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Abstract: Event extraction (EE) is a complex natural language process ing (NLP) task that aims at identifying
and classifying triggers and arguments in raw text. The poly semy of triggers and arguments stands out as one
of the key challenges a�ecting the precise extraction of events. The existing approaches commonly consider the
semantics distribution of triggers and arguments to be bala nced. However, the sample quantities of the di�erent
semantics in the same trigger or argument vary in real-world scenarios, leading to a biased semantic distribution.
The bias introduces two challenges: (1) low-frequency semantics are di�cult to identify and (2) high-frequency
semantics are often mistakenly identi�ed. To tackle these c hallenges, we propose an adaptive learning method with
the reward�penalty mechanism for balancing the semantic di stribution in polysemous triggers and arguments. The
reward�penalty mechanism balances the semantic distribut ion by enlarging the gap between the target and nontarget
semantics by rewarding correct classi�cations and penaliz ing incorrect classi�cations. Additionally, we propose th e
sentence-level event situation awareness (SA) mechanism to guide the encoder to accurately learn the knowledge
of events mentioned in the sentence, thereby enhancing target event semantics in the distribution of polysemous
triggers and arguments. Finally, for various semantics in d i�erent tasks, we propose task-speci�c semantics decoders
to precisely identify the boundaries of the predicted trigg ers and arguments for the semantics. Our experimental
results on ACE2005 and its variants, along with ERE benchmar ks, demonstrate the superiority of our approach over
single-task and multi-task EE baselines.
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1 Introduction

Events, serving as carriers of information, pos-
sess signi�cant research value due to their ele-
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Fig. 1 The EE results of the sentence â€œBlasphemy is punisha ble by death under the Pakistan Penal
Code.â€• and examples of all semantics for the triggers â€œd eathâ€• and â€œpunishable.â€• Words in
bold are triggers, while those that are italicized are argum ents. Event â€œJustice:Sentenceâ€• is triggered
by the trigger â€œpunishableâ€• with no arguments playing a ny roles. Trigger â€œdeathâ€• triggers the
â€œJustice:Executeâ€• event, where â€œPakistanâ€• plays the â€œAgentâ€• role in the event schema of
â€œJustice:Execute.â€• EE, event extraction.

vated information content and rich semantic details.
The accelerated evolution of the Internet and the
emergence of numerous Internet applications have
brought a large number of unstructured and frag-
mented text resources. How to quickly and accu-
rately obtain structured target event information
from these resources has always been a key and chal-
lenging problem for scholars engaged in the �eld of
event extraction (EE). EE (Ahn, 2006; Chen et al.,
2015; Lu et al., 2023) is the task of identifying and
classifying triggers and arguments from unstructured
text based on the prede�ned event schema, as shown
in Fig. 1. EE enables users to obtain information in
a timely and intuitive manner on who (doer), when
(time), where (place), how (artifact), whom (recip-
ient), and what (event) occurred. The extracted
event can be widely used in downstream applica-
tions, such as event graph construction (Shu et al.,
2021; Xu et al., 2022b), recommendation systems
(Cui et al., 2023; Xia et al., 2023), decision aids
(Anelli et al., 2022; You et al., 2023b), etc.

Many e�orts have been devoted to EE. Earlier
EE methodologies mainly relied on manually crafted
multi-granularity features (Ji and Grishman, 2008;
McClosky et al., 2011; Hong et al., 2011), which
were labor-intensive. The emergence of deep learning
techniques (Chen et al., 2015; Nguyen et al., 2016;
Sha et al., 2018), capable of automatically learn-
ing features of tasks from ample annotated data,
has overcome the limitations of manual feature de-
sign. Recently, pre-trained language models (PLMs)
(Yang et al., 2019; Lin et al., 2020; Lu et al., 2021;
Liu et al., 2022) with rich general language represen-
tations, such as BERT and RoBERTa, have become
the backbone of EE systems, reducing the need for
extensive annotated data. To address the challenges
introduced by low-resource scenarios, including zero-

shot and few-shot, prompts (Hsu et al., 2022; Wang
et al., 2023b; Yao et al., 2023; Zhang et al., 2023b)
with task-speci�c knowledge aid PLMs in compre-
hending the content and format of tasks, which re-
quire signi�cant training. Large language models
(LLMs) (Pang et al., 2023; Li et al., 2023; Ettinger
et al., 2023) with exceptional text understanding and
generation abilities require no training and are exten-
sively applied across various natural language pro-
cessing (NLP) tasks.

The polysemy of triggers and arguments poses
signi�cant challenges for EE (Feng et al., 2018;
Ding et al., 2019). We take into consideration
a trigger or argument of polysemy when it is as-
sociated with two or more semantics. We take
polysemous triggers as an example for analyzing
the challenges, as shown in Fig. 1. The polyse-
mous trigger â€œdeathâ€• triggers three distinct
events: â€œLife:Die,â€• â€œJustice:Executeâ€•
and â€œJustice:Sentence,â€• whereas â€œpun-
ishableâ€• triggers only â€œJustice:Sentence.â€•
Event types' semantics are �nite, discrete, and pre-
de�ned, which de�ne the output space for EE tasks.
The output space of polysemous triggers and ar-
guments is a complex space composed of multi-
ple semantic subspaces. Mapping â€œdeathâ€• to
â€œJustice:Executeâ€• among its three relevant se-
mantics is more challenging than mapping â€œpun-
ishableâ€• to â€œJustice:Sentence.â€•

Polysemy increases the complexity of event de-
tection (ED) tasks, making it di�cult for models to
determine the exact meaning represented by polyse-
mous triggers and arguments. Speci�cally, the chal-
lenges introduced by polysemy to ED tasks manifest
in two main aspects: (1) Semantic ambiguity. Poly-
semy makes it di�cult to distinguish the semantics of
triggers and arguments, mainly manifested in their
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possible multiple di�erent semantics. It requires
complex semantic disambiguation for ED models to
map triggers and arguments to prede�ned types. (2)
Context dependency. Polysemy a�ects the seman-
tics of triggers and arguments by the context, allow-
ing the same word to represent di�erent semantics
in di�erent sentences. Consequently, the semantics
of triggers and arguments may become ambiguous
across di�erent contexts, increasing the complexity
of understanding and modeling their semantics for
models.

To tackle the aforementioned challenges, the
existing EE studies have employed various meth-
ods to enhance the semantics of polysemous trig-
gers and arguments, including context knowledge
(Chen et al., 2015; Lu et al., 2023), knowledge en-
hancement (Du and Ji, 2022), multi-task learning
(Ping et al., 2023), and prompt-based approaches
(Yao et al., 2023; Zhang et al., 2023b), which treat
the multiple semantics in polysemous triggers and
arguments as balanced semantics. However, the
semantic distribution is imbalanced. This imbal-
ance poses some challenges for the semantic mod-
eling of polysemous triggers and arguments, as well
as the identi�cation of their boundaries, mainly in
the following three aspects. (1) Biased semantic
distribution. By analyzing the samples of poly-
semous triggers and arguments in the dataset, we
�nd signi�cant di�erences in the distribution of sam-
ple numbers for di�erent semantics. We observe in
Fig. 2a that the number of samples with the seman-
tic â€œLife:Dieâ€• is much higher than the num-
ber with the semantics â€œJustice:Executeâ€• and
â€œJustice:Sentence.â€• This imbalanced semantic
distribution results in the model paying more atten-
tion to the high-frequency semantics in polysemous
triggers and arguments during the learning process,
while neglecting the acquisition of low-frequency se-
mantics. Consequently, this further leads to the
omission of low-frequency semantics and the erro-
neous identi�cation of high-frequency semantics. (2)
Misidenti�cation of relevant and irrelevant seman-
tics. The probability of relevant and irrelevant se-
mantics is greater than the target semantic, denoted
as a false positive (FP) that the nontarget semantics
is identi�ed, as illustrated in Fig. 2b. (3) Di�culty
in boundary identi�cation. For multi-token triggers
and arguments, the polysemy of subtokens presents
a substantial challenge in accurately identifying the

boundaries of triggers and arguments.
To tackle these challenges, we introduce an

adaptive semantics learning method for handling the
imbalanced semantics in polysemous triggers and ar-
guments using the reward�penalty mechanism, de-
noted as RPEE. Firstly, we leverage the reward�
penalty mechanism to balance the biased distribu-
tion of semantics by weakening the high-frequency
semantics and amplifying the low-frequency seman-
tics, and improve the classi�cation accuracy by en-
larging the gap between target semantics and non-
target semantics. This approach dynamically adapts
the di�erent semantics of polysemous triggers and ar-
guments, based on the semantic probability distribu-
tion and the model's classi�cation outcomes, which
di�ers from the traditional methods that adjust cat-
egory weights (Yang et al., 2019; Nam et al., 2022).
Additionally, we utilize the sentence's event seman-
tics to enhance the semantics of triggers and argu-
ments, intending to reduce FPs for irrelevant seman-
tics and nontarget relevant semantics. To ensure the
accuracy of the sentence's event semantics for avoid-
ing the error propagation, the proposed sentence-
level event situation awareness (SA) mechanism uti-
lizes a sentence event classi�cation task for precisely
modeling the sentence's event semantics. Finally, we
develop task-speci�c decoders to identify all candi-
date spans for triggers and arguments in the sen-
tence, classifying their types for di�erent semantics
using task-speci�c thresholds. Experimental results
demonstrate that our method e�ectively mitigates
the imbalanced semantic distribution of polysemous
triggers and arguments.

Our contributions are fourfold:

� To solve the imbalanced semantic distribution
of polysemous triggers and arguments, we in-
troduce a semantic-adjustment method to mini-
mize the gap between relevant semantics by uti-
lizing the reward�penalty mechanism.

� We devise a reward�penalty mechanism to miti-
gate the biased distribution of semantics by dy-
namically adjusting di�erent semantics in poly-
semous triggers and arguments.

� The proposed sentence event situation aware-
ness (SESA) mechanism provides correct event
constraints for triggers and arguments in the
sentence. Additionally, the task-speci�c decoder
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Fig. 2 Original semantic distribution vs. semantic distrib ution after balancing. The �gure (a) shows the original
imbalanced semantic distribution that the number of sample s with the semantic "Life:Die" is signi�cantly
higher than the number of samples with the semantics "Justic e:Execute" and "Justice:Sentence". The �gure
(b) shows the semantic distribution after balancing, in whi ch the probabilities of both relevant and irrelevant
semantics being detected are higher than that of the target s emantic, leading to a false positive (FP) where
the nontarget semantics are identi�ed and a false negative ( FN) where the target semantic is misidenti�ed.

accurately identi�es the boundaries of triggers
and arguments comprised of an uncertain num-
ber of tokens.

� Extensive experiments demonstrate that RPEE
outperforms the state-of-the-art EE methods,
demonstrating strong robustness, generalization
ability, and superior performance in handling
polysemous triggers and arguments, even in
complex scenarios where triggers and arguments
comprise multiple tokens.

2 Related work

This section reviews EE approaches and sum-
marizes models that accurately identify the bound-
aries of triggers and arguments.

2.1 EE

EE is a fundamental, crucial, and complex task
in information extraction (IE) and NLP, focused on
identifying triggers, event participants, and event
types in text. Many e�orts have been made from var-
ious perspectives to enhance EE performance. Re-
searchers have utilized various neural networks like
CNN (Chen et al., 2015; Zeng et al., 2016), recur-
rent neural network (RNN) (Nguyen et al., 2016; Sha
et al., 2018), LSTM (Feng et al., 2018; Lou et al.,
2021), and GNN (Liu et al., 2018; Cui et al., 2020)
to capture event features. From the perspective of
leveraging knowledge of tasks and datasets, Du and
Cardie (2020), Liu et al. (2021), Yang et al. (2021),

Du and Ji (2022), Lu et al. (2023), Wang et al. (2022)
formalize EE as machine reading comprehension
(MRC) or question answering (QA) tasks. Some re-
searchers employ well-designed prompts (Hsu et al.,
2022; Ma et al., 2023; Ping et al., 2023; Yao et al.,
2023; Zhang et al., 2023b) to guide language models
in extracting events. Some others (Ettinger et al.,
2023; Hsu et al., 2023; Yang et al., 2023b) utilize
NLP tools to make use of syntactic, syntax, and se-
mantic knowledge in the data. From the perspective
of leveraging external resources, Liu et al. (2022),
Wang et al. (2023a), and Yao et al. (2023) tackle the
challenge of data scarcity by generating instances.
The methods mentioned above have made signi�-
cant progress in EE. However, they tend to overlook
the uneven distribution aspect of semantics in trig-
gers and arguments, leading to numerous FPs that
impact the overall performance of EE.

2.2 Boundary identi�cation for EE

Identifying the boundaries of triggers and ar-
guments is crucial for accurately extracting events,
especially for those that consist of multiple tokens.
In this section, we review relevant literature on EE,
speci�cally focusing on sequence labeling and span-
based approaches.

2.2.1 Sequence labeling EE

The sequence labeling EE models formalize EE
as sequence labeling, aiming to model the semantic
distribution of triggers and arguments. Various la-



Li et al. / Front Inform Technol Electron Eng in press 5

beling schemes exist, including IO, BIO, BMES, and
BIESO, where BIOMES stands for Beginning, In-
side, Outside, Middle, End, and Single, respectively.
Di�erent methods use di�erent labeling schemes. Liu
et al. (2023a) and Guzman-Nateras et al. (2023) uti-
lize the IO scheme for labeling. To better leverage
the potential transferred knowledge between labels,
(Nguyen et al., 2016), Sha et al. (2018), Lin et al.
(2020), Cong et al. (2021), Xu et al. (2023b), Liu
et al. (2022) and Wang et al. (2023) utilize RNNs or
conditional random �elds(CRF) and the BIO label-
ing scheme to model the boundaries of triggers and
arguments. However, the sequence labeling method
fails to handle nested triggers and arguments.

2.2.2 Span-based EE

In contrast to the methods rooted in sequence
labeling, span-based modeling approaches aim to
tackle intricate event structures, such as nested trig-
gers and arguments. These approaches transform the
EE task into a text span classi�cation task, aiming to
identify target triggers or arguments from all candi-
date spans and to classify each span's type. Depend-
ing on the modeling, span-based methods consist
mainly of boundary location modeling and span rep-
resentation modeling. Existing works (Yang et al.,
2019; Du and Cardie, 2020; Yang et al., 2021; Xu
et al., 2022a; He et al., 2023) utilize two task-speci�c
classi�ers to model the head and tail tokens of the
span, respectively. The works (Dozat and Manning,
2017; You et al., 2022; Ping et al., 2023; You et al.,
2023a) utilize the bia�ne attention mechanism to
jointly model the head and tail tokens of the span.
Wadden et al. (2019) and Yang et al. (2023b) enu-
merate all spans, to model the joint representation
of spans for multi-token triggers and arguments.

Sequence labeling EE methods model the se-
mantic distribution of triggers and arguments but
fail to handle the nested or overlapping ones. How-
ever, span-based approaches tackle the issue but
struggle with the imbalanced semantic distribution
of polysemous triggers and arguments. To ad-
dress this, we formalize the EE task as a token-
classi�cation problem and propose a reward�penalty
mechanism to dynamically adjust the imbalanced se-
mantic distribution of polysemous triggers and argu-
ments, thereby mitigating their bias. Additionally,
we design task-speci�c decoders to model the bound-
aries of triggers and arguments, respectively.

3 Preliminaries

3.1 Task formulation

Following the de�nition by Ahn (2006), the
process of EE consists of ED (Liu et al., 2023b;
Wang et al., 2023b) and event argument extrac-
tion (EAE) (He et al., 2023; Yang et al., 2023a),
aiming at extracting triggers and arguments from
the given sentence, as well as mapping them to
the prede�ned types, respectively. We formalize
ED and EAE as multi-label classi�cation tasks to
address the polysemy of triggers and arguments.
The type set of ED and EAE is denoted asE =
f e1; :::; eM g[f e0 = \ NULL " gandR = f r1; :::; rm g[
f r0 = \ NULL " g, respectively, where â€œNULLâ€•
indicates that the token is neither triggers nor argu-
ments.

For a given sentenceX = f x1; :::; xn g, where
n is the length of tokens, ED identi�es all candi-
date triggers for each semantic, and presents re-

sults in the format of
S M

i =1

n
[ei :

S t
j =1 [(sij ; eij )]]

o
,

where sij and eij represent the head and tail po-
sitions of the j -th candidate trigger for event type
ei , ei 2 E, t is the number of triggers for event
ei . According to the prede�ned event schema, the
argument role set of ei is r i =

�
r i

1; :::; r i
a

	
, where

r i
j 2 R. EAE recognizes all candidate arguments

playing the role r i , and the result is presented asn
ei :

S a
j =1

n
r j :

S b
k=1 [(sk

j ; ek
j )]

oo
, where sk

j and ek
j

represent the head and tail positions of thek-th can-
didate argument for role type r j , respectively.
De�nition 1 In the training set, suppose token
x is labeled with a set of labels, denoted aser =
f ex 1; :::; exg g, where exi 2 E and g � M . Here, er

represents the relevant semantics for tokenx, while
the remaining semanticseu = E � er constitute the
irrelevant semantics of tokenx.

3.2 SA

SA (Endsley, 1988, 2001) perceives environ-
ment factors or events within the complex and dy-
namically changing information environment, com-
prehends their signi�cance, and predicts their fu-
ture states. SA is an intrinsic representation of
the constantly changing external environment, which
forms the fundamental basis for subsequent decision-
making and performance.

Let Ev = f en1; :::; enn g be the set of informa-
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tion in the environment, where eni is the i -th kind
of information, and Sa is the function representing
the SA model. Consequently,Sa(Ev) = f s1; :::; ssg
signi�es the comprehensive state of the environment
Ev, with si representing thei -th state component.

With the help of situational information, indi-
viduals or systems can better comprehend and adapt
to complex environments. SA is widely used in var-
ious �elds such as cybersecurity (Onwubiko, 2020;
Matey et al., 2022), power systems (Dwivedi et al.,
2023), disease prevention (Shashikumar et al., 2021),
and tra�c security (Zhang et al., 2023a), and is also
applied in speci�c tasks, such as emotion recognition
(Akgun et al., 2023; Palash and Bhargava, 2023). To
our knowledge, this paper is the �rst to introduce SA
into EE, enhancing the understanding and adapta-
tion to complex event environments.

3.3 Binary cross-entropy (BCE) loss

The BCE loss (Zheng et al., 2022; Xu et al.,
2023a), commonly known as the sigmoid loss, em-
ploys the sigmoid function to compute probabilities
and is commonly utilized by binary classi�cation
tasks and multi-label classi�cation tasks. The sig-
moid function independently calculates probabilities
for each category, thereby preventing interference be-
tween di�erent semantics. The formulation of BCE
loss is:

L (YYY ;Ŷ̂ŶY ) = �
1
c

cX

i =1

[yi log(� (r i ))

+ (1 � yi )log(1 � � (r i ))])

(1)

where C = f 1; 2; ::; cg is the target set, YYY =
[y1; :::; yc], and Ŷ̂ŶY = [ � (r1); :::; � (r c)] are the one-hot
vector of the ground truth label and the predicted la-
bel vectors for the input x, respectively, yi 2 f 0; 1g,
r i is the logits value ofx on classi , r i 2 [0; 1], and � is
the sigmoid function. Suppose that the ground-truth
label for x is classr , the other classes are uniformly
represented asu = Cn f rg, then the gradient of class
r and ui 2 u are:

@L(YYY ;Ŷ̂ŶY )
@rr

=
� (r r ) � 1

c
;

@L(YYY ;Ŷ̂ŶY )
@ru i

=
� (ru i )

c
(2)

4 Our approach

This paper presents a method to mitigate the
biased semantic distribution of polysemous triggers
and arguments using the reward�penalty mecha-

nism. The overall framework, depicted in Fig. 3,
consists of four main modules:

� Reward�Penalty mechanism dynamically ad-
justs the learning method of various semantics in
polysemous triggers and arguments. It rewards well-
learned semantics while penalizing erroneous ones
with the semantic probability distribution and the
model's classi�cation outcomes.

� The SESA mechanismgenerates an accurate
and comprehensive representation for all events men-
tioned in sentences.

� Semantic-enhanced encoderrepresents tokens
with vectors and enhances semantics in tokens with
all events mentioned in the sentence.

� Task decoderidenti�es all potential trigger and
argument candidates in the sentence and classi�es
their types.

Our training procedure comprises three phases:
pretraining the SESA module (Section 4.2), then
training ED and EAE with their respective semantic-
enhanced encoder (Section 4.3), and using the task
decoder (Section 4.4). ED provides EAE with tar-
get role sets based on the prede�ned event schema.
The semantic-enhanced encoder furnishes the task
decoder with token representations augmented by
the sentence event semantics. SESA ensures the ac-
curacy of the sentence event semantics provided to
the semantic-enhanced encoder. Finally, the task de-
coder identi�es the boundaries of triggers and argu-
ments based on the representations of tokens and the
reward�penalty mechanism (Section 4.1) and classi-
�es their types.

4.1 Reward�penalty mechanism

The reward�penalty mechanism dynamically
adjusts di�erent semantics of polysemous triggers
and arguments by rewarding semantics that are cor-
rectly classi�ed and penalizing erroneous ones. Sub-
sequently, we provide a detailed analysis of the causes
(Section 4.1.1), the desired e�ects (Section 4.1.2),
and the implementation of the reward�penalty mech-
anism, covering both multi-factor (Section 4.1.3) and
single-factor (Section 4.1.4) implementation meth-
ods.
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Fig. 3 The overview of our joint EE model. The encoder convert s tokens into high-dimensional vectors. Before
this, the sentence-level event SA mechanism �ne-tunes the e ncoder to guarantee the precise representation
of the sentence's events. The encoder then uses this represe ntation S to enhance token semantics during
encoding. Subsequently, our model calculates the probabil ity distribution P (x i ) and employs the reward�
penalty mechanism to amplify the correct semantics and dimi nish the incorrect ones, widening the gap
between them. Finally, using P (x i ), the trigger decoder and argument decoder use task-speci�c thresholds to
identify and classify all candidates. EE, event extraction .

4.1.1 Motivational analysis of the reward�penalty
mechanism

We analyze the misclassi�cations introduced by
the imbalanced sample quantities from the following
perspectives.

FP of irrelevant semantics. Let np and nh

denote the number of samples in the dataset anno-
tated with label p and h, respectively, wherenh > n p,
the weight updating process is:

wnew = wold �
nX

i =1

� (r i ) � 1
c

(3)

When wold � p = wold � h and �r p = �r h , then
wnew � h > w new � p. For a test sample of classp, the
trained model tends to categorize it ash, resulting
in an FP.

FN of low-frequency semantics. Suppose
that the two classesrh and rl of token x i havek1 and
k2 samples, respectively, withk1 > k 2, f rh; rl g 2 C.
The accumulated gradients ofrh and rl are:

k1X

i =1

@L(YYY ;Ŷ̂ŶY )
@r

=
k1X

i =1

� (r i ) � 1
c

(4)

When � (r rh ) = � (r rl ), the accumulated gradient
value of classrh is greater than classrl , resulting

in a biased semantic distribution for x and classrl
being overwhelmed by classrh , as well as an FN for
classrl .

4.1.2 Purposes of reward�penalty

The reward�penalty mechanism aims to miti-
gate these challenges by boosting the gradient gap
between the relevant and irrelevant semantics in
Eq. (3), and simultaneously diminishing the accu-
mulated gradient gaps between semantics within the
set of relevant semantics in Eq. (4). The gradient
adjustment for semantics is detailed as follows:

@L(YYY ;ŶF̂YF̂YF )
@r

= K r;u
@L(YYY ;Ŷ̂ŶY )

@r
(5)

where F (�) 2 [0; 1] is the activation function that
realizes the reward�penalty mechanism,K r;u = Pr;u �
R r;u is the reward�penalty factor consisting of the
reward factor Pr;u and the penalty factor R r;u .

4.1.3 Multi-factor reward�penalty mechanism

The multi-factor reward�penalty mechanism ac-
curately adjusts various semantics based on classi�-
cation outcomes and the probability distribution of
tokens. It alleviates the bias in the semantic distribu-
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tion by amplifying the probability of low-frequency
semantics while diminishing that of high-frequency
semantics and irrelevant semantics. We elaborate
on the implementation process of the reward and
penalty mechanisms, respectively, delineating the
speci�c problems they target.

Reward mechanism utilizes a reward factor
R r;u and the sample distribution to adjust the weight
of the correctly classi�ed semantics' gradients, in-
cluding the true positive (TP) high-frequency seman-
tics rh and the true negative (TN) irrelevant seman-
tics u. We adjust the weight of semantics' gradients
as follows:

R r;u =

8
<

:

(r rh )R r ; r rh � t; a T P happens
(ru )R u ; ru � t; a T N happens

1; r rh < t or r u > t
(6)

where R r > 0 and R u > 0 are hyper-parameters.
When a sample ofrh is correctly classi�ed, the value
of the reward factor R r;u decreases, resulting in a
gradient enlargement for rh , which narrows the gap
in Eq. (4) between the accumulated gradients val-
ues of high-frequency and low-frequency semantics.
Additionally, the weight of u diminishes to widen
the gap between relevant and irrelevant semantics,
making them easier to be distinguished.

Penalty mechanism employs a penalty fac-
tor Pr;u and the model's classi�cation outcomes to
handle misclassi�ed semantics, including unidenti-
�ed target semantics and misidenti�ed irrelevant se-
mantics. The adjustment process is as follows:

Pr;u =

8
><

>:

( t
F ( r rl ) )P r ; F (r rl ) < t; a F N happens

( F (r u )
t )P u ; F (ru ) > t; a F P happens

1;F (r l ) � t or F (ru ) � t
(7)

where Pr > 0 and Pu > 0 are hyper-parameters
adjusting the punishment and t is the classi�cation
threshold. When a small sample of tokenx is la-
beled rl and an FN happens, the penalty mecha-
nism decreases the gradient ofrl , as illustrated in
Eq. (5), thereby amplifying its weight, as described
in Eq. (3). In the case of an FP, according to Eq. (7),
Pr;u increases, leading to an increase in the gradient
of irrelevant semantics and a consequent decrease of
its weight.

4.1.4 Single-factor reward�penalty mechanism

The numerous hyper-parameters of each fac-
tor in the multi-factor reward�penalty mechanism

Table 1 Changes in loss value.

Prediction
Positive Negative

Gold
Positive - +
Negative + -

â€œ+â€• and â€œ-â€• denote the increase
and decrease in the loss value using the func-
tion pr (x; K r;u ) compared to using the func-
tion � (x), respectively.

pose signi�cant challenges to the accurately model-
ing of the semantic distribution of polysemous trig-
gers and arguments. Therefore, we propose a single-
factor reward�penalty mechanism with one hyper-
parameter to improve feasibility and usability by
sacri�cing some accuracy. We meticulously design
the following reward�penalty function to implement
the reward�penalty mechanism.

pr(x; K r;u ) =
1

1 + e( � x ) �K r;u
(8)

wherex is the logits score of the input on a speci�ed
class,K r;u > 1 is an integer.

Subsequently, we will elaborate on how the
function pr(x; K r;u ) implements the reward�penalty
mechanism from the model training and inference
perspective.

Training process. The reward�penalty func-
tion pr(x; K r;u ) directs the model training by mod-
ifying the loss based on the model's classi�cation
outcomes. In the case of incorrect classi�cations, the
reward�penalty function pr(x; K r;u ) boosts the loss
so as to encourage the model to learn more about the
gold label of the input. Conversely, correct classi�ca-
tions result in pr(x; K r;u ) decreasing the loss, which
helps avoid over-�tting and reduces the gap between
high-frequency and low-frequency semantics. Table
1 illustrates the impact on the loss value.

Speci�cally, when token x labeled with classi is
correctly classi�ed and r i > 0, pr(r i ; K r;u ) > � (ri ),
the heightened probability serves as a reward for
correct categorization. From Eq. (5), we observe
that losspr < loss s, where losspr and losss employ
pr(r i ; Kr; u ) and � (r i ) as the activation functions,
respectively. The decrease in loss implies a reduced
need for parameter tuning, further preventing the
weight of class i from becoming excessively large.
This illustrates that pr(r i ; K r;u ) e�ectively balances
the semantic distribution.

In case tokenx labeled with classr is uniden-
ti�ed, r r < t or pr(r r ; K r;u ) < pr (ru ; K r;u ), an FN
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happens. With pr(r r ; K r;u ) < � (r r ) < t , losspr >
losss, the increased loss can be seen as a penalty and
leads the model to learn more about classr .

When token x do not have samples labeled with
classu but pr(r r ,K r;u ) < pr (ru , K r;u ), it indicates
that u is misclassi�ed. losspr > loss s, the increased
loss guides the model to reduce the weight ofu to
avoid the FP.

Inference process. The reward�penalty func-
tion pr(x; K r;u ) simpli�es the threshold setting by
enlarging the gap between the target and the nontar-
get semantics, improving the accuracy of identifying
the target semantic.

Typically, t is set to 0.5 and varies across tasks.
Assuming the token x i labeled with p is correctly
recognized, thenpr(rp; K r;u ) � t. At the same time,
it can be observed frompr(rp ; K r;u ) > � (rp) that
pr(x; K r;u ) rewards the target semantic p of x i by
enlarging its probability. Conversely, if the nontar-
get semanticu of x i is misclassi�ed,pr(ru ; K r;u ) < t ,
and pr(ru ; K r;u ) < � (ru ). The reward�penalty func-
tion pr(x; K r;u ) punishes the nontarget semanticu by
diminishing its probability. Simultaneously, by com-
paring changes in the probability of various seman-
tics utilizing di�erent activation functions, we know
pr(rp ; K r;u ) > � (rp) > � (ru ) > pr (ru ; K r;u ), and
pr(rp ; K r;u ) � pr(ru ; K r;u ) > � (rp) � � (ru ). A wider
boundary implies an easier setting for the threshold
and a more accurate recognition of the target seman-
tic.

4.2 SESA mechanism

SESA generates the joint representation of all
eventsESESA = f es1; :::; esw g mentioned in the sen-
tence X , whereesi 2 E, to enhance event semantics
of tokens in X . To generate an accurate representa-
tion, inspired by Gururangan et al. (2020), we uti-
lize a sentence-level event classi�cation task and the
same training dataset as the EE task to �ne-tune
SESA. Due to the rich general knowledge in PLMs
(Devlin et al., 2019; Lewis et al., 2020), we use BERT
(Devlin et al., 2019) as the backbone.

Hence, the following discussion outlines the
components of SESA, focusing on the learning and
generation of sentence event representations.

Global encoder generates the global repre-
sentation of all events mentioned in the input sen-
tence with all tokens, to train and test SESA. The
input sequence X

0
is constructed by adding the

(CLS) token at the beginning of X , with all the
corresponding masks inAT T N _ MASK set to 1.
The embedding of (CLS), denoted asSGCLSSGCLSSGCLS =
BERT (X

0
; AT T N _ MASK ), serves as the global

representation of the sentence's events. During ex-
periments, we observed that the embedding of (CLS)
in the last layer hidden state of the BERT output
outperforms its counterpart in the pooler_output.

Event encoder generates a single high-
dimensional vector representing all triggers and ar-
guments in the sentence, exclusively for training
purposes. The input sentence of the event en-
coder aligns with that of the global encoder. Af-
ter �ltering out tokens irrelevant to events, the
representation of the sentence's pure events is
SECLSSECLSSECLS = BERT (X ; EV ENT _ MASK ), where
EV ENT _ MASK designates masks, corresponding
to (CLS) and tokens in X labeled as triggers and
arguments, with the value of 1. Experiments illus-
trate that the pure event representation enhances
the global representation of the sentence's event
when modeling, ensuring the accuracy of modeling
all events mentioned in the sentence.

Event classi�er identi�es events with the joint
representation of all events mentioned in the sentence
S as follows. (1) Representation generation. Dur-
ing training, the output of the global encoder and
the event encoder generatesSSS = [ SGCLSSGCLSSGCLS ;SECLSSECLSSECLS ].
However, during inference, only the global represen-
tation of all the events mentioned in the sentence
is used, soSSS = SGCLSSGCLSSGCLS . (2) Event identi�cation.
The event classi�er comprises a feed-forward net-
work (FFN) and an activation function. The FFN
consists of a single-layer network structure and an
ReLU function. The classi�er generates an event
probability vector PPP = [ p1; :::; pM ], wherepi denotes
the probability of the occurrence of event typei . The
threshold t is used to identify event types mentioned
in X :

ÊX̂EX̂EX = [ e
0

1; :::; e
0

M ]; e
0

i
i 2 [1;:::;M ]

=
�

0; pi < t
1; pi � t

ESESA _ XESESA _ XESESA _ X = ÊX̂EX̂EX � E = [ es1; :::; esw ]

(9)

wheree
0

i 2 f 0; 1g, which indicates whetherx i triggers
type ei . When e

0

si = 1 and esi 2 ESESA _ XESESA _ XESESA _ X , it
indicates that the sentence X triggers event type
esi . To streamline training, we utilize pr(x; K r;u )
as the activation function and employ BCE loss for
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optimization.

L (YYY ;Ŷ̂ŶY ) = �
P M

i =1 [gi yi log(pr(X ))+

(1 � gi )(1 � yi )log(1 � pr(X ))]
(10)

where gi denotes the weight of the event typeei ,
pr(X ) = pr(X; K r;u ). To calculate gi , we use the
reciprocal for the ratio of the annotated samples of
event type ei to the total number of annotated sam-
ples in the dataset.

4.3 Semantic-enhanced encoder

The semantic-enhanced encoder transforms to-
kens in the input sentenceX into real-valued word
embedding. To mitigate the interference from non-
target event semantics and relevant semantics, we
encode the knowledge of all the events mentioned
in X into the representation of each token, en-
hancing the token's event semantics. Speci�cally,
we utilize the BERT �ne-tuned by SESA to derive
the event representation of X , denoted asSXSXSX =
SESA(X ; AT T N _ MASK ), whereSX 2 R 1� d and
d represents the hidden layer dimension of BERT.
We use the �ne-tuned BERT to encode the vector
representation of each token inX as f w1w1w1; :::;wnwnwn g =
BERT (x1; :::; xn ), where wiwiwi = [ wi

1; :::; wi
d]. The

token's enhanced representation, incorporating the
knowledge of the sentence's event, is expressed as
w

0

iw
0

iw
0

i = [ wiwiwi ;SXSXSX ].

4.4 Task decoder

The task decoder recognizes the boundaries of
candidate triggers and arguments in the sentence and
classi�es their types. Given that triggers and ar-
guments are associated with distinct label sets and
utilize di�erent decoding modes, we develop task-
speci�c decoders for triggers and arguments, respec-
tively.

4.4.1 Trigger decoder

The trigger decoder consists of M semantic de-
coders, each responsible for recognizing its trigger
boundaries, based on the probability distribution of
tokens, and classifying their types. Before decoding,
we utilize the event classi�er described in Section
4.2 to obtain the probability distribution p(x i ; S) of
each token x i . The decoding process includes the
following steps.

(1)Classi�cation. Commonly used methods iden-
tify and classify triggers using maximum probability
leading to misclassi�cation of low-frequency seman-
tics. To address the issue, we employ a task-speci�c
threshold value as the criterion for judgment. By
applying t t , based on Eq. (9) and the probability
distribution of x i , we derive the predicted type set
for x i as Exi = f exi 1; :::; exit g, where exii 2 E and
pxii � t t .
(2)Boundary identi�cation. We employ the seman-
tic decoders and threshold to recognize the trigger's
boundaries based on the predicted type set of tokens.
Semantic decoderi identi�es the boundaries of all
triggers for type ei , where trigger boundaries are de-
termined by consecutive tokens in the sentence that
triggers the same event type. The decoding process
for the trigger decoder is shown in Fig. 4.

Fig. 4 The process of the trigger decoding with the
semantic decoders. 1 in ( i; j ) indicates that the pre-
dicted type for the token x j is ei , and 0 in ( i; j ) indi-
cates that the token x j does not trigger type ei . Each
row in this �gure is a semantic decoder that identi-
�es the boundaries of all candidates for the semantic.
Each column is the predicted type set of the token.

4.4.2 Argument decoder

We design a head decoder and a tail decoder
for each semantic in the EAE task and use the task-
speci�c threshold t r to identify roles for arguments,
guiding the model in modeling the boundaries distri-
bution of arguments.
(1)Boundary modeling. To accurately model bound-
aries of arguments, following previous studies (Yang
et al., 2019; Du and Cardie, 2020; Yang et al.,
2021), we adopt the head/tail labeling scheme to
annotate boundaries of arguments. The proba-
bility distribution of token is x i is [pcr 0; :::; pcrm ]
= pr(F F N c(w

0

iw
0

iw
0

i ); K r;u ), where c 2 f head; tail g,
F F N head and F F N tail are the head and tail role
classi�ers, respectively, andpcri indicates the prob-
ability of x i being the head or tail of the argument
for role r i .
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(2)Boundary identi�cation. We employ t r to identify
the role types that x i plays, following Eq. (9). The
widely used boundary identi�cation method is the
enumeration (Wadden et al., 2019; Du and Cardie,
2020), which enumerates all predicted head-tail po-
sition combinations and identi�es target boundaries
with the heuristic method. However, we adopt the
heuristic matching principle proposed by Yang et al.
(2019), which selects the tail closest to the head as
the target argument. The process of identifying head
positions and tail positions of each semantic is anal-
ogous. Taking the head position recognition of class
i as an example, the number of head positions is de-
termined by the number of candidate chunks. Sub-
sequently, the token with the highest probability is
selected as the head of the chunk. The detailed de-
coding process of the role decoder is illustrated in
Fig. 5.

4.5 Training

We design task-speci�c loss functions for ED
and EAE respectively to train the model, intend-
ing to learn the semantic distribution of polysemous
triggers and arguments. Our model aims to intensify
the learning of misjudged semantics by increasing
the loss while diminishing the learning of correct se-
mantics through loss reduction. To accomplish this,
we employ BCE loss for training, based on the di�er-
ence between the predicted probability distribution
and the gold probability distribution. The loss func-
tions for ED and EAE are formulated as follows.

L t = �
MX

j =1

[gj yj log(pr) + (1 � gj )(1 � yj )log(1 � pr)]

L c
role = �

mX

j =1

[yj log(prc) + (1 � yi )log(1 � prc)]

(11)
where L t and L c

role indicate the loss function for
training the ED and EAE model, respectively, f is
the task-speci�c classi�er, pr = pr(f (w

0

iw
0

iw
0

i ); K r;u ), and
prc = pr(f c(w

0

iw
0

iw
0

i ); K r;u ).

5 Theoretical analysis of the reward�
penalty mechanism

In this section, we theoretically analyze the ef-
fectiveness of the reward�penalty mechanism from
the perspective of enlarging the gap between seman-

tics and achieving balanced semantics learning.

5.1 Analysis from the perspective of enlarging
the gap

Function pr(x; K r;u ) augments the maximum
gradient value for better training and enlarges the
gap between the relevant and irrelevant semantics.
The maximum gradient value of pr(x; K r;u ) is K r;u

times larger than that of the sigmoid function, which
e�ectively mitigates gradient vanishing during back-
propagation, as depicted in the following equation.

max(
pr0(x; K r;u )

� 0(x)
) = K r;u (12)

It is evident that the larger the discrepancy between
the probabilities of target and nontarget semantics,
the simpler it is to set the threshold t for classi�ca-
tion. As depicted in Fig. 6, the maximum value of
(pr0(x; K r;u ) � � 0(x)) increases asK r;u grows when
K r;u exceeds 1. However, the e�ective range of the
reward�penalty mechanism, denoted as [� xe; xe],
decreases, where� 0(� xe) = pr0(� xe; K r;u ). When
x 2 [� xe; xe] and �x � 0, if pr0(x; K r;u ) � � 0(x),
then (pr(x; K r;u )� pr((x� �x ); K r;u )) � (� (x)� � (x�
�x )) . Thus, the reward�penalty function pr(x; K r;u )
widens the gap between semantics, thereby reducing
misclassi�cations.

Fig. 6 Results of (pr 0(x; K r;u ) � � 0(x)) .

5.2 Analysis from the perspective of balanced
learning semantics

The reward�penalty mechanism aims to re-
balance the distribution of semantics by adjusting
the training loss. This loss of a token's semantics
comprises two components: the loss associated with
target semantics and nontarget semantics, respec-
tively, as illustrated in Eq. (13). To address mis-
judgments, the reward�penalty function pr(x; K r;u )
�ne-tunes the model with a penalty mechanism to
enhance the understanding of the target semantics
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Fig. 5 The process of the role decoding, where â€œproâ€• is th e abbreviation of the probability indicating
the probability of the token on the type, and the â€œtypeâ€• v alue ( 2 f 0; 1g) means whether the type is
the predicted type of the token. The results of role decoding is f ex 6 : f r j : [[x3; x5 ]; [x7 ; x7 ]]g ; ex 9 : f r 1 : [[x8; x8 ]]gg,
where ex i is the event type for token x i .

and decrease the learning of nontarget semantics,
thereby widening the gap between target and nontar-
get semantics. Concurrently, the reward mechanism
is employed to mitigate the model's learning of cor-
rectly classi�ed semantics, aiming to reduce the gap
between relevant semantics and achieve a balanced
semantic distribution.

L (Yi;j ; Ŷi;j ) = � [yi;j log(pr(f (x i ); K r;u ))
| {z }

the target semantic loss

+

(1 � yi;j )log(1 � pr(f (x i ); K r;u ))
| {z }

the nontarget semantic loss

]
(13)

where Yi;j and Ŷi;j are the ground truth value and
predicted probability value of token x i on the class
j , respectively,yi;j 2 f 0; 1g.

The penalty mechanismguides the model to ac-
curately learn misclassi�ed semantics by enlarging
the loss, as illustrated by the red region in Fig 7.
Suppose tokenx i labeled with classj with pi;j < 0
and t = 0 :5, x i is unidenti�ed as class j , resulting
in an FN. Meanwhile, for token x i not labeled with
classb with pi;b > 0, x i is identi�ed as class b, lead-
ing to an FP. Referring to Eq. (13) and Fig 7, it is
apparent that when K r;u > 1, FPs and FNs lead to
an increase in loss, which is equivalent to imposing a
penalty.

The reward mechanismreduces the gap among
relevant semantics by decreasing the loss, as the blue
region depicted in Fig 7. When x i is a sample for
class j and is accurately classi�ed asj , yielding a
TP. Referring to Eq. (13) and Fig 7, it is observed

Fig. 7 Loss of relevant and irrelevant semantics

that losspr < loss � in the case a TP occurs and
K r;u > 1. The TP essentially leads to a diminished
loss, akin to receiving a reward.

6 Experiments

6.1 Experimental setup

6.1.1 Datasets

We evaluate our model on two public EE bench-
marks, the ACE2005 corpus1 and the Rich Entities,
Relations and Events corpus (ERE) (Song et al.,
2015) 2, primarily using their English corpora, de-
noted as ACE2005-E+ and ERE-EN, respectively.
Following Lin et al. (2020) and Hsu et al. (2022),
ACE2005-E+ is spilt into three parts: the training

1https://catalog.ldc.upenn.edu/LDC2006T06
2Here we use datasets LDC2015E29,LDC2015E68, and

LDC2015E78 in ERE.
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set with 529 documents, the validation set with 30
other documents, and the test set with the remain-
ing 40 newswire documents. Additionally, following
the pre-processing in Lin et al. (2020), we obtain the
variant ACE05-E. Both have been annotated with
33 event types and 22 argument roles. The pre-
processing of ERE-EN follows Lin et al. (2020) in-
volving 38 event types and 21 argument roles. More-
over, we add a â€œNULLâ€• type for tokens with-
out annotation. ACE05-E di�ers from ACE05-E+
and ERE-EN in that the latter are more complex
datasets with multi-token triggers. Statistical results
of ACE05-E, ACE05-E+, and ERE-EN are shown in
Table 2.

Table 2 Datasets statistics results

Dataset Split Sents Events Roles

ACE05-E
Train 17,172 4202 4859
Dev 923 450 605
Test 832 403 576

ACE05-E+
Train 19,216 4419 6607
Dev 901 468 759
Test 676 424 689

ERE-EN
Train 14,736 6208 8924
Dev 1209 525 730
Test 1163 221 822

6.1.2 Evaluation metrics

We adhere to the criteria employed in previous
studies (Wadden et al., 2019; Hsu et al., 2022). (1)
Trigger Identi�cation (Trig-I): a trigger is correctly
identi�ed only if its predicted span matches that of
the gold trigger perfectly. (2) Trigger Classi�cation
(Trig-C): the event type of the trigger is correctly
classi�ed if only its predicted type matches that of
the gold trigger. (3) Argument Identi�cation (Arg-
I): an argument is correctly identi�ed only if its pre-
dicted span matches that of the gold argument. (4)
Argument Classi�cation (Arg-C): the role type of an
argument is correctly classi�ed only if its predicted
role type and event type match that of the gold ar-
gument. Simultaneously, we utilize the widely used
evaluation metrics, including Precision (P), Recall
(R), and Micro F1 score (F1), to assess the perfor-
mance.

6.1.3 Parameter settings

We conduct all experiments on one NVIDIA
3090 GPU, with a learning rate of 1e-5 and weight
decay of 1e-5 for BERT, and a learning rate of 1e-4
and weight decay of 1e-2 for the other models. The
batch size is 32. The epoch for EAE is 50 and the
other is 30. The dropout rate is 0.5. We set our seed
42. The threshold for each task iste; t t ; t r , respec-
tively. We employ AdamW (Loshchilov and Hutter,
2019) to optimize the model, and the maximum gra-
dient clipping is set to 5 to avoid over-�tting.

6.1.4 Baselines

Single-task EE models solely rely on event an-
notations for EE. In contrast, multi-task EE models
perform EE with the help of named entity recogni-
tion, relation extraction, or entity annotations. Since
not all event corpora extensively annotate entities
and relationships, EE models relying solely on event
annotations are more versatile.

Single-task EE models: (1) DMCNN (Chen
et al., 2015) utilizes dynamic multi-pooling CNN to
capture features of word-level and sentence-level; (2)
BERT_QA (Du and Cardie, 2020) formalizes the
EE task as a QA and designs task-speci�c ques-
tion templates for the trigger extraction and argu-
ment extraction; (3) LEAR (Yang et al., 2021) en-
hances tokens' task semantics by encoding the la-
bel annotation into the token's representation; (4)
TEXT2EVENT (Lu et al., 2021) uses a curriculum
learning approach and constrained decoding to ac-
complish sequence-to-structure tasks in document-
level EE; (5) DEGREE(Hsu et al., 2022) proposes
an end-to-end event-generation model that gener-
ates events from prede�ned event type-speci�c tem-
plates; (6) GTEE-DYNPREF (Liu et al., 2022) is a
template-based generative EE method, that adopts
dynamic pre�x-tuning technique; (7) DAEE (Wang
et al., 2023a) enhances EE by utilizing reinforce-
ment learning and event knowledge to generate high-
quality data to augment EE; (8) DemoSG (Zhao
et al., 2023) utilizes knowledge of the annotated data
and label semantics to conduct EE in low resources
and (9) ChatGPT-ICL (Han et al., 2023) is a prompt-
based inference-only method, that conducts 14 sub-
tasks of IE to evaluate the performance and robust-
ness of ChatGPT.

Multi-task EE models: (1) DYGIE++ (Wad-
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den et al., 2019) learns distant contextual features
by using dynamic span graphs; (2) ONEIE (Lin
et al., 2020) obtains optimal event graphs by us-
ing beam search and global features and (3) UniEX
(Ping et al., 2023) proposes the tria�ne attention
mechanism to encode the schema of all tasks and
their label semantics into token semantics to fully
improve the comprehensive semantics.

6.2 E�ectiveness

In this section, we conduct extensive experi-
ments on the three datasets to assess the e�ectiveness
of RPEE. Detailed content related to the case study
is provided in Supplementary Materials Section 1. A
comprehensive discussion of RPEE is presented in
Section 2 of the Supplementary Materials.

6.2.1 Main results

Table 3 illustrates the experimental results of
all baselines and our method on ACE05-E. When
comparing the performance, we obtain the following
�ndings: (1) Our method surpasses all baselines in
terms of F1 score. This indicates the e�ectiveness of
the proposed RPEE on the EE task. (2) In terms of
Trig-C, compared with the state-of-the-art methods
of both single-task and multi-task EE, our method
achieves relative performance improvements of 5.2%
and 3.7% on Trig-C F1, respectively. Our method
does not use manually crafted prompts or complex
language models or NLP tools, and achieves signi�-
cant results with limited annotated data, showcasing
strong scalability and generalization. (3) In terms
of Arg-C, our model exhibits performance enhance-
ments of 3.9% and 4.4% compared with single-task
EE and multi-task EE models, respectively, high-
lighting the e�ectiveness of our approach in this task.
(4) Concerning PLMs, our method not only outper-
forms the baselines that also use BERT-base but also
outperforms the baselines that employ larger PLMs,
such as BART-large, demonstrating the superiority
of our approach in applications.

To further verify the scalability and robust-
ness of our method, we conducted experiments on
ACE05-E+ and ERE-EN, and present results in Ta-
ble 4. Upon analysing the results, we derive two
crucial conclusions.

� High scalability. Our approach has demon-
strated strong performance on ACE05-E+ and ERE-

Table 4 Experimental results on ACE05-E+ and
ERE-EN

Model
ACE05-E+ ERE-EN

Trig-C Arg-C Trig-C Arg-C

ONEIE 72.8 54.8 59.1 50.5
LEAR � 71.4 - 57.0 -

TEXT2EVENT 71.8 54.4 59.4 48.3
DEGREE 70.9 56.3 57.1 49.6

GTEE-DYNPREF 74.3 54.7 66.9 55.1
DAEE 76.9 56.3 65.0 51.6

RPEE (Ours) 79.1 60.8 67.0 58.7

The highest scores are highlighted in bold, while sub-optim al
scores are underlined. The symbol � denotes results obtained
by using the same dataset and data pre-processing outlined
in this paper. Arg-C, argument classi�cation; Trig-C, trig ger
classi�cation.

EN. For trigger and Arg-C, our method surpasses all
baseline methods on Trig-C and Arg-C in terms of
the F1 score. Notably, we observe a relative enhance-
ment of 2.9% and 0.1% for F1 scores in Trig-C, and a
relative improvement of 8.0% and 6.4% for F1 scores
in Arg-C, respectively. These �ndings underscore
the scalability and e�cacy of our method, signifying
its suitability for EE across diverse domains.

� Strong robustness. Our method exhibits su-
perior performance on ACE05-E+ compared to all
baselines and even outperforms its performance on
ACE05-E, as shown in Tables 3 and 4. Notably,
baselines generally perform better on ACE05-E than
ACE05-E+. The discrepancy is attributed to the
presence of multi-tokens, posing a substantial chal-
lenge for models to precisely model trigger and ar-
gument boundaries. Our method adeptly leverages
multi-token instances, enhancing model performance
via the reward�penalty mechanism and the task-
speci�c decoding strategy. Experimental results af-
�rm the robustness of our approach in handling in-
tricate scenarios involving multi-tokens.

6.2.2 Ablation study

This section focuses on a detailed analysis of the
impact of each component on performance, with cor-
responding experimental results on ACE05-E+ pre-
sented in Table 5.

� w/o SESA indicates the variant without the
SESA module. Signi�cantly, there is a notable per-
formance decrease compared with RPEE, a�rming
the e�ectiveness of the SESA proposed in Section 4.2.
This discrepancy is attributed to the representation
of the sentence's event that is well-learned during
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Table 3 EE results on ACE05-E

Task Model PLMs Trig-C Arg-C

Multi-Task EE
DYGIE++ (Wadden et al., 2019) BERT-base 73.6 52.5

ONEIE (Lin et al., 2020) BERT-base 74.7 56.8
UniEX (Ping et al., 2023) RoBERTa-large 74.1 53.9

Single-Task EE

DMCNN (Chen et al., 2015) - 69.1 53.5
BERT_QA (Du and Cardie, 2020) BERT-base 72.4 53.3

LEAR � (Yang et al., 2021) BERT-base 72.2 -
TEXT2EVENT (Lu et al., 2021) T5-large 71.9 53.8

DEGREE (Hsu et al., 2022) BART-large 73.3 55.8
GTEE-DYNPREF (Liu et al., 2022) BART-large 72.6 55.8

DAEE (Wang et al., 2023a) BART-large 75.8 56.5
DemoSGR (Zhao et al., 2023) BART-large 73.4 56.0

ChatGPT-ICL 5shot (Han et al., 2023) gpt-3.5-turbo 27.3 31.6
RPEE (Ours) BERT-base 78.6 59.0

The highest scores are highlighted in bold, while suboptima l scores are underlined. In PLMs, â€œ-â€•
indicates the absence of PLM usage. The symbol � denotes results obtained by using the same dataset and
data pre-processing outlined in this paper. Arg-C, argumen t classi�cation; EE, event extraction; PLMs,
pre-trained language models; Trig-C, trigger classi�cati on.

Table 5 Ablation study on ACE05-E+

model
Trig-I Trig-C Arg-I Arg-C

P R F1 P R F1 P R F1 P R F1

RPEE 85.22 79.18 82.09 81.63 76.79 79.14 73.95 64.91 69.13 62.31 5 9.37 60.80
w/o SESA 84.46 75.08 79.49 81.19 72.77 76.75 68.11 60.20 63.91 55.89 56.10 56.00

w/o Re-weighting 84.19 77.47 80.69 79.54 73.87 76.60 70.71 62.41 66.30 54.97 56.97 55.95
w/o Event Encoder 82.22 76.01 78.99 78.41 73.31 75.77 66.76 63.57 65.12 52.84 57.78 55.20

w/o SA 82.86 75.26 78.88 78.82 71.81 75.15 72.56 52.85 61.16 59.56 45.05 51.30
w/o Reward�Penalty 82.82 76.15 79.35 78.71 72.66 75.56 61.97 63.73 62.83 50.14 57.86 53.72

The highest scores are highlighted in bold, while the lowest scores for all model variants are indicated in italics. Arg- C, argument classi�cation;
Arg-I, argument identi�cation; SA, situation awareness; S ESA, sentence event situation awareness; Trig-C, trigger c lassi�cation; Trig-I, trigger
identi�cation.

the SESA pre-training, o�ering event constraints for
triggers in the sentence.

� w/o Event Encoder denotes the absence
of the event encoder in the SESA module. Com-
pared with the â€œw/o SESAâ€• variant, â€œw/o
Event Encoderâ€• learns the representation of the
sentence's event, and the performance instead de-
creases. It illustrates that pre-training without pure
event knowledge hinders the accurate acquisition of
sentence event knowledge, resulting in a degraded
model.

� w/o Re-weighting signi�es ignoring the im-
balanced distribution of events. The �ndings suggest
that this uneven distribution impacts the learning of
event semantics, thereby in�uencing the overall per-
formance of EE.

� w/o SA designates the variant that omits
the utilization of the representation of the sentence's

event, resulting in the poorest performance among
all the variants. It illustrates the signi�cance of in-
corporating the representation of all the events men-
tioned in the sentence, as it e�ectively enhances the
event semantics of tokens within the sentence. En-
hanced representation o�ers vital event constraints
for triggers. The �ndings emphasize the pivotal role
of the SA in the overall model e�ectiveness.

� w/o Reward�Penalty indicates the variant
without using the reward�penalty mechanism, dis-
playing inferior performance compared to most vari-
ants. The declining performance underscores the
crucial role of the reward�penalty mechanism in
achieving a balanced modeling of the token's event
distribution within the model.
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Fig. 8 Performance of SESA on ACE05-E, ACE05-E+, and ERE-EN. SESA, sentence event situation awareness.

6.2.3 Analysis of the SESA

In this section, we conduct experiments on
ACE05-E, ACE05-E+, and ERE-EN to analyze the
e�ectiveness of SESA and the impact of the event
encoder, as shown in Fig. 8. Results reveal that
SESA excels in the sentence event classi�cation task,
achieving remarkable F1 values surpassing 93, 92,
and 89, respectively. It indicates that SESA has well
learned the representation of all events mentioned
in the sentence. When �xing K r;u , the performance
varies with the adjustment of te. There exists an
optimal te for K r;u to achieve the best performance.
Furthermore, experimental results suggest that uti-
lizing the reward�penalty mechanism has a negligi-
ble impact on SESA's performance. To reduce the
complexity of training, SESA adopts the identical
con�guration of the reward�penalty function with
Trig-C.

To further assess the in�uence of pure event
knowledge on modeling all the events mentioned in
the sentence, we conducted experiments by exclud-
ing the event encoder module, with detailed results
in Table 6. Experimental results emphasize that re-
lying solely on the knowledge of all the tokens in the
sentence for modeling the sentence's event yields un-
satisfactory results, leading to severe errors in down-
stream tasks, as depicted in Section 6.2.2. The �nd-
ings underscore the pivotal role of pure event knowl-
edge in e�ectively modeling the sentence's event.

6.2.4 Sensitivity test

We analyze the impact of di�erent con�gura-
tions of key hyper-parameters in RPEE, speci�cally,
K r;u in the reward�penalty mechanism and t t during
the decoding process. These hyper-parameters are
individually adjusted, while the remaining parame-

ters remain consistent with the previously reported
settings. Taking the ED task as the case study, we
conduct experiments with various settings of K r;u

and t t on ACE05-E, ACE05-E+, and ERE-EN. The
plot in Fig. 9 illustrates the �uctuation of the P,
R, and F1 score for Trig-I and Trig-C across dif-
ferent hyper-parameters setting on ACE05-E. It is
evident from the �gure that both R and F1 decrease
as K r;u or t t increases. P increases with the incre-
ment in K r;u and t t , indicating a positive correlation
between the hyper-parameters and precision. When
K r;u = 1 , pr(x; 1) = � (x) denotes the absence of
the reward�penalty mechanism. The improvement
in P, R, and F1 score demonstrates the e�cacy of
the reward�penalty mechanism.

Fig. 10 illustrates the variation in the Trig-C F1
score on ACE05-E+ and ERE-EN, respectively. Ex-
perimental results suggest that an increased value of
K r;u or t t does not consistently improve the model's
performance. Di�erent tasks exhibit optimal perfor-
mance under the speci�cK r;u and t t , demonstrating
the �exibility and superiority of the reward�penalty
mechanism.

6.2.5 Polysemy test

In this section, we conduct experiments to ver-
ify the e�ciency of RPEE when dealing with poly-
semous triggers. To assess the e�ect on the poly-
semy and monosemy, we divide the test datasets of
ACE05-E, ACE05-E+, and ERE-EN into monose-
mous and polysemous test datasets, based on
whether sub-tokens of triggers have multiple seman-
tics. Table 7 displays the performances of RPEE
and its variants on the Trig-C F1 score. The perfor-
mance of RPEE on the polysemous test dataset of
ERE-EN outperforms the monosemous one, while for
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Table 6 Ablation study of the event decoder for the SESA

Model
ACE05-E ACE05-E+ ERE-EN

P R F1 P R F1 P R F1

RPEE 96.47 92.66 94.53 94.86 92.54 93.69 89.36 90.05 89.70
w/o Event Encoder 82.79 80.36 81.56 78.85 77.63 78.24 74.91 79.79 77.27

� 16.52 15.31 15.90 20.30 19.21 19.75 19.29 12.86 16.09

� signi�es the relative performance gain obtained using pure event knowledge. SESA, sentence event
situation awareness.

Fig. 9 Performance of Trig-I and Trig-C on ACE05-E with di�er ent settings of two hyper-parameters ( K r;u

and t t ). Trig-I, trigger identi�cation.

Table 7 Experimental results on the monosemous and polysemo us triggers

Trig-I Trig-C

P R F1 P R F1

ACE05-E
RPEE_full 85.67 80.12 82.80 80.84 76.42 78.57

RPEE_monosemous_triggers 87.23 77.04 81.82 83.89 75.03 79.21
RPEE_polysemous_triggers 93.25 81.12 86.77 81.09 73.89 77.32

w/o reward_penalty RPEE_monosemous_triggers 74.40 78.30 76.30 74.21 78.10 76.11
w/o reward_penalty RPEE_polysemous_triggers 80.68 81.43 81.06 68.33 70.51 69.40

ACE05-E+
RPEE_full 85.22 79.18 82.09 81.63 76.79 79.14

RPEE_monosemous_triggers 83.20 77.30 80.14 82.09 76.66 79.28
RPEE_polysemous_triggers 88.88 81.08 84.80 78.66 75.40 76.99

w/o reward_penalty RPEE_monosemous_triggers 74.33 82.99 78.42 71.96 82.00 76.65
w/o reward_penalty RPEE_polysemous_triggers 74.70 83.95 79.06 63.49 77.58 69.83

ERE-EN
RPEE_full 75.24 78.14 76.62 63.78 70.51 66.97

RPEE_monosemous_triggers 74.45 74.09 62.04 62.04 65.13 63.55
RPEE_polysemous_triggers 74.34 86.30 79.88 60.42 77.25 67.81

w/o reward_penalty RPEE_monosemous_triggers 66.67 66.16 66.42 55.98 57.77 56.86
w/o reward_penalty RPEE_polysemous_triggers 71.24 80.85 75.74 53.19 69.41 60.23

Trig-C, trigger classi�cation; Trig-I, trigger identi�ca tion.

ACE05-E and ACE05-E+ the opposite is true. The
reason is that the number of monosemous and pol-
ysemous test datasets for ERE-EN is nearly equal,

whereas, for ACE05-E and ACE05-E+, the monose-
mous dataset is 50% larger than the polysemous
dataset. It demonstrates that RPEE can e�ec-
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Fig. 10 Trig-C F1 results on ACE05-E+ and ERE-EN with varying K r;u and t t .

tively handle triggers with multiple semantics. When
utilizing the reward�penalty mechanism, there is a
relative improvement of 11.4%, 1.3%, and 12.6%
for the polysemous datasets of ACE05-E, ACE05-
E+, and ERE-EN, respectively. It indicates that
the reward�penalty mechanism e�ectively addresses
the challenges posed by polysemy. Hence, we can
con�dently conclude that our approach can handle
datasets with polysemous triggers and arguments,
showcasing strong robustness.

6.2.6 EAE with gold triggers

We conducted comparative experiments using
gold triggers on ACE05-E, ACE05-E+, and ERE-EN
to explore the potentiality of our model. As depicted
in Table 8, it achieves relative F1 gains of 4.4%, 6.7%,
and 7.8% for Arg-C on ACE05-E, ACE05-E+, and
ERE-EN, respectively. It demonstrates that our ap-
proach e�ectively handles EAE tasks, irrespective of
using predicted triggers or gold triggers. Addition-
ally, we observe a decrease in the EAE performance
when neglecting the reward�penalty mechanism, fur-
ther a�rming the reliability and e�ectiveness of our
designed reward�penalty mechanism.

7 Conclusions

In this paper, we propose an adaptive seman-
tics learning strategy to mitigate the bias in the se-
mantics distribution of polysemous triggers and ar-
guments. We design a reward�penalty mechanism
to enlarge the gap between the relevant semantics
and irrelevant semantics and diminish the gap be-
tween relevant semantics by rewarding the corrected
classi�ed semantics and punishing the misclassi�ed

semantics. The sentence-level event semantics, pre-
trained by using a sentence-level event SA mecha-
nism to ensure accuracy, are integrated into token
representations to narrow the target event scope of
triggers. The model identi�es the boundaries of trig-
gers and arguments and classi�es their types using
task-speci�c semantic decoders. Our experiments
show our model's strengths in robustness, scalability,
and generalization ability in complex scenarios. In
the future, we will extend our model to low-resource
scenarios.
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