, it obtains useful verb-tokens from
a large method corpus through structural analysis and noun-tokens from method bodies through lexical analysis.
Finally, our approach dynamically combines these tokens to form and recommend high-quality and project-specific
method names. Experimental results over 2111 Java testing methods show that the proposed approach can achieve
a Hit Ratio, or Hit@5, of 33.62% and outperform the state-of-the-art approach by 14.12% in suggesting accurate
method names. We also demonstrate the effectiveness of structural and lexical analyses in our approach.

Key words: Method renaming; Code refactor; Deep learning; Convolutional neural networks
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1 Introduction

Method names are extremely important when
developers program, as Høst and Østvold (2009)
strongly noted: “methods are the smallest named
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units of aggregated behavior in most conventional
programming languages and hence the cornerstone
of abstraction.” However, giving methods appropri-
ate names is one of the most difficult tasks for devel-
opers (Allamanis et al., 2015), because it is not easy
for developers to select suitable constitutive terms
for identifiers while following the corresponding code
conventions. Hence, it is common to find many
flawed method names, such as non-standard method
names or method names that are inconsistent with
their method bodies, in real software projects.

Fig. 1 shows three examples of flawed method

www.jzus.zju.edu.cn
engineering.cae.cn
www.springerlink.com


Luo et al. / Front Inform Technol Electron Eng 2022 23(5):732-748 733

names from a real software project, i.e., Cassandra
of Apache (https://github.com/apache/cassandra/).
As shown in Fig. 1, the name of the first method is
a non-standard name with typos, in which diffrence
should be difference. From the return type of the
second method, we know that it should return a
Boolean value. However, the current method name
does not have a verb-token to represent its func-
tion. According to Java programming specifications,
methods that return Boolean values should have the
prefix “is,” so a better method name may be isIncre-
mentalBackups. The third method name also needs
improvement, because it does not specify the granu-
larity of column index size, e.g., B, KB, MB, or oth-
ers. In contrast, its method body specifies the exact
granularity. Hence, a better name for this method
may be getColumnInedxSizeInKB.

public long diffrence(){
        long current = meter.count();
        long difference = current - reported;
        this.reported = current;
        return difference; }

public static boolean incrementalBackups(){
        return conf.incrementalbackups; }

public static int getColumnIndexSize(){
        return columnIndexSizeInKB; }

Fig. 1 Three real examples of flawed method names
from Apache

After demonstrating some actual flawed method
names, we continue to investigate their potential im-
pacts in some open technical forums and platforms.
Specifically, we first define a series of search queries
by combining the compound conjunction “method
name” with some adjective keywords, e.g., “inconsis-
tent,” “non-standard,” and “rename.” Then, we input
these search queries in the search engines into Stack
Overflow (https://stackoverflow.com/) and GitHub
(https://github.com/), respectively, to match rele-

vant posts and commit logs. As a result, 3571 posts
in Stack Overflow and 1 337 519 commits in GitHub
were returned. This means that there is a lot of
concern from developers about non-standard and in-
consistent method names. Fig. 2 shows some exam-
ples of retrieved results. As a proposed question in
Stack Overflow shown on the left in Fig. 2, one de-
veloper requests a refactor safe way to get the name
of a method, which reflects that inaccurate method
names may lead to software security problems. As
the commits in GitHub shown on the right in Fig. 2,
we can see that flawed method names have already
resulted in some bugs, and that developers pay much
attention to renaming methods to generate more un-
derstandable names.

It is generally believed that accurate method
names make methods more understandable and
maintainable, and that inaccurate method names
make methods difficult to understand and maintain
(Takang et al., 1996; Lawrie et al., 2006; Arnaoudova
et al., 2014; White et al., 2016), and may even lead
to software defects (Butler et al., 2009; Abebe et al.,
2011, 2012; Amann et al., 2019). Hence, it is vital
to rename these inaccurately named methods in the
practical software development process.

Existing similar studies have shown that struc-
tural and lexical features play an important role
in recommending exception handling code examples
(Rahman and Roy, 2014). In addition, Yu et al.
(2012) suggested verbs of method names through
machine learning based approaches and achieved
promising results. Inspired by these studies, we em-
ploy deep learning technology to analyze the struc-
ture of method names for structural analysis and
leverage the programming context information for
lexical analysis to generate and recommend method
names. To rename inconsistent method names, Liu
K et al. (2019) extracted the feature representation

Fig. 2 User queries and commits related to flawed method names
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of method names and method bodies through con-
volutional neural networks (CNNs) and suggested
new method names with a recommendation list by
searching similar names in a large method corpus.
In addition, Allamanis et al. (2016) introduced a
neural network that could predict a short and de-
scriptive name for a code snippet. However, these
approaches do not consider the structure of method
names or fully leverage the programming context.
Hence, there is much room for improvement in these
approaches.

In this study, we propose a novel method re-
naming approach through structural and lexical
analyses. This approach relies on a large method
corpus and contains several components, includ-
ing data pre-processing, structural analysis, lexi-
cal analysis, and renaming generation and recom-
mendation. Our approach first leverages Word2Vec
(https://code.google.com/p/word2vec/) (Mikolov et
al., 2013) and CNN (Kim Y, 2014) to extract deep
vector representations of method names and corre-
sponding bodies, respectively. Then, for a given
method name that has been identified as non-
standard or inconsistent with its method body, we
find the possible verb-tokens and noun-tokens to gen-
erate a series of new method names. Specifically, we
calculate the semantic similarity between the current
method and methods in a large method corpus and
find the possible correct verb-tokens from the most
similar method names. At the same time, we search
the current method body to identify possible cor-
rect noun-tokens. Finally, we combine the retrieved
noun-tokens and verb-tokens to generate a series of
new method names and suggest these method names
using a designed recommendation algorithm.

To evaluate our proposed approach, we have
performed extensive experiments with 90 824 meth-
ods of training data and 2111 methods with changed
names of test data, which were collected from 20
open-source Java projects. Experimental results
showed that the approach can achieve better re-
sults than the approaches proposed by Allamanis
et al. (2016) and Liu K et al. (2019). For exam-
ple, our approach achieved a Hit@5 of 33.62%, while
the baseline approaches proposed by Allamanis et al.
(2016) and Liu K et al. (2019) achieved only a Hit@5
of 1.44% and 19.50%, respectively. We also eval-
uated the impact of weight-adjusting noun-tokens
and verb-tokens on generating and recommending

new method names. Experimental results showed
that our approach is insensitive to the value of the
weight. We also validated the effectiveness of com-
bining the structural and lexical analyses as well as
our renaming generation and recommendation algo-
rithm. Experimental results showed that our ap-
proach achieved better results than both of its vari-
ants. For example, our approach achieved a Hit@1 of
23.67% as a whole, but a Hit@1 of 2.18% and 8.13%
with only the structural analysis and only the lexi-
cal analysis, respectively. As for the performance of
the renaming generation and recommendation algo-
rithm, our approach achieved the best results com-
pared with using one naming style, i.e., camel case
and underscore. For example, our approach achieved
a Hit@1 of 23.67% as a whole, but a Hit@1 of 21.00%
and 8.13% with the camel case and underscore styles,
respectively. Finally, we conducted an empirical
study to investigate the practicability of our ap-
proach in a real-world scenario by manually anno-
tating the suggested method names. Experimental
results showed that the suggested method names of
our approach can ease the workload of developers
in practice, especially for those developers who are
new, inexperienced, or unfamiliar with the source
code. The main contributions of this study are as
follows:

1. We propose a novel method renaming ap-
proach that leverages structural analysis and lexi-
cal analysis to suggest high-quality method names
for flawed method names. The implemented code
is publicly available (https://github.com/Luojpljp/
Method-Renaming).

2. We fully leverage method name structure
and lexical analysis with programming context in-
formation to discover verb-tokens and noun-tokens
to generate high-quality method names.

3. We have conducted a series of experiments
to validate the effectiveness of our approach. The
results demonstrated that our approach can signifi-
cantly improve the state-of-the-art approaches.

2 Motivation

In this section, we discuss the motivation for
this study, including the structure of method names
and programming context.
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2.1 Structure of method names

A good method name should help developers
easily understand the main function of the method
through its literal meaning. According to the Java
programming specifications, a good method name
should be formed using verbs or verb phrases (usually
verbs combined with nouns) (Yu et al., 2012). To ver-
ify whether developers follow such code conventions
in practice, we conducted an empirical study. We
collected 87 003 Java methods from GitHub with at
least 100 commits to ensure that these methods were
well maintained. For these methods, we analyzed the
part of speech (PoS) of their constitutive terms. Ta-
ble 1 shows the empirical results. We found that
74.77% of the method names we collected were verb
phrases, 22.50% were verbs, 1.54% were only nouns,
and 1.19% of method names (hereinafter referred to
as Other in Table 1) were very complex, e.g., con-
tainsAtLeast_ElementsIn_inOrder_success. The
1.19% of method names called “Other” were not
taken into consideration in our study, since they
may have had more than one verb, which makes the
name ambiguous to understand the functions of these
methods. There were 98.81% of method names con-
taining verbs or nouns according to Table 1. As a
result, we split the method names into two parts,
i.e., verb-tokens, which represent the method action,
and noun-tokens, which represent the object of the
method. Based on this observation, we can generate
new method names by combining verb-tokens with
noun-tokens.

Table 1 The empirical results of the structure of
method names

Classification Exact number Percentage (%)

Verb phrases 65 049 74.77
Verbs 19 573 22.50
Nouns 1344 1.54
Other 1037 1.19

2.2 Programming context data

It is common to find flawed method names in
source code as a result of developer negligence (Liu
K et al., 2019). In addition, methods with flawed
names may have important functions and complex
call relationships. In fact, the correct constitutive
terms of flawed method names are usually hidden in
the programming context. For example, in some get

methods, the nouns in method names are hidden in
the return statements. Hence, the programming con-
text is an important source of information for con-
structing good method names, since it contains many
useful tokens that can be used directly. However,
programming context is not effectively used by exist-
ing approaches and needs further deep analysis. For
example, the baseline approaches employed in this
study do not fully consider the programming con-
text. In contrast, these approaches ignore the useful
tokens that can be used directly, to obtain similar
or even the same method names in a large method
corpus. However, there may be no method with the
same name in the method corpus in some situations.
In addition, finding a similar method name in a large
method corpus is difficult, since there may be a lot of
noise. For methods, we consider their method bodies
along with annotations (if any) as the programming
context. We study the feature extraction techniques
of the programming context to find possible noun-
tokens for generating high-quality method names.

3 Approach

In this section, we present the details of our
method renaming approach. As illustrated in Fig. 3,
it consists of four phases, i.e., data pre-processing,
structural analysis, lexical analysis, and renaming
generation and recommendation. The data pre-
processing phase takes the method whose name
needs to be renamed as input. In this phase the
method name and tokens are split in the method
body, prepared for the following phases. In the
structural analysis phase the possible correct verb-
tokens are found by calculating semantic similarities
between the given method and a large method corpus
using Word2Vec and CNN. Meanwhile, in the lexi-
cal analysis phase the possible correct noun-tokens
are found using Word2Vec from the method body.
In this way, we can obtain a series of verb-tokens
and noun-tokens. Finally, in the renaming genera-
tion and recommendation phase, we combine the ob-
tained verb-tokens and noun-tokens following their
original styles, to generate a list of new recommended
method names.

3.1 Data pre-processing

Our approach relies on a large-scale method cor-
pus to find the constitutive terms to generate new
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Fig. 3 The overall framework of our approach

names for those methods that need renaming. A
given method that needs renaming is divided into
two parts, i.e., a method name and a method body.
Because the method body consists of multiple to-
kens that describe the method implementation, we
convert it into a token sequence by following the par-
ing method proposed by Liu K et al. (2019). This
paring method converts the method body into an
abstract syntax tree (AST) with a depth-first search
algorithm. As a result, this paring method col-
lects two kinds of tokens: AST node types and raw
code tokens. For example, the declaration statement
“String a;” containing two tokens will be converted
into a four-token sequence [PrimitiveType, String,
variable, a], which means that String is a primi-
tive type and a is a variable in a statement. Be-
cause non-descriptive local variable names, such as
a and b, can interfere with identifying similar code,
all local variables are renamed as the concatenation
of their data type with the string Var. As a re-
sult, the above declaration statement will be finally
represented by the sequence [PrimitiveType, String,
variable, StringVar].

For all the methods in the method corpus, we
employ the same paring method to process their
method bodies. In this way, the given method, which
needs renaming, and all the methods in the method
corpus, are processed using the same procedures.

3.2 Structural analysis

The structural analysis phase consists of three
main components, embedding and normalizing
method tokens, embedding method bodies, and ob-
taining verb-tokens. In the following, we present the
details of these components.

3.2.1 Embedding and normalizing method tokens

For a given method that needs renaming and the
large method corpus, we first embed all the tokens
of these method bodies in vectors using Word2Vec,
based on 100 billion words from Google News trained
by Mikolov et al. (2013) and all tokens obtained from
the training set of Liu K et al. (2019). Because
a method body usually consists of a series of to-
kens, the method body is eventually represented as
a two-dimensional numerical vector. We can con-
vert a method body b into a sequence of tokens
Tb = (t1, t2, ..., tk), where ti is the token in loca-
tion i, and further, into a two-dimensional numerical
vector Vb as follows:

Vb ← l(Tb,TVNB), (1)

where l is a function that integrates individual nu-
merical vectors into a two-dimensional numerical
vector based on the mapping function TVNB. Thus,
we have the set of two-dimensional numerical vectors
VB, Vb = (v1, v2, ..., vk) ∈ VB, where vi ← TVNB(ti).

TVNB ← FW(TNB), (2)

where TNB is a set of method names and method
body token sequences as input for the token em-
bedding function FW (i.e., Word2Vec). The out-
put is the token mapping function TVNB : VNB ←
TWNB, where TWNB is a term in method names and
method bodies, and VNB represents the numerical
vector space embedding method names and tokens
in TWNB.

Because the input layer of the CNN requires
fixed vector sizes, we follow the workaround tested
by Wang et al. (2016) to append zero vectors to make
all vectors have the same size (the size of the longest
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token sequence in our dataset). The left side of Fig. 4
shows a two-dimensional n×k numerical vector that
represents a method body, where n is the vector size
of each token and k is the size of the longest method
body token sequence. Each row represents a vec-
tor of an embedded token, and the last two rows
represent the appended zero vectors to make all two-
dimensional vectors have the same size.
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Fig. 4 The architecture of the convolutional neural
network (CNN)

3.2.2 Embedding method bodies

The embedded token vectors are then fed into
the CNN to embed all method bodies in numerical
vectors. For method bodies, we design a map func-
tion to feed a two-dimensional numerical vector for
each method body into the CNN, which is as follows:

VVbody ← FBV(VB), (3)

where FBV is an embedding function (i.e., NN) that
takes the two-dimensional numerical vector bod-
ies (VB) as input and produces a map function
(VVbody). VVbody is defined as VVbody : V ′

B ← VB,
where V ′

B is an embedded vector space of method
bodies. Based on VVbody, the body map function
NVbody is defined as

NVbody : V ′
B ← Tb, (4)

where NVbody is the composition of l and VVbody.
NVbody takes a token sequence of a method body
and returns an embedded vector that represents it.

Fig. 4 shows the CNN architecture that our ap-
proach uses as embedding function FBV. The input is
two-dimensional numerical vectors of method bodies.
The convolutional layer and max-over-time pooling
layer are used to capture local features of methods
and reduce the dimension of the input data. The
network layers from the pooling layer to the fully

connected layer are fully connected, and can com-
bine all local features captured by the convolutional
and pooling layers. We choose the output of the fully
connected layer as vector representations of method
bodies that synthesize all local features captured by
the previous layers.

We can easily find the name corresponding to a
given method’s body vector in the name vector space,
and vice versa. These linking relationships help us
easily obtain the corresponding method name after
finding a similar body for a given method.

3.2.3 Obtaining verb-tokens

For a given method that needs renaming, af-
ter embedding its method body in a vector, we can
compute the cosine similarity between its vector and
vectors of method bodies of the large method corpus
(Liu K et al., 2019).

We first pick the top-10 methods from the cor-
pus based on method body similarity. Then, we split
those method names into several constitutive terms
through a method name splitting algorithm. The
splitting algorithm starts by scanning the first let-
ter of each method name and works its way up to
the verb that appears in the dictionary constructed
from all the verbs of the corpus. Finally, we analyze
the PoS tags of each constitutive term to extract the
first verb-token (plus prepositions if the first verb to-
ken is followed by a preposition) and regard the first
verb-token as the potentially correct verb-token for
the given method that needs renaming.

3.3 Lexical analysis

The lexical analysis phase consists of two main
components, i.e., embedding method names and
obtaining noun-tokens. Specifically, for the given
method that needs renaming, we first embed its
method name in vectors using Word2Vec. Then, we
compute the cosine similarity between the method
name and all the body tokens with their embedding
representation. Finally, we regard the noun-tokens
with the largest similarity as the possible correct
noun-tokens.

3.3.1 Embedding method names

As shown in Fig. 3, the given method name is
first embedded in individual numerical vectors. The
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embedding model is built as follows:

TV′
NB ← FW(T ′

NB), (5)

where T ′
NB is a set of method names as input to

the token embedding function FW (i.e., Word2Vec).
The output is the token mapping function TV′

NB :

V ′
NB ← TW′

NB, where TW′
NB is a vocabulary of

method names, and V ′
NB represents the numerical

vector space embedding method names in TW′
NB.

3.3.2 Obtaining noun-tokens

After embedding method names in vectors, we
can compute the cosine similarity between method
names and tokens to produce noun-tokens with the
embedding representation. For a given method, we
filter out several types of noisy tokens in its body,
including programming keywords (e.g., return and
String), API functions, punctuation marks, mean-
ingless numbers, and single letters. In addition, we
delete tokens that appear only once to avoid data
explosion.

After filtering out noisy tokens from the method
body, we compute the cosine similarity between the
method name and all the method tokens. We select
the top-10 noun-tokens that are most similar to the
method name and regard them as the potentially
correct noun-tokens for constructing the new method
name.

3.4 Renaming generation and recommenda-
tion

This phase consists of two components, i.e., re-
naming generation and recommendation. First, we
combine verb-tokens obtained from the structural
analysis phase and noun-tokens obtained from the
lexical analysis phase to generate a series of new
method names. Second, we rank all the newly gen-
erated method names and form a recommendation
list. The whole process is shown in Algorithm 1,
which regards verb-tokens and noun-tokens and the
method needing renaming as input, and outputs the
new method name recommendation list.

3.4.1 Renaming generation

When we obtain noun-tokensN and verb-tokens
V , we can calculate their similarity (lines 1 and 2)
at the same time. Then, we identify the original
formatting style of the method that needs renaming,

because we follow the original style to format newly
generated method names (Hindle et al., 2012). As
shown in line 3 in Algorithm 1, given the method
needing renaming Mr, we define the Style function,
which obtains the formatting style of Mr. Stym is the
obtained original formatting style, i.e., camel case or
underscore. Next, we normalize noun-tokens and
verb-tokens into lower case (line 4). Finally, we can
combine noun-tokens and verb-tokens through the
generate function as follows (lines 5 to 9):

Mlist = generate(N ′
i , V

′
j , Stym), (6)

where generate() is the renaming generation function
taking normalized noun-tokens N ′

i , normalized verb-
tokens V ′

j , and Stym as input. The generate function
follows the original PoS sequence and the original
style Stym to combine N ′

i and V ′
j . In this way, we

can generate a series of new method names, Mlist.

3.4.2 Recommendation

After generating a series of new method names,
we calculate a final score for each of the new method
names as follows (line 10):

Sm = αSn + (1− α)Sv, (7)

where Sn is the similarity score of a noun-token, Sv

is the similarity score of a verb-token, and α is a
weight to balance the contribution of the noun-token
and verb-token. The output is the final score of each
newly generated method name. Then we construct
maps between these new methods and their corre-
sponding final scores (line 11). Based on these maps,
we can rank the newly generated method names and

Algorithm 1 Renaming generation and recommen-
dation
Input: noun-tokens N = {N1, N2, ..., Ns}, verb-tokens V =

{V1, V2, ..., Vt}, and the renaming method Mr

Output: recommendation list Top[k]

1: Sn = Sim(N)

2: Sv = Sim(V )

3: Stym = Style(Mr)

4: (N ′, V ′) = Normalize(N, V )

5: for i = 0 to s do
6: for j = 0 to t do
7: Mlist = generate(N ′

i , V
′
j ,Stym)

8: end for
9: end for

10: Sm = αSn + (1 − α)Sv

11: Map(Mlist, Sm)

12: Top[k] = Rank(Map(Mlist, Sm), k)
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select the top-k method names to recommend, where
we vary k from 1 to 5 (line 12).

4 Experimental setup

In this section, we describe the research ques-
tions (RQs) we want to investigate, the baseline ap-
proaches for comparison, the evaluation metrics used
in our study, the data collection procedures to ob-
tain the large method corpus and the testing meth-
ods that need renaming, and the default parame-
ter settings in our approach. The data collection
and default parameter settings are presented in the
appendix.

4.1 Research questions

RQ1: What is the impact of weight α adjust-
ing noun-tokens and verb-tokens on generating and
recommending new method names?

When generating and recommending new
method names, we employ a weight α to adjust the
importance of noun-tokens and verb-tokens as shown
in Eq. (7). The weight balances the contribution of
noun-tokens and verb-tokens, which could influence
our approach in recommending new method names.
To explore such influence, we set up this RQ.

To explore this RQ, we varied the weight α from
0.1 to 0.9 with a step of 0.1. For each specific value
of α, we calculated the final value of each newly
generated method name and further obtained the
results of Hit@5 achieved by our approach to show
its influence.

RQ2: Does combining the structural analysis
and lexical analysis achieve better performance?

In our proposed approach, we design a struc-
tural analysis phase and a lexical analysis phase
to obtain verb-tokens and noun-tokens, respectively.
In this way, we can combine these verb-tokens and
noun-tokens to generate a series of new method
names for recommendation. The two phases are im-
portant to the performance of our approach. To
evaluate how much structural analysis and lexical
analysis contribute to our overall approach, we set
up this RQ.

More precisely, we used the results of one of
the two phases as the final recommended results for
comparison. Specifically, we defined two variants of
our approach. The first variant considered only the
structural analysis results. In contrast, the second

variant considered only the results of lexical analy-
sis. We compared our whole approach with the two
variants to investigate this RQ.

RQ3: Is the renaming generation and recom-
mendation phase effective in our approach?

We design a renaming generation and recom-
mendation phase in our proposed approach. This
phase combines noun-tokens and verb-tokens to gen-
erate and rank a series of new method names. By
this RQ, we aim to investigate whether this phase is
effective.

According to the Java programming specifica-
tion, it is suggested that method names follow the
camel case style (Gosling et al., 2005; Li et al.,
2021). However, method names and styles are usu-
ally project-specific (Hindle et al., 2012). Hence, we
could not generalize all the method names using a
specific naming style. We need to name methods
dynamically. Our approach employs a dynamic way
to integrate noun-tokens and verb-tokens to generate
new method names following their original styles. To
show the effectiveness of this phase, we used specific
style, i.e., camel case or underscore, to form the new
method names. By comparing this dynamic phase
with a single style, we showed the effectiveness of
the dynamic phase.

RQ4: To what extent is our approach supe-
rior to the baseline approaches in suggesting method
names?

The method renaming approaches proposed by
Allamanis et al. (2016) and Liu K et al. (2019) are the
most recent for method renaming and achieve excel-
lent results, so we have employed these approaches
as the baselines. By this RQ, we want to investigate
how much improvement our approach can achieve
compared with the baseline approaches.

Liu K et al. (2019) opened the token sequences
of methods in their training set to the public only.
However, they did not detail which projects they
used in their approach. Hence, we collected tar-
get projects from four high-quality communities:
Apache, Google, Spring, and Hibernate. In addi-
tion, we implemented the approach of Allamanis et
al. (2016) and validated it on our dataset. Hence, we
employed our dataset to validate our approach and
the baseline approaches for a fair comparison.

RQ5: To what extent can the suggested
method names generated by our approach benefit
developers?
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Our proposed approach is expected to help de-
velopers rename flawed method names in real-world
scenarios. To explore the extent to which the method
names suggested by our approach can benefit devel-
opers, we set up this RQ.

Specifically, we conducted an empirical study
to investigate the practicability of our approach in
a real-world scenario. For this experiment, we first
randomly sampled 10% (i.e., 211 methods) of the test
methods. For these sampled test methods, we col-
lected the top-1 suggested method names using our
approach and their target method names. Then we
recruited three volunteers to manually evaluate and
annotate these sampled methods. For the evaluation,
these volunteers were required to grade two scores for
each sampled method, i.e., portability, which means
to what extent the top-1 suggested method name
could be adapted to the target method name, and
consistency, which means whether the top-1 sug-
gested method name was consistent with the cor-
responding method body. Both the portability and
consistency grading scores ranged from 0 to 10, with
a higher grading score representing a higher portabil-
ity or consistency. For each sampled method, three
volunteers independently graded its portability and
consistency, and their average value was regarded as
the final value. By collecting the annotation results
from these volunteers, we determined the effective-
ness of our approach in the real-world scenario.

4.2 Baseline approaches

The approach proposed by Allamanis et al.
(2016) works as follows. A CNN was introduced with
an attention mechanism. This approach uses a set
of convolutional layers (without any pooling) to de-
tect patterns in the input and identify “interesting”
locations where attention should be focused. The
approach can then predict a short and descriptive
name for a code snippet (e.g., a method body) based
on a trained network. The approach includes two
sub-models: conv_attention, which uses only the
pre-trained vocabulary, and copy_attention, which
can copy tokens of input vectors (i.e., tokens in a
method body). Experimental results showed that
this approach can achieve an average Hit@1 of 0.57%
and Hit@5 of 1.44%.

The approach of Liu K et al. (2019) works as
follows. For a given method and method corpus,
this approach first embeds method bodies in vec-

tors. Then, it searches similar method bodies for the
given method in the vector space of the method cor-
pus. Next, it identifies names of these similar method
bodies and introduces four ranking strategies to ob-
tain four lists of similar method names. Strategy 1
relies solely on the similarities between method bod-
ies. Strategy 2 first groups the same names and then
ranks distinct names based on the sizes of the as-
sociated groups. Strategy 3 ranks the groups based
on the average similarity, but the group sizes are not
considered. Strategy 4 eventually re-ranks all groups
produced in strategy 3 by downgrading all groups
with only one instance to the lowest position. In this
way, this approach can recommend new names for
methods that need renaming. Experimental results
showed that this approach can achieve a Hit@1 of
11.5% and a Hit@5 of 19.5%.

4.3 Evaluation metrics

We employed the same evaluation metrics as
in related studies, i.e., the Hit Ratio, to evaluate
the performance of different method renaming ap-
proaches (Yu et al., 2012; Liu K et al., 2019). Specif-
ically, the Hit Ratio is calculated as follows:

Hit Ratio =
No. of correctly recommended names

No. of all method names
.

(8)
In this study, the recommended size k ranges

from 1 to 5. We use Hit@k to demonstrate the Hit
Ratio when recommending k results. For example,
Hit@1 means the Hit Ratio when recommending one
new method name.

5 Experimental results

In this section, we illustrate the detailed exper-
imental results for the established RQs to show the
effectiveness of our proposed approach.

5.1 Investigation of RQ1

RQ1: What is the impact of weight α adjust-
ing noun-tokens and verb-tokens on generating and
recommending new method names?

Fig. 5 shows the boxplot of the Hit@5 achieved
by our approach in all projects, with the weight α

varying from 0.1 to 0.9. From this figure, we can
see that the weight α did not significantly impact
the performance of our approach on the whole. This
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means that our approach was insensitive to the value
of the weightα. When α was equal to 0.5, the median
Hit@5 in all projects was slightly better than the
other values of α. For example, when α equaled
0.5, the median Hit@5 for all projects was 34.73%,
which is better than those at other α values, varying
from 33.81% to 34.56%. In other words, giving noun-
tokens and verb-tokens the same weight (i.e., 0.5) is
reasonable. Hence, in the following RQs, we set the
weight α to 0.5 by default.
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α
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Fig. 5 The results of our approach when adjusting
the weight α

Conclusion of RQ1 Our approach is insensitive
to the weight α. When it is set to 0.5, our approach
achieves the best results.

5.2 Investigation of RQ2

RQ2: Does combining the structural analysis
and lexical analysis achieve better performance?

Fig. 6 shows the comparison results of our ap-
proach against its two variants. We can see that
there were upward trends with the increase of k for
our approach and its two variants. For example, Str
achieved a Hit@1 of 2.18%. When k increased to 5,
Str achieved a Hit@5 of 5.22%.

Our approach achieved obviously better results
than both of its variants. For example, our ap-
proach achieved a Hit@1 of 23.67%, while Str and
Lex achieved only a Hit@1 of 2.18% and 8.13%,
respectively. When k was equal to 5, the dispar-
ity between our approach and its variants was even
larger. For instance, our approach achieved a Hit@5
of 33.62%. In contrast, Str and Lex achieved only a
Hit@5 of 5.22% and 10.44%, respectively.
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Fig. 6 The comparison results of our approach and
its two variants
Str stands for the variant that employs only structural anal-
ysis in our approach. Lex is the variant that employs only
lexical analysis. Ours shows our approach using both struc-
tural analysis and lexical analysis

The reason why our approach can achieve bet-
ter results than its two variants may be that we
conducted an empirical study to explore the compo-
sition of method names from the perspective of PoS.
The empirical results show that most of the method
names consist of both noun-tokens and verb-tokens.
Based on these empirical results, we have designed a
new method name generation and recommendation
algorithm. Hence, our approach is superior to its two
variants.
Conclusion of RQ2 When combining the two
phases, our approach achieves better results than its
two variants.

5.3 Investigation of RQ3

RQ3: Is the renaming generation and recom-
mendation phase effective in our approach?

We have designed a dynamic method generation
and recommendation phase in our approach that can
decide the final styles for the new method names
based on their original styles. To validate the ef-
fectiveness of this phase, we compared it with two
single styles, i.e., camel case and underscore. Fig. 7
shows the comparison results of our approach with
the default phase and the two single styles. We can
see similar and obvious upward trends with the in-
crease of k for our approach with different method
name formatting styles.

Ours achieved the best results compared to Un-
der and Camel. For example, using the under-
score style as the formatting style for new method
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names, Under achieved only a Hit@1 of 8.13%,
whereas Camel achieved a Hit@1 of 21.00%. In
contrast, Ours, leveraging the dynamic formatting
style, achieved a Hit@1 of 23.67% under the same
conditions. This means that although the constitu-
tive terms of method names were changed during the
evolution of software projects, the formatting styles
of method names remained unchanged.
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Fig. 7 The comparison results of our approach with
the default phase and the two single styles
Under stands for our approach with the underscore style for
formatting new method names. Camel is our approach with
the camel case as the method name formatting style. Ours
shows our approach with the default dynamic phase

Conclusion of RQ3 The renaming generation and
recommendation phase that leverages the dynamic
formatting style is effective in our approach.

5.4 Investigation of RQ4

RQ4: To what extent is our approach supe-
rior to the baseline approaches in suggesting method
names?

Fig. 8 shows the comparison results of our ap-
proach against the baseline approaches proposed by
Allamanis et al. (2016) and Liu K et al. (2019). Alla-
manis et al. (2016) introduced two sub-models (here-
inafter referred to as conv and copy in Fig. 8) to
suggest method names for a given method. From
Fig. 8, we can see that our approach achieved much
better results than both of the two sub-models in-
troduced by Allamanis et al. (2016). For example,
the best score of two sub-models was only 0.57% in
terms of the Hit@1. In contrast, our approach can
achieve a Hit@1 of 23.67%. When k increased to 5,
our approach achieved a Hit@5 of 33.62%, whereas
the best result of the two sub-models was 1.44%.

Our approach performed much better than the base-
line approach proposed by Allamanis et al. (2016) by
23.10% in terms of the Hit@1 and 32.18% in terms of
the Hit@5. In summary, our approach achieved sig-
nificantly better results than the approach proposed
by Allamanis et al. (2016).
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Fig. 8 The comparison results of our approach and
baselines

Liu K et al. (2019) proposed four strategies (re-
ferred to as s1, s2, s3, and s4 in Fig. 8) to gener-
ate four recommendation lists of new method names.
From Fig. 8, we can see that our approach achieved
better results than all these four strategies. For ex-
ample, our approach achieved a Hit@1 of 23.67%,
whereas the strategy that performed the best among
the four strategies in Liu K et al. (2019) achieved
only a Hit@1 of 11.50%. When k increased to 5,
our approach achieved a Hit@5 of 33.62%. In con-
trast, the best result achieved by the four strategies
in Liu K et al. (2019) was only 19.50% under the
same conditions. This means that our approach out-
performed the baseline approach proposed by Liu K
et al. (2019) by 14.12% in terms of Hit@5.

Recommending the same target method names
is a very difficult research task, because the proposed
approach should not only correctly generate all the
constitutive terms for the correct method names, but
also combine them in the correct sequence. In addi-
tion, the proposed approach should employ the cor-
rect formatting style when combining constitutive
terms. Hence, even though our approach is superior
to the state-of-the-art baseline approaches in terms
of the Hit Ratio, our approach can achieve only an
absolute Hit Ratio value of up to 33.62% when rec-
ommending five results. Recommending exactly the
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same method name may be too strict. Hence, we
changed the definition of the Hit Ratio and divided
it into two types. The first type of Hit Ratio follows
its original definition as shown in Eq. (8), We call
this the Full Hit Ratio. In the second type of Hit
Ratio, if the stemmed constitutive terms of the rec-
ommended new method name and the target method
name are the same, we regard it as a Hit. We call
this type a Part Hit Ratio. The Part Hit Ratio can
also help developers generate exactly correct method
names to a large extent.

Fig. 9 shows the results of the Full and Part Hit
Ratios of our approach. The Part Hit Ratio achieved
by our approach was better than the Full Hit Ratio,
because the Part Hit Ratio is less strict than the Full
Hit Ratio. For example, our approach achieved a
Part Hit@1 of 26.94%, and achieved a Full Hit@1
of 23.67%. When k increased to 5, our approach
achieved a Part Hit@5 of 37.14%. In contrast, our
approach achieved a Full Hit@5 of 33.62%.
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Fig. 9 The results of Full and Part Hit Ratios achieved
by our approach
Full stands for the Full Hit Ratio and Part stands for the
Part Hit Ratio

Conclusion of RQ4 Our approach is superior to
the state-of-the-art baseline approaches in terms of
the Hit Ratio.

5.5 Investigation of RQ5

RQ5: To what extent can the suggested
method names generated by our approach benefit
developers?

Table 2 shows the distribution of the grading
scores for portability and consistency. As mentioned
above, the grading score ranges from 0 to 10, with a

larger grading score standing for a higher portability
or consistency. We can see that more than a half
of the scores were 10 for portability and consistency.
For example, the score of 10 accounted for the largest
percentage at 51.18% for portability and 53.08% for
consistency. The scores of 4 and 0 accounted for
the lowest percentage at 0.95% for portability and
0.00% for consistency. The sum percentage of those
scores of 5 and greater was 88.63% for portability and
93.85% for consistency, which means that most of the
method names suggested by our approach can be eas-
ily adapted to the correct target method names by
developers and that these suggested method names
were consistent with their method bodies. Hence, we
think that the method names suggested by our ap-
proach can ease the workload of developers in prac-
tice, especially for developers who are new, inexperi-
enced, or unfamiliar with the source code.

Table 2 The annotation results of sampled methods
in terms of portability and consistency

Score
Portability Consistency

Number Percentage Number Percentage

0 9 4.26% 0 0.00%
1 3 1.42% 4 1.89%
2 3 1.42% 3 1.42%
3 7 3.32% 4 1.89%
4 2 0.95% 2 0.95%
5 25 11.85% 7 3.32%
6 23 10.90% 22 10.43%
7 9 4.27% 20 9.48%
8 17 8.06% 14 6.64%
9 5 2.37% 23 10.90%
10 108 51.18% 112 53.08%

Conclusion of RQ5 Most of the portability
and consistency scores of suggested method names
are relatively high, which means that the suggested
method names can benefit developers.

6 Threats to validity

In this section, we discuss the threats to validity,
both internal and external.

6.1 Threats to internal validity

One threat to internal validity is the limitation
of parsing method names, because the composition
of method names is very complex and some of them
do not follow the naming convention. It is challeng-
ing to propose a uniform model to parse all kinds
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of method names. This threat could be reduced
by developing more advanced method name pars-
ing tools with natural language processing. Another
threat to internal validity is the test data, because
the test data method names must be actually fixed
to evaluate the performance of our approach. This
threat could be reduced by employing more projects
to guarantee a fixed number of method names.

6.2 Threats to external validity

A threat to external validity is the constructed
corpus, because it is impossible to ensure that all
methods in the corpus have standard and consis-
tent names. To address this threat, we selected well-
maintained open projects with a high reputation. In
the future, we will employ more corpora to validate
our approach. Another threat to external validity is
the data explosion of method body tokens, because
the longer the method bodies are, the less effective
function they represent. To address this threat, we
keep methods with at most 120 tokens. In the future,
we will consider more methods with more tokens to
validate our approach.

7 Related works

Naming or renaming in code has received a fair
amount of research attention. There have been sev-
eral studies focusing on code renaming (Butler et
al., 2010, 2011, 2013; Butler, 2012). In this section,
we roughly divide the related works into two cate-
gories, i.e., rule-based renaming and learning-based
renaming.

7.1 Rule-based renaming

Rule-based renaming approaches recognize re-
naming opportunities and suggest effective names by
enforcing formal naming convention rules (Allamanis
et al., 2014; Liu H et al., 2015; Li et al., 2021).

Caprile and Tonella (1999, 2000) proposed a
dictionary-based approach to standardize the lexi-
con of constitutive terms and the syntactic structure
of function names. The approach identifies words
that are not found in the standard dictionary but
listed in the synonym dictionary as renaming oppor-
tunities. Abebe and Tonella (2013) selected candi-
date concepts and identified relationships through
extracted ontology from the source code to gener-

ate suggested names. Corbo et al. (2007), Binkley
et al. (2011), Butler (2016), and Kim S and Kim
D (2016) identified identifier structures by check-
ing PoS rules against naming conventions. Binkley
et al. (2011) constrained PoS rules on field names.
They extracted four PoS rules for field names and
identified names that violate such rules as renaming
opportunities.

Our work was motivated by these prior stud-
ies, which use formal naming conventions and dic-
tionaries to identify renaming opportunities. The
difference is that our work focuses on programming
context data similar to the dictionary to obtain noun-
tokens in preparation for generating high-quality
method names.

7.2 Learning-based renaming

Learning-based approaches apply machine
learning techniques, e.g., the n-gram statistical lan-
guage model and CNN, to identify inconsistent
method names and suggest effective names.

The n-gram statistical language model has been
widely exploited to identify renaming opportunities
(Hindle et al., 2012; Nguyen et al., 2013; Allamanis
et al., 2014; Suzuki et al., 2014; Lin et al., 2017).
NATURALIZE (Allamanis et al., 2014) pioneered
the application of the n-gram statistical language
model to check irregularities. It identifies unnatu-
ral identifiers based on the probability distribution
of all textual tokens linearly scanned in the code
document using a moving window. Allamanis et
al. (2015, 2016) exploited a log-bi-linear neural net-
work to suggest method and class names. Liu K et
al. (2019) exploited the paragraph vector (Le and
Mikolov, 2014) and CNN (Matsugu et al., 2003) to
identify inconsistent method names and suggest bet-
ter ones. The evaluation results suggested that the
F-measure of the approach in identifying inconsistent
method names was 68%.

Our work was inspired by these prior stud-
ies that use machine learning techniques, e.g.,
Word2Vec and CNN. However, our work differs from
these studies in that our work considers the structure
of method names to obtain verb-tokens in prepara-
tion for generating high-quality method names.
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8 Conclusions and future work

Methods are the basic units of source code and
method names are the keys to the understandability
and maintenance of methods. However, giving meth-
ods appropriate names is one of the most difficult
tasks for developers. Hence, it is common to find
a lot of flawed (e.g., non-standard or inconsistent)
method names, which may lead to software defects.
To help developers eliminate flawed names, we pro-
pose a novel approach to suggest effective names for
methods using structural analysis and lexical analy-
sis. Experimental results showed that our approach
significantly outperforms the state-of-the-art base-
line approaches in terms of the Hit Ratio.

For future work, we have the following direc-
tions. First, we plan to validate our approach in
more corpora to generalize its performance. Sec-
ond, we plan to extend our approach to recommend
new names for all the identifier categories, including
methods, types, and fields. Third, we plan to build
an automatic tool that encapsulates our approach to
help developers rename methods.
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Appendix: Experimental setup

The data collection and default parameter set-
tings are detailed in this appendix.

1. Data collection

In this subsection, we describe the detailed pro-
cedures for collecting the experimental data used
in this study. In the literature, no one has pro-
vided an open benchmark dataset for the method
renaming research task. Consequently, we con-
structed our own dataset and have opened it to
the public (https://github.com/Luojpljp/Method-
Renaming), with the hope of helping other re-
searchers handle the same research task.

Specifically, we constructed this dataset follow-
ing a series of procedures. First, we considered and
selected a collection of open-source projects and re-
garded them as the target projects. We collected
target projects from four high-quality communities,
Apache, Google, Spring, and Hibernate, because
they are relatively mature and many users and de-
velopers are using projects in these communities.
For each community, we downloaded the top-10 Java
projects.

Then, for each collected Java project, we parsed
the commit history of each project to check whether
there was a method name that had been changed us-
ing the git command, i.e., “git log -L,” whose output
is the trace result. If the size of the trace result was
greater than one, the name of a specific method had
been changed in at least one commit in history, and
we kept it in the final testing dataset. Finally, 2111
methods remained in the benchmark testing dataset.
For each method in the testing dataset, we needed
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to return it to its historical version and regarded
the historical version as the testing method. In this
way, we could know the exact target new method
names and better evaluate different approaches. We
returned the testing methods to their historical ver-
sion using the git command “git reset -hard.” The
historical version of these 2111 testing methods was
used as the testing benchmark dataset.

Based on the collected benchmark dataset, we
explored the potential reasons for method renam-
ing. We first sampled one tenth of the methods
from this dataset, i.e., 211 methods. By investigating
their change history and the corresponding program-
ming context, we manually generated the reasons for
method renaming and further merged similar ones.
Finally, as shown in Table A1, we summarized four
reasons for method renaming, i.e., correcting func-
tion inconsistency (referred to as function inconsis-
tency in Table A1), correcting object inconsistency
(referred to as object inconsistency in Table A1),
correcting programming specification inconsistency
(referred to as PS inconsistency in Table A1), and
correcting spelling mistakes (referred to as spelling
mistakes in Table A1). Correcting function incon-
sistency means that the renaming was designed to
modify the verb of the method name; e.g., the orig-
inal method name was removeConfigurers, whereas
the modified method name was changed to getCon-
figurers. Correcting object inconsistency means that
the object of the method was changed in method
renaming; e.g., the original method name was ge-
tUserBase, whereas the modified name was getRole-
Base. Correcting programming specification incon-
sistency means making the method name consistent
with the Java programming specification, and cor-
recting spelling mistakes means that developers cor-
rect the accidentally written wrong word in method
names.

We also calculated the percentage of each reason
in the sample methods shown in Table A1. Correct-
ing object inconsistency accounted for the largest
proportion, i.e., 74.88%. The next largest propor-
tion was correcting function inconsistency, which ac-
counted for 18.01%. Correcting programming speci-
fication inconsistency accounted for 5.21%, and cor-
recting spelling mistakes accounted for only 1.90%.
This means that most method names were renamed
because of correcting function inconsistency and cor-
recting object inconsistency, which accounted for

92.89% in total.

Table A1 The reasons for method renaming

Classification Exact number Percentage (%)

Function inconsistency 38 18.01
Object inconsistency 158 74.88
PS inconsistency 11 5.21
Spelling mistakes 4 1.90

The methods not in the testing benchmark
dataset in the selected projects were used to con-
struct a large method corpus to facilitate new
method name generation. For the remaining meth-
ods that were not in the testing dataset, we filtered
out some of them based on method types. Specifi-
cally, we removed main methods, constructor meth-
ods, and empty methods without method body im-
plementation, because they have less effect on pro-
gram functionality and their method names seldom
need to be changed. As a result, 104 107 methods
were collected.

To avoid the reduction in the intelligibility of
methods and the explosion of code tokens, we further
limited the number of constitutive terms of method
names (method name length) and the number of to-
kens in the method body (method body size). For
each remaining method, we calculated the length of
its name and the size of its body. Fig. A1 shows
the boxplot of the size distribution of method bodies
and the method name length for all the remaining
methods. The method name length ranged from 1
to 9, while the method body size ranged from 2 to
1362. A total of 103 301 method names had fewer
than 6 terms and 100 678 methods had fewer than
120 tokens. As a result, we kept only those methods
whose name length was no more than 6 and whose
method body size was no more than 120 tokens. Fi-
nally, 90 824 methods remained in the large method
corpus.

2. Default parameters

As mentioned above, Word2Vec and CNN were
used in our approach, and their parameters needed
to be configured. In our approach, all the parameters
for these two techniques were configured according
to the parameter settings proposed by Kim Y (2014)
and Liu K et al. (2021), because these approaches
have been shown to achieve promising results. This
means that the parameter settings were the same as
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Fig. A1 The size distribution of method bodies and
the length of method names

in Kim Y (2014) and Liu K et al. (2021). Tables A2
and A3 show the parameter settings in Word2Vec
and CNN, respectively. For example, the size of the
vector and the learning rate were set to 300 and
0.025, respectively, in Word2Vec. The activation of

the output layer was set as softmax in CNN. In ad-
dition, both techniques were implemented with the
open DL4J library (https://deeplearning4j.org/).

Table A2 Parameter settings of Word2Vec

Parameter Value Parameter Value

Vector size 300 Window size 2
Mid word frequency 1 Learning rate 0.025

Table A3 Parameter settings of CNN

Parameter Value

Learning rate 1× 10−2

Number of nodes in the 1000
hidden layer

Pooling type Max pool
Activation (other layers) ReLU
Activation (output layer) Softmax
Loss function Mean absolute error
Optimization algorithm Stochastic gradient descent
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