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Abstract: In fifth-generation wireless communication system (5G), more connections are built between metaheuristics and
electromagnetic equipment design. In this paper, we propose a self-adaptive grey wolf optimizer (SAGWO) combined with a
novel optimization model of a 5G frequency selection surface (FSS) based on FSS unit nodes. SAGWO includes three
improvement strategies, improving the initial distribution, increasing the randomness, and enhancing the local search, to
accelerate the convergence and effectively avoid local optima. In benchmark tests, the proposed optimizer performs better than
the five other optimization algorithms: original grey wolf optimizer (GWO), genetic algorithm (GA), particle swarm optimizer
(PSO), improved grey wolf optimizer (IGWO), and selective opposition based grey wolf optimization (SOGWO). Due to its
global searchability, SAGWO is suitable for solving the optimization problem of a 5G FSS that has a large design space. The
combination of SAGWO and the new FSS optimization model can automatically obtain the shape of the FSS unit with
electromagnetic interference shielding capability at the center operating frequency. To verify the performance of the proposed
method, a double-layer ring FSS is designed with the purpose of providing electromagnetic interference shielding features at
28 GHz. The results show that the optimized FSS has better electromagnetic interference shielding at the center frequency and
has higher angular stability. Finally, a sample of the optimized FSS is fabricated and tested.

Key words: Grey wolf optimizer; Fifth-generation wireless communication system (5G); Frequency selection surface; Shape
optimization
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1 Introduction

Nature-inspired optimization techniques have
made significant progress since they emerged in recent
decades. They have a remarkable ability to solve

nonconvex and multi-dimensional problems in engi‐
neering and science. The prevalent nature-inspired
algorithms can be divided into three categories: evo‐
lutionary algorithms (EAs) (Carrasco et al., 2020),
physics-based algorithms (An et al., 2015), and swarm
intelligence (SI) based algorithms (Phan et al., 2020).
Different natural phenomena inspire the design of the
three types of algorithms. The grey wolf optimizer
(GWO) is an SI optimization algorithm proposed by
Mirjalili et al. (2014). It imitates the social behavior
and hunting mechanism of grey wolves and learns
from their intelligent approach to search for prey.
GWO is a flexible and straightforward algorithm like
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other well-known population-based algorithms such
as particle swarm optimizer (PSO) (Gutiérrez et al.,
2011), monarch butterfly optimization (MBO) (Wang
et al., 2019), differential evolution (DE) (Zou et al.,
2011), moth search algorithm (MSA) (Wang, 2018),
dragonfly algorithm (DA) (Mirjalili, 2016), glowworm
swarm optimization (GSO) (Aljarah and Ludwig,
2013), colony predation algorithm (CPA) (Tu et al.,
2021), and Harris hawks optimization (HHO) (Heidari
et al., 2019). In GWO, wolves can share information
about the search space to find the best solution and
avoid local optima. GWO has fewer operators com‐
pared to other evolutionary techniques and uses fewer
parameters to explore the search space. Therefore, it
can reduce computational cost for a given optimiza‐
tion problem. Because of these advantages, GWO has
been applied to several fields and has shown favor‐
able optimization results. For example, it has been
successfully used in photovoltaic systems (Mohanty
et al., 2016), interconnected power systems (Shakarami
and Davoudkhani, 2016), medical diagnosis (Li Q
et al., 2017), welding industry, water resource optimi‐
zation (Dehghani et al., 2019; Donyaii et al., 2020),
antenna arrays (Khan et al., 2018), and truck schedul‐
ing problems (Peng and Zhou, 2019).

In GWO, the search process, guided by three
best wolves, can achieve a high convergence speed.
However, this model impedes global exploration.
GWO still suffers from the stagnation of local op‐
tima. Therefore, many researchers have modified
GWO to better balance exploitation and exploration.
For example, Cai et al. (2019) proposed an improved
GWO, combined with a kernel extreme learning ma‐
chine, to provide better optimization results. Hu et al.
(2021) developed a GWO variant enhanced with a
covariance matrix adaptation evolution strategy, Levy
flight mechanism, and orthogonal learning. Yu et al.
(2022) proposed a multi-stage GWO that optimizes
GWO in three steps. The multi-stage GWO can better
avoid local optimum trap than GWO. Gupta and Deep
(2019) proposed a novel random walk to improve
searchability. The novel GWO is efficient and reliable
for real-life optimization problems. To exploit the
potential of GWO, we propose a self-adaptive grey
wolf optimizer (SAGWO), which includes three im‐
provement strategies: (1) improving the initial distri‐
bution, (2) increasing the randomness, and (3) enhanc‐
ing the local search. The aim of improving the initial

distribution strategy is to acquire a better primary
population. Improving the randomness strategy changes
the hunting behavior and convergence steps to improve
searchability. Three methods of changing convergence
steps have been studied to determine the most appro‐
priate SAGWO. Enhancing the local search strategy
is used in the last stage of the algorithm to maximize
exploitation.

The structural optimization problems of electro‐
magnetic communication equipment, e.g., antennas and
frequency selection surface (FSS), are usually diffi‐
cult to solve with traditional gradient-based methods,
since it is difficult to obtain the derivative between
the objective function and the design variables. There‐
fore, researchers use non-gradient optimization meth‐
ods (e.g., GWO) to solve such problems. Boursianis
et al. (2019) incorporated GWO into a dual-band
E-shaped patch antenna design. Goudos et al. (2019)
combined the Jaya optimization algorithm and GWO
to optimize a fifth-generation wireless communication
system (5G) E-shaped patch antenna. Saxena and
Kothari (2016) compared GWO with other meta-
heuristic algorithms to design array antennas. Results
showed that GWO can provide considerable enhance‐
ments. Liu et al. (2020) proposed a dynamic coopera‐
tive GWO and used it in array antenna design. In this
study, the proposed SAGWO, with intensified global
searchability, is adapted to electromagnetic equipment
optimization to design a new type of electromagnetic
equipment, 5G FSS.

5G FSS is used for electromagnetic interference
(EMI) shielding in the micro/millimeter-wave band
due to its bandpass and bandstop characteristics
(Li D et al., 2017, 2018; Paul et al., 2021). In most
cases, FSS is an array structure composed of a series
of periodically arranged passive resonant units, which
have selective permeability to electromagnetic waves
in different frequency bands. FSS has many advan‐
tages such as small volume, convenient design, and
simple manufacturing operation due to its special
structure. The work function of FSS is determined by
the structure and configuration of the units (Parker
et al., 2001). Therefore, traditional FSS optimization
can be regarded as a multi-parameter optimization
problem of FSS units, and is solved mostly by common
meta-heuristic algorithms such as the genetic algorithm
(GA) (Villegas et al., 2004; Ge et al., 2007; Creve‐
coeur et al., 2010) and PSO (Genovesi et al., 2006).
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As a novel meta-heuristic method, our proposed
SAGWO has great potential to solve the FSS opti‐
mization problem. In this study, we solve the FSS
optimization problem based on the following three
aspects: First, a novel FSS optimization model is
proposed based on unit nodes; Second, SAGWO is
introduced into the FSS design process to design a
double-layer ring FSS that works at 28 GHz; Finally,
a sample of optimized FSS is fabricated and tested to
verify the validity of the novel method.

2 Grey wolf optimizer

GWO manifests the behaviors of grey wolves,
including their social hierarchy, encircling, hunting,
attacking, and searching for prey. In this section, these
five steps of GWO are introduced.

1. Social hierarchy
In the wolf society, all individuals can be cate‐

gorized into four types, α, β, δ, and ω, according to
their status. The mathematical description of different
roles is that the three individuals with the best solu‐
tions in the last iteration are treated as belonging to
α, β, and δ categories, and all the remaining solutions
are regarded as ω. The subsequent process preserves
these categories.

2. Encircling prey
To describe the step of encircling prey, the fol‐

lowing equations are used:

D = |C*Xp(t ) - X (t ) | , (1)

X (t + 1) = Xp(t ) - A*D, (2)

where t and t+1 represent two adjacent iterations, “*”
is the Hadamard product operator, Xp represents the
position vector of the prey, X indicates the position
vector of a grey wolf, and | · | is the absolute value
operator. A and C are coefficient vectors. The decreased
distances between the wolves and their prey depend
on vectors A and D. Vectors A and C are calculated
as follows:

A = 2a*r1 - a, (3)

C = 2r2, (4)

where a is a vector whose elements linearly decrease
from 2 to 0 throughout the iteration, and r1 and r2 are
the vectors whose elements are ranged in [0, 1].

3. Hunting
In the hunting stage, wolves find the location of

the prey and then encircle the prey according to α, β,
and δ. The mathematical equations that simulate the
hunting process from t to t+1 generation are given by
Eqs. (5)‒(7):

ì

í

î

ï
ïï
ï

ï
ïï
ï

Dα = ||C1*Xα( )t - X ( )t ,

Dβ = ||C2*Xβ( )t - X ( )t ,

Dδ = ||C3*Xδ( )t - X ( )t ,

(5)
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X1 = Xα - A1*Dα,

X2 = Xβ - A2*Dβ,

X3 = Xδ - A3*Dδ,

(6)

X (t + 1) =
1
3

( X1 + X2 + X3 ). (7)

After the positions of all wolves are updated
based on the above equations, they are sorted by the
fitness calculated from the objective function. Then
the three wolves with the best results are set as α, β,
and δ, separately.

4. Attacking prey
A is in the range of [-a, a] and changes with a

whose elements decrease from 2 to 0 during the search
process. This simulates the behaviors of wolves closing
in and attacking prey. When the absolute values of all
the elements of A are less than 1, grey wolves actively
approach their prey and prepare for the final attack.

5. Searching for prey
The search efficiency of GWO is affected by α,

β, and δ. When |A|⩾1 (i.e., the absolute values of all

the elements of A are not less than 1), wolves tend to
search for better prey in the search space. This situa‐
tion occurs more frequently in the early development
phase of the algorithm. C, a random vector whose ele‐
ments are in the range of [0, 2], is another critical pa‐
rameter for global search. It offers random weights
for exploration and alleviates the local optimum prob‐
lem. Fig. 1 is an illustration of the original GWO in a
two-dimensional (2D) situation.

3 Self-adaptive grey wolf optimizer

GWO is a direct and valid swarm intelligence
algorithm. GWO needs only to determine the popula‐
tion size and the maximum number of iterations before
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solving an engineering problem. Compared with other
swarm intelligence algorithms, GWO requests fewer
parameters in the whole search process and has a
more straightforward implementation.

However, experimental analysis shows that GWO
is prone to local optima in some cases due to the in‐
sufficient exploration ability of grey wolves. In uni‐
modal tests, the increase in dimensionality slows down
the convergence of GWO. Avoiding local optima and
accelerating convergence are two research priorities
for GWO. Hence, in this study, we propose three im‐
provement strategies to enhance the explorative ability
of GWO. Fig. 2 shows the three strategies: Fig. 2a

shows the improvement of the initial distribution strat‐

egy, Fig. 2b shows the improvement of the random‐

ness strategy, and Fig. 2c shows the improvement of

the local search strategy. The novel GWO is self-

adaptive; it can change its parameters in response to

different situations. Therefore, we call it SAGWO.

3.1 Improved initial distribution

The initial population, especially the positions

of the three leaders, has an obvious influence on the

early exploration of GWO. If, by coincidence, the

leaders enter a local optimal solution at the begin‐

ning of the algorithm, they may fail to update in sub‐

sequent iterations. This will affect the efficiency of the

entire optimization process and the accuracy of the

final result. An improved initial distribution strategy

based on the Euclidean distance is introduced at the

early stage of the algorithm to avoid this problem. The

idea of this method is to disperse α, β, and δ properly

so that the algorithm has better performance during

initialization. After randomly obtaining the initial

population, the algorithm calculates the Euclidean

distance Ep between α and the remaining individuals

by Eq. (8):
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Fig. 2 Three improvement strategies for SAGWO: (a) improvement of the initial distribution strategy; (b) improvement
of the randomness strategy; (c) improvement of the local search strategy
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Fig. 1 Illustration of the grey wolf optimizer (GWO)
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Ep = ∑
i = 1

n ( )xpi - xαi

2

, (8)

where n represents the dimension of the problem, Ep

is a limit value to judge whether α, β, and δ cluster,
and the value of Ep is determined by the specific opti‐
mization problem. xpi is the ith position variable of the
prey, and xai is the ith position variable of the leader
wolf. In the examples, one-tenth of the maximum Eu‐
clidean distance between the upper and lower limits
is used as the limit value, as shown in Eq. (9):

EL =
1

10 ∑i = 1

n

( )Ui - Li

2
, (9)

where U= (U1, U2, … , Un) is the upper limit and L=
(L1, L2, …, Ln) is the lower limit.

If an individual’s Euclidean distance is less than
the default limit value EL, the individual is moved in
the following way:

X (t + 1) = U + L -
1
2

X (t ) . (10)

Eq. (10) disperses the initial population and
avoids α, β, and δ all falling into the same local opti‐
mum. Simultaneously, the moved β and δ are closer
to the boundary of the search range, which enhances
the algorithm’s ability to search at the boundary. A
2D schematic is shown in Fig. 2a.

3.2 Increased randomness

Appropriately increasing the randomness of algo‐
rithm iteration is an effective method for enhancing
the exploration of the algorithm and avoiding local
optima. In the original GWO design, C is a random
variable throughout the process, which imitates the nat‐
ural environment’s influence on the hunting of wolves.
Although C provides randomness that emphasizes
GWO exploration, the evolutionary direction of GWO
still constantly approaches the direction of the prey
indicated by the leaders, lacking the ability to break
out of this trend.

The proposed increased randomness strategy
consists of anti-study and random step size. Anti-study
provides the ability to eliminate the leaders’ control, and
wolves can reverse movement during the algorithm

convergence process. The random step size strategy
changes the linear step size a, mentioned in Section 2.2,
to non-linear. Fig. 2b is an illustration of the increased
randomness method.

The proposed anti-study strategy offers the re‐
verse movement in the agent moving process. Even
if the leaders fall into local optima, reverse move‐
ment can provide the ability to search for better re‐
sults again. The specific steps are given in Eq. (11).
When the individual updates its position, it is likely
to move in the opposite direction to the current poten‐
tial prey. The optimization situation at that time adjusts
the probability of the occurrence of reverse movement.
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X ( )t + 1 =
1
3

( X1 + X2 + X3 ), r3 ⩾ P,

X ( )t + 1 = -
1
3

( X1 + X2 + X3 ), r3 < P,
(11)

P = 0.5 + PA, (12)

where r3 is a random parameter in the range of [0, 1],
and P is the probability of reverse movement. The
initial value of PA is 0, and equals 0.2 when α is stag‐
nant during the exploration phase. This improves the
algorithm’s ability to break out of local optima.

The convergence process of the algorithm is
driven by linear step size a. In GWO, the elements of a
linearly decrease from 2 to 0. At the early stage of the
algorithm, when the elements of a are close to 2, the
algorithm has a larger step size to increase explora‐
tion. When the elements of a decrease to 0, a smaller
step size tends to emphasize exploitation. However,
the linear reduction step size is not required when
dealing with practical problems. Adding randomness
to the reduction parameter a can cooperate with anti-
study to mitigate the local optima. Three types of
functions have been studied to determine the most
appropriate random a strategy:

as =

ì

í

î

ï
ïï
ï

ï
ïï
ï

a sin x, x ∈ ( )0, π ,

a cos x, x ∈ ( )0, π ,

a
1

1 + e-x
, x ∈ ( )-10, 10 .

(13)

Eq. (13) shows three introduced functions. The
parameter a reduction process is transformed into a
non-linear form as. Parameter x is a random variable.
Subsequently, as is used in SAGWO:
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As = 2as*r1 - as, (14)

X1 = Xα - As*Dα. (15)

In Section 5.2, three types of as are tested by 15
benchmark functions.

3.3 Enhanced local search

Based on the “no free lunch theorem,” no
metaheuristic can solve all types of problems. GWO,
with an increased randomness strategy, emphasizes
exploitation, but partly sacrifices the performance of
exploration.

To balance the exploitation and exploration of
SAGWO, we propose an enhanced local search strategy
in the final stage of the algorithm. This strategy
causes each individual to be calculated twice within
an iteration, using Eqs. (14) and (15) and Eqs. (5)
and (6). Adding an extra calculation takes the original
GWO back to the search process so that each indi‐
vidual has two iteration results. One result is from
the traditional part, and the other is from the novel
part. Only a better result can be formed in the next
population (Fig. 2c). This method can counteract the
negative effect of an increased randomness strategy
and improve the accuracy of local exploitation.

GWO requires a small number of search indivi‑
duals to complete the optimization, which improves
the algorithm’s efficiency. The repeated calculation
increases the overall computation time, but it is con‐
trolled by a and performes only when the elements

of a are less than 0.5. So, extra computation time

generated by the novel algorithm is controllable.

Combined with the increased randomness strategy,

SAGWO has a better overall performance. The im‐

plementation of SAGWO is depicted in Fig. 3.

3.4 Time complexity analysis

Time complexity of the proposed SAGWO is

determined by eight steps: (1) initialization, (2) fitness

evaluation, (3) sorting, (4) parameter a updating,

(5) position updating, (6) improving the initial distri‐

bution, (7) enhancing the randomness distribution,

and (8) increasing the local search. The fitness eval‐

uation needs to be calculated in combination with

specific problems, so the subsequent analysis focuses

on other steps. The time complexity of both initializa‐

tion and position updating is O(ND), where N is the

number of individuals and D is the dimension of the

objective function. The time complexity of parameter

a updating is O(1). The time complexity of sorting is

O(NlogN). Among the three improved strategies in

SAGWO, the amount of calculations for improving

the initial distribution is very small and can be ignored.

The time complexity of enhancing the randomness

distribution is O(3N). In the final stage of SAGWO,

the additional time spent on enhancing the local search

strategy is O(0.25N). Therefore, the total complexity of

SAGWO is O[T(1+N(D+logN+3.25))+ND], where the

maximum number of evaluations is T.
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Fig. 3 Flowchart of the SAGWO algorithm (The three strategies are highlighted in red, blue, and green. References to
color refer to the online version of this figure)
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4 FSS unit optimization model

Traditionally, the geometric size of an FSS unit
structure is considered an optimization variable in a
swarm intelligence algorithm. Traditional methods are
simple and efficient in the FSS optimization process,
but do not make full use of the searchability advantages
of the intelligent optimization algorithm. In most FSS
optimizations, the unit shape is limited by the traditional
variable types, making it difficult to change greatly. To
fully exploit the ability of SAGWO optimization, we
propose a coordinated unit deformation method that
uses the node coordinates of the unit structure as vari‐
ables. The novel model has a larger design space, which
is suitable for SAGWO global searchability. Fig. 4
illustrates the eight-node FSS unit modeling method.
The method consists of the following three steps:

1. Determine the constituent unit nodes. Ana‐
lyze the unit’s basic structure, mark the nodes on
their outline, and number each node in counterclock‐
wise order. Since FSS units are mostly centrally sym‐
metrical, we establish a polar coordinate system that
uses the centroid as the midpoint to record the relative

position information of each node. The location of
each node is determined by the azimuth θ and radius r.
To parameterize the expression of the unit shape, we
store all the information of the nodes in a real num‐
ber array. SAGWO changes the FSS unit by chang‐
ing the data in the array. The dimensionality of the opti‐
mization problem can be reduced by the symmetric
relationship between nodes.

2. Change the positions of the nodes in the limit‐
ed interval. When the FSS shape changes, the active
area of each node must be constrained to maintain the
unit’s stability. The size range of the FSS is restricted
to a specific design space. After the nodal variables
are constrained, the real number array of nodal infor‐
mation is transmitted to SAGWO. The nodal informa‐
tion is updated in the SAGWO iteration, and the re‐
sults are turned back to the real number array.

3. Re-establish the shape of the FSS unit accord‐
ing to the new node coordinates. According to the
nodal position information in the real number array,
the new 2D graph of the units’ shape is re-plotted.
Simultaneously, the information of the current nodes
is transmitted to step 1 for the next iteration.

Fig. 4 Illustration of the eight-node FSS unit modeling method
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The novel FSS optimization model breaks the
traditional limitation that the length of the line seg‐
ment can change only in the one-dimensional space,
and the shape of the unit changes in a certain area of
the 2D space.

The whole FSS optimization process is shown
in Fig. 5. The FSS optimization model is used at the
beginning to initialize the FSS parameter, and then is
combined with SAGWO in the iteration process
(marked in red in Fig. 5). In this case, the population
size is 20 and the maximum number of iterations is
50. The dimension of the optimization problem is
equal to twice the number of nodes that need to be
optimized.

The electromagnetic simulation is performed by
the commercial electromagnetic simulation software
High-Frequency Structure Simulator (HFSS). After
the simulation, HFSS returns the imaginary transmis‐
sion coefficient S21, which is the ratio of the input
power to the output power. This is used to judge the
ability of FSS to transmit electromagnetic waves of
various frequencies. Using our proposed method, the
optimization should reduce the S21 of FSS in the
working frequency band. Therefore, the fitness func‐
tion can be set according to Eq. (16), which trans‐
forms imaginary S21 into a real number:

score = 20lg | S21 |. (16)

In SAGWO, the three FSS unit structures with
the smallest S21 values are used for leaders.

5 Numerical results

5.1 Benchmarks

Fifteen common benchmark functions were used
to test the performance of SAGWO, among which
formulae 1‒5 are unimodal benchmark functions,
formulae 6‒10 are multimodal benchmark functions,
and formulae 11‒15 are fixed-dimension multimodal
benchmark functions. Detailed expression of the
15 functions is given in Table S1, and the 2D graphic
is depicted in Fig. S1.

5.2 Performance of GWO with different increased
randomness strategies

We introduced three GWOs with different in‐
creased randomness strategies: Sin-GWO, Cos-GWO,
and Ex-GWO. None of them include the strategy
described in Section 3.3, so this test is able to reflect
the difference between the three random a strategies.
Benchmark functions were used to test three algo‐
rithms (Table S1) to select an optimal one. In this
subsection, the population size for each algorithm
was set to 50, and the maximum number of itera‐
tions was 500. To obtain statistical results, each algo‐
rithm was independently calculated 30 times, and
the average value was obtained. Tables S2‒S4 show
the results of these three algorithms.

According to Tables S2‒S4, Ex-GWO had the
lowest value in 10 benchmarks (f1, f3, f4, f5, f7, f8, f9,
f13, f14, and f15), and showed the best performance.
These three algorithms gave similar results for the
other benchmarks.

Table 1 shows the Wilcoxon sign rank test re‐
sults of these three algorithms, which can test the sig‐
nificance of differences. In pairwise comparisons of
two algorithms, +/− indicates that the first algorithm
is significantly better/worse. The ranks of mark +
are recorded in R+ , and R- is the sum of ranks of
mark − . If there is no significant difference between
the results of two algorithms, the rank is squared by
R+ and R- . “ = ” indicates no significant difference
between two algorithms. The statistical significance
value α was 0.05. The p-value was calculated using

SAGWO

Initialization of the FSS

parameter  

 

 

Simulation by HFSS

End

Start

No

Final FSS configuration

Is the

termination condition

satisfied?
 

Yes

Fig. 5 Flowchart of FSS unit optimization (References to
color refer to the online version of this figure)
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the ranksum function in Matlab. A p-value less than
α indicates a significant difference between the two
groups of data.

After comparison analysis, three conclusions
could be drawn. First, anti-study and random step
size can cooperate. Different random strategies have
different effects on the algorithm. Second, the effect
of sin and cos is the same. Third, Ex-GWO is the clear
leader in the unimodal benchmark, and the improve‐
ment of the algorithm is reflected mainly in stronger
exploration. Therefore, SAGWO was built based on
Ex-GWO and enhanced the local search strategy.

5.3 Comparison of the proposed algorithm with
other algorithms

To study the optimization performance of SAGWO,
we compared it with GWO, GA, and PSO. The
test conditions were the same as in Section 5.2. The
crossover rate of GA was 0.8, and the mutation rate
was determined by Gaussian analysis. The calcula‐
tion results of three types of benchmark functions
are recorded in Tables S5‒S7.

According to Table 2, SAGWO had the best sta‐
tistical result in 10 of 15 tests, indicating that it was
the best among the four algorithms. GWO was ranked
the second, PSO third, and GA fourth.

Table S5 shows that SAGWO had advantages in
most unimodal function tests, and that the standard

deviation was the smallest in multiple tests, showing

high stability. This demonstrates that the proposed

SAGWO has better global search ability compared to

conventional GWOs.

In the multimodal and composite function tests,

the results were similar. PSO performed best in f10

and f11, and GWO performed best in f14 and f15. GA

could not converge to the best results on any problem.

Compared to the results obtained by Ex-GWO,

SAGWO was better in the multimodal and composite

benchmarks. The partial basic GWO assists SAGWO

in achieving a better balance between exploitation

and exploration. To further explore the test results, the

Wilcoxon sign rank test was used to verify the

significant differences among the four algorithms. In

general, SAGWO showed the best optimization re‐

sults (Table 3).

Furthermore, SAGWO was compared with two

other improved GWOs: improved GWO (IGWO)

(Nadimi-Shahraki et al., 2021) and selective opposition

Table 1 Wilcoxon sign rank test on the solutions obtained by different algorithms for benchmarks in Tables S2‒S4 (α=

0.05)

Case

f1

f2

f3

f4

f5

f6

f7

f8

f9

f10

f11

f12

f13

f14

f15

+/=/−

Sin-GWO vs. Cos-GWO
R+

181
152
209
151

227.5
279

232.5
232.5
232.5
337
200

252.5
232.5
213.5
190

0/15/0

R–

284
313
256
314

237.5
186

232.5
232.5
232.5
128
265

212.5
232.5
251.5
275

p-value
2.77E-01=
1.62E-01=
8.53E-01=
2.90E-01=
9.51E-01=
2.58E-01=
1.00E+00=
1.00E+00=
1.00E+00=
1.17E-01=
5.59E-01=
2.70E-01=
1.00E+00=
4.72E-01=
6.88E-01=

Sin-GWO vs. Ex-GWO
R+

0
62
0
0

217.5
278

232.5
232.5
232.5
247
209

279.5
232.5
225

220.5
0/10/5

R–

465
403
465
465

247.5
187

232.5
232.5
232.5
218
256

185.5
232.5
240

244.5

p-value
3.02E-11−
8.20E-07−
3.02E-11−
3.02E-11−
3.29E-01=
6.79E-01=
1.00E+00=
1.00E+00=
1.00E+00=
3.85E-02−
6.60E-01=
6.90E-01=
1.00E+00=
1.00E+00=
5.31E-01=

Cos-GWO vs. Ex-GWO
R+

11
49
0
0

236.5
227

232.5
232.5
232.5
269

256.5
206

232.5
232.5
226

0/11/4

R–

454
416
465
465

228.5
238

232.5
232.5
232.5
196

208.5
259

232.5
232.5
239

p-value
2.87E-10−
1.29E-06−
3.02E-11−
3.02E-11−
3.49E-01=
7.34E-01=
1.00E+00=
1.00E+00=
1.00E+00=
3.29E-01=
9.02E-01=
5.79E-01=
1.00E+00=
5.67E-01=
8.92E-01=

Table 2 Numerical results of the rank of different algorithms

Algorithm

PSO

GA

GWO

SAGWO

Best result

4

0

3

10

Average rank

2.7

3.7

2.0

1.5

Rank

3

4

2

1
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based GWO (SOGWO) (Dhargupta et al., 2020). The
calculation results are recorded in Tables S8‒S10. Ta‐
ble 4 shows the Wilcoxon sign rank test results ob‐
tained by these two improved GWOs.

Table 4 shows that SAGWO had obvious advan‐
tages over IGWO and SOGWO in the unimodal func‐
tion tests. Only in f5, did IGWO have slightly better
results than SAGWO, but the difference was very
small. In the multimodal benchmark tests, IGWO
and SOGWO surpassed SAGWO in f10. SAGWO
obtained the best average results from f6 to f9

(Table S9). In f14 and f15, the results of SAGWO were
worse than those of the two other algorithms, but the
gap between these three was very small (Table S10).
Compared with the recently proposed improved
GWOs, SAGWO showed superior performance
under most circumstances, especially for unimodal
functions.

5.4 Comparison of the convergence speeds of
SAGWO and GWO

Fig. 6 shows the curves of SAGWO and GWO in
different benchmark optimization processes, indicating
the convergence speed of these two algorithms. In
the unimodal functions f1‒f5, SAGWO’s convergence

speed and optimization effect surpassed those of
GWO.

Table 4 Wilcoxon sign rank test of the solutions obtained by
the two improved GWOs for benchmarks in Tables S8‒S10
(α=0.05)

Case

f1

f2

f3

f4

f5

f6

f7

f8

f9

f10

f11

f12

f13

f14

f15

+/=/–

SAGWO vs. SOGWO

R+

465

465

465

465

465

245

465

465

465

35

321

228

465

0

10

9/2/3

R–

0

0

0

0

0

220

0

0

0

430

144

237

0

465

455

p-value

3.02E-11+

3.01E-11+

3.02E-11+

3.02E-11+

2.46E-11+

6.95E-01=

1.21E-12+

1.21E-12+

1.21E-12+

1.14E-04–

3.95E-03+

6.41E-01=

1.21E-12+

1.41E-11–

2.26E-10–

SAGWO vs. IGWO

R+

465

465

465

465

0

267

465

465

283

0

152

97

232.5

0

0

6/5/4

R–

0

0

0

0

465

198

0

0

182

465

313

368

232.5

465

465

p-value

3.02E-11+

3.02E-11+

3.02E-11+

3.02E-11+

2.46E-11–

8.88E-01=

1.21E-12+

7.11E-13+

5.58E-03=

3.01E-11–

1.52E-01=

5.13E-03=

1.00E+00=

9.81E-12–

4.58E-12–

Table 3 Wilcoxon sign rank test of the solutions obtained by different algorithms for benchmarks in Tables S5‒S7 (α=0.05)

Case

f1

f2

f3

f4

f5

f6

f7

f8

f9

f10

f11

f12

f13

f14

f15

+/=/–

SAGWO vs. PSO

R+

465

465

465

465

253

273

465

465

465

0

167.5

465

232.5

232

51

8/4/3

R–

0

0

0

0

212

192

0

0

0

465

297.5

0

232.5

233

414

p-value

3.02E-11+

3.02E-11+

3.02E-11+

3.02E-11+

5.62E-01=

4.29E-01=

1.21E-12+

1.21E-12+

1.18E-12+

3.01E-11–

1.76E-02–

4.17E-10+

1.00E+00=

2.53E-01=

2.76E-06–

SAGWO vs. GA

R+

465

465

465

465

259

406

465

465

465

89

310.5

455

244.5

311

338

10/4/1

R–

0

0

0

0

206

59

0

0

0

376

154.5

10

220.5

154

127

p-value

3.02E-11+

3.02E-11+

3.02E-11+

3.02E-11+

1.84E-01=

8.58E-06+

1.21E-12+

1.19E-12+

1.21E-12+

9.81E-08–

1.21E-01=

3.29E-11+

3.34E-01=

8.79E-02=

9.54E-04+

SAGWO vs. GWO

R+

465

465

465

465

8

318

436.5

465

272.5

0

260

237

232.5

184

20

7/5/3

R–

0

0

0

0

457

147

28.5

0

192.5

465

205

228

232.5

281

445

p-value

3.02E-11+

3.02E-11+

3.01E-11+

3.02E-11+

2.98E-11–

7.73E-01=

1.07E-11+

5.11E-13+

2.16E-02+

3.01E-11–

1.46E-01=

8.42E-01=

1.00E+00=

7.01E-01=

1.27E-09–
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Fig. 6 Convergence graph of benchmark functions
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SAGWO’s result of the 100th iteration was close to
the GWO’s final result (after 500 iterations). In f6 and
f10, the convergence speeds of the two algorithms
were very close. In f7‒f9, SAGWO had better perfor‐
mance. GWO surpassed SAGWO in f11 and f12. In
f13‒f15, these two algorithms had almost the same con‐
vergence speed. The first two proposed strategies
contributed to SAGWO’s higher convergence speed.

5.5 FSS unit optimization results

In this study, we presented a double-layer hexa‐
decanoic ring FSS. We optimized the shape of a regu‐
lar hexadecanoic FSS unit to give electromagnetic
shielding characteristics at 28 GHz. The shape of the
unit before optimization is shown in Fig. 7. The
width of each side of the ring was 0.3 mm, and the
width of the inner side was 1 mm from the center.
The ring was copper, and the FR4 material was used
as the substrate with a thickness of 1.5 mm.

According to the number of nodes, the nodes of
the ring unit can be divided into 16 sectors of 22.5°.
The distance between the nodes and the center should
be greater than 0.5 mm and less than 1.4 mm. The
width of the ring remained constant. The results ob‐
tained by SAGWO optimization are shown in Fig. 8,
and Table 5 shows the coordinates of nodes 1‒4.
Since the FSS unit was a centrally symmetrical graph,

the coordinates of the remaining nodes can be ob‐
tained by adding 90°, 180°, and 270° to the azimuth
angle in Table 5.

The simulation results in TE mode are shown in
Fig. 9. The original unit had a resonance point at
25.8 GHz, and S21 was -34.4 dB. S21 was -18.7 dB at
28 GHz. After optimization, the resonance point
moved to a high frequency. The optimized unit had
a resonance point at 27.8 Hz, and S21 was at least
-34.2 dB. The bandwidth below -20 dB was about
2.6 GHz (26.8‒29.4 GHz). The simulation results
showed that the electromagnetic shielding effect of
FSS near 28 GHz has been enhanced by 14.5 dB after
optimization. Fig. 9b shows the S21 curves for differ‐
ent incident angles in TE mode. As the incident an‐
gle increased, the resonance point shifted only slightly.
The 27.8 GHz resonance point moved to 27.4 GHz
when the incident angle increased to 40°, a shift of
0.4 GHz to the low frequency. Fig. 9c shows the S21

curves in TM mode. The TM mode resonance point
shifted to 27.2 GHz at an incident angle of 40°. With
an increasing incident angle, the TM mode S21 curve
shifted more than the TE mode one. The TM mode
resonance point S21 was -28.3 dB at 40°, where the
TE mode S21 was still below -30 dB. In conclusion,
the optimized FSS can achieve angle stability
around 28 GHz, but the TM mode S21 curve fluctuated
slightly. In future work, the angular stability of FSS
needs further investigation.

To verify the reliability of the novel design
method, a sample of the optimized FSS was fabricated
and measured using the free-space method. The sam‐
ple, including 50×50 units with an overall size of
20 cm×20 cm, was manufactured by the printed cir‐
cuit board technology (Fig. 10).

Fig. 11a shows the schematic of the free-space
method, and Fig. 11b shows the test instruments in a
microwave anechoic chamber. The main measuring
instruments were the Agilent E8363B vector network
analyzer and two horn antennas.

Table 5 Optimization results of ring unit nodes

Node

1

2

3

4

θ (°)

11.8

36.0

55.3

84.5

r (mm)

0.89

0.83

0.95

0.70

Fig. 8 Shape optimization results of ring units

Double layers

1.5 mm

0.3 mm

4 mm

4 mm
1 mm

1 2
3

4

5

6

7
8910

11
12

13

14

15
16

Fig. 7 Design domain of ring units
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Fig. 12 shows the S21 of the sample. The mea‐
sured resonance point appeared at 28.6 GHz, a
0.8 GHz shift compared to the simulation result. The
main reasons for this shift are the inevitable errors in
manufacturing the sample and the sensitivity of the
horn antenna when receiving high-frequency electro‐
magnetic waves. However, the measured -20 dB stop-
band was 27.6‒30 GHz, which is sufficient to meet the
actual electromagnetic shielding requirements. There‐
fore, the measurement error is acceptable, and the test
results verified the reliability and validity of the new
FSS design method.

Fig. 9 Simulation results S21 of the ring unit: (a) original and optimized results; (b) with different incident angles in TE

mode; (c) with different incident angles in TM mode

Vector network 
analyzer 

FSS

Transmitting
antenna 

Receiving
antenna 

(a)

(b)

Fig. 11 FSS measurement: (a) free-space method; (b) test
instruments

Fig. 10 FSS sample
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6 Conclusions

In this study we proposed a novel SAGWO and
applied it to the design of an 5G FSS. Before confirm‐
ing SAGWO, we proposed three randomness strategies:
Sin-GWO, Cos-GWO, and Ex-GWO. Ex-GWO was
chosen to build SAGWO since it performed the best in
10 benchmarks. Due to three improved strategies, im‐
proving the initial distribution, increasing randomness,
and enhancing local search, SAGWO obtained the best
results in 10 of 15 benchmarks compared with the orig‐
inal GWO, GA, and PSO. Compared with IGWO and
SOGWO, SAGWO had obvious advantages in the uni‐
modal test. SAGWO converged faster than the original
GWO in most tests. We also optimized a double-layer
ring FSS using SAGWO with the novel FSS shape
optimization method. The optimized FSS was suit‐
able for 5G EMI shielding at 28 GHz and was
verified by a free-space method test. In future work,
SAGWO could be used in more fields to further evalu‐
ate its ability to solve practical engineering problems.
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