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Abstract: The aim of this work is to construct a new quadrature formula for Fourier-Chebyshev coef-
ficients based on the divided differences of the integrand at points-1, 1 and the zeros of the nth Cheby-
shev polynomial of the second kind. The interesting thing is that this quadrature rule is closely related to
the well-known Gauss-Turan quadrature formula and similar to a recent result of Micchelli and Sharmas

extending a particular case due to Micchelli and Rivlin.
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INTRODUCTION where &5 **, &, are the zeros of T,(x).
The quadrature rule Eq. (1) extends the
Throughout this paper let x> ***» x, be following “remarkable” particular case due to

zeros of the nth Chebyshev polynomial of the
second kind U, (2D unless otherwise stated or
implied. Let N be the set of the natural num-
bers and P, the set of all polynomials of de-
gree <<k . Denoting that the points & >***>
&, >+ > &, are arbitrary, we adopt the cus-
tomary notation f[ Eps vy &y vty & ]
for the divided differences of f at the points
s s & s &5 x(x may be identical to
any one of x,”  s» k=1, **» n) with &
meaning that the point &, is repeated exactly
7, times.

Bojanov (1996) gave a simple approach to
the following quadrature established by Mic-
chelli and Sharma(Micchelli> et al.» 1983).
Theorem 1.1 For every n, s& N and every
polynomial € P, 1),-10 let T,(x) be the
n th Chebyshev polynomial of the first kind.
Then we have

| :
fCa) B
j_] m7f,,(x)dx =

27’7'[' x\ % 2] v 2i-1 ... 2l
n Z‘]_l 2025 — 1)<]~ >f Lept, , &5 1,
1

Micchelli and Rivlin (1972).

1

D e — T e

.[lmT“ R AT
(2)

which is exact for all polynomial f& Ps,, - ;.
Recently, Gori and Micchelli (1996) con-

sidered the class W, of weight functions to

consist of all nonnegative integrable functions

w on [ —1,1] such that

(3

w 1_12: Z/k7F2k],(I)y
k=0
where the prime on the summation indicates
that the term corresponding to & = 0 is
halved.
Accordingly, for every w& W, and f& C
[ —1,1] we have

, !
| rermetadde = 53385,

4)
where

dx

AP = (5

1

I
[_]f(:c)'][‘”(:c)

1 —=x
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Thus formula Eq. (4) reduces to explicit expression for A, ( f). But they used a rather com-
plicated method (Gori et al. » 1996) to obtain an implicit expression for Eq. (5) from a repre-
sentation of the Fourier-Chebyshev coefficients A,,( £ in an infinite series along the divided
differences of f~ at &,***» &, with increasing multiplicities.

The goal here is to find explicit expression for

1
B,(f) = J_lf(x)Un(x) V11— z2%dx. (6)

Some related results are also derived. It is also interesting to mention that our result is similar
to Eq. (1). We remark here that our results are closely related to a quadrature called Gauss-
Turan type. For details of which interested readers > may refer to Gori et al. (1996) and Milo-
vanovic (1988; 2001 or Shi (19955 1996; 1999) and references therein. This paper is orga-
nized as follows. In section 2, we state our main results. In section 3, we give some auxiliary
lemmas which will be needed in proving the main results.

MAIN RESULTS

The main purpose here is to obtain the following quadrature formulas.
Theorem 2.1 For n» s& N> let us denote by

N, <z, < <x<zxg=1
the zeros of (l—xz)U,,(x). Let f € P, 1,+2:-1- Lhen we have

- (_l)j 2 ”II// M- -
Bn(f) = n Z‘ 4J(n+1) ( ]>>‘ f[‘rlo ’ ‘I%j ] T xij ]’ n+]1’ lk:l’ (7)

where the primes on the summation indicate the two terms corresponding to £ =0 and £ = n

+ 1 are halved.

Corollary 2.2 Let f€ P,11),+2:-1- Then we have (with other symbols as in Theorem 2.1)

. n (— 1)i+! - _
B”("f) - 7’12+7r1 Z; (2 f)4]<n+l>< > {f [.IJ ]’ ‘I%J l’ T I%Ij ] n+l:| +
5 UTahe a7 s a s D Lt e e e a (®

In the next two results, let us introduce the notation
|
[P = [ FCOU, (T — 222,
J -
Theorem 2.3 For n» s& N> let us denote by
N, <x,<<x<zxg=1

the zeros of (1 —2?)U,(x). Let f€ Pyt y+2,+1- Other symbols are as in Theorem 2. 1.
Then we have

LGP = ZCAAD + (= D= 1) +

" (171254, L
e DI vrL ) DO S R R R 9>
=1 k=0

Corollary 2.4 Let n, s&€ N»s € Poy+pn+2,+1- Other symbols are as in Theorem 2. 1.
Then we have
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I,Cf) = %(f(l) + (= D= 1) +

2”71" s (_ 1)]
n+1 = (2 1)4](n+1)< )IUC[:C]O’ -1’1 L ey xn L, n+1:|

%‘{g([x’6+1, .1'117 s 0 I%117 ’ ,,+1:|+f[x’0, Il s "% J,'%,j71 n+1:|}} (10)

It is also interesting that Egs. (7) — (10) are closely related to the Gauss-Turan quadrature
rule. For Gauss-Turan quadrature rule, see Gori et al. (1996); Bojanov(1996); Shi(1995;

1999) and references therein.

AUXILIARY LEMMAS

Here we shall state some lemmas which will be needed in the proofs of our theorems.
Lemma 3.1 (Yang et al. »2002) We have

Ji]p,l,l(x)U,I(x)z’““(l 2 =0, po € Pyys mEN. (1D
Lemma 3.2 (Yang et al. »2002) We have
R R S e e - s a - sbome NG a2
Lemma 3.3 (Yang et al. »2002) We have
[ e ou,Grna - e = Z27) me N (13)
Lemma 3.4 We have
[ v U, -2 Ve = .
[ - U, -2 e = - D

Proof Since we have Gradshteyn et al. Formula 3.612. 1-3.612.2(1980).

*sinCn + 120 ,, 1+ (=1)"
JO sin@ d(9 o 2 ™
*sinCn + 1)0cosf ,, 1+ (= 1)
. d(9 - T
0 sin@ 2

hence it follows by making the substitution 8 = arccosx and some calculation.

Lemma 3.5 (Yang et al. » 2002) Suppose that &, &5 *=*» &§,E[ — 1,11, are different. Let
ns my©&N, k=0, 1, **5 n, and g be a sufficiently differentiable function in [ — 1, 1],
then we have

”‘ 4 M m 2
D imgleg, &y s gnn §1 = g'Leg, gpns s gl (14>

k=0
Lemma 3.6 (Yang et al. » 2002) Let —1=2, 1< x,<* <x,<x9=1 be the zeros of (1 —
22U, (x) and g€ CL — 1,11, then we have

1 1 I
n_|_1_1(1—xi)g[:co,x,,ﬂ,:ck]—E(g(xo)+g(:c,,ﬂ)):—n+lﬁg(xk).(15)

Corollary 3.7 Let s& N and f be a sufficiently differentiable function in[ — 1,11, let — 1=
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<z, < <zx,<zo=1 be the zeros of (1 —22)U,(x), then we have

1 2 . o . . 1 . o o
” +12(1—I%)ﬂ\1‘/0’.1‘%j 1,'°°’.1'%l] 1’ n+1’.1'k:|—5{]([‘r70’.1'%j 1,"".23%1] 1’ n+1:|+
fap a2 v‘dzﬂ]}

ntl
” ,.1'1 ’ '°’Iijil, ,:Jh’.l'k:l. (16)

Proof Set g(x) = f[zjo s x 1, s 7L, 2] We derive Eq. (16) from Eq. (15).
Lemma 3.8let —1=x, <x,<<x,<xy=1 be the zeros of (1 —2*)U,(x) and s & N.
Let f be a sufficiently differentiable function in [ —151J, then we have

2s=1 =»m
f,(l) _ E Ef[xB(jﬂ)/z],xi]’ ""1‘{1,ngﬁfrl)/ﬂ,xk][k(x)(xz _ 1)[(‘”1)/2](0,1(1)'/ +
j=0 k=1
30 Tt e 00 b e ]
(1 —2)Ha? =1 e, (¥ 1+ R, (fs2), 17>

where
Rs‘n(le) = \7[[1‘\(‘)’1‘%\" .“’x)zzs’xfﬂrl’x:l(xz - I)Swn(x)zs’

n Cx)
(U”(x) — H(I —Ik), Zk(l) = (l‘ _(Un X

)’ E=1:2"""n>» n & N. (18)

VY3 )(U/,,( VY3

Proof Let 1 =xy>x,>">x,>x,.1= — 1 be the zeros of (1 — 2 w,(x). We use the fol-
lowing strategy. First> we interpolate f at the points 1 = x¢> x> "> x,>x,+1= — 1. Let
L,.1Cf52) be the unique Lagrange interpolating polynomial for f at the nodes xg» xys ***»
2, Z,+1. We have by Newton’s divided difference formula that

f.(x):L,,+](fv;.1')+f‘[l'()’xly""x”’l'”Jr]’.I:l(xz_1)60,,(1)’ (19)
Seconds we interpolate fLags» x5 ***» x,» x, 1> x ] at the points x; >"**>x,. Applying New-
ton’s divided difference formula again and noting Eq. (19), we obtain

fCx) = L ]‘(xk)l,(x)Jr {]‘[10, axq» "',x,,:l(l + x)Jrf[xl, "',x,,,xnﬂ:l(l—x)}w"(x) +

L]L'[IO’ X ""1;I+I’Ik]1k(1)(12 — 1)(,0”(1) +
k=1
f[l‘()y 1%’ "'yxi’1,1+|,x:|(12 — l)w"(l‘)z

Next, we interpolate fL x§ /2, 29, ==, 20, 20071723, 227 at the points xgr s ***» 2,0 0, 11 il
7 € N is odd and at the points x> ***» x, otherwise. This process continues until j =2s — 1. It
is easy to check that we can finally arrive at the relation Eq. (17). The proof is done.

PROOFS OF THEOREMS

We are now ready to prove our main results.

Proof of Theorem 2.1

Proof Integrating both sides of Eq. (17) against the weight function (1 — 22)2 over the in-
terval [ — 1, 1], recalling Eq. (18) and nothing that w,(x)=2""U,(x ), we have successive-

ly by using Egs. (110 — (13D and Eq. (16,
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2s-1 =n
Bn(f) = 2 Ez_ﬁlﬁ x([)(j+1>/2:|’ 1‘11, R l‘ln ’ l’EI(.fIrD/Z] xk] X

jl_llk(x)(xz _ 1)[<,'+1>/2]U"(x)j+1(1 _ xz)mdx +

%/ﬁl}z-@f—“" L b o2 ] (2t = 1D, ¥ - 22 e
f[ﬂ)—l’x%j T A J_1(1 — (22 = 1)U, ()Y (1 — 2Dy + E, L =
Zl 2”(4—jnl) {y Ay 2V, '."x?ij_l’xiz+l’xk:ljl_][k(x)(l ~ 22 (2 )¥dr —
%{f[;ab,xlf',---,Iif*',l,, LA U = 22, GV

At 2Pt ey 2 ,1{,+,Jj (1 — 201 — 22120 Ce¥de}l + B () =

2 (;,&3111(2]) (A= e b2t oy ] -

1 i - ; :
{f[.roylzl FRIT vl’%’ ’.I‘,I+|:| + [l‘() ,1’%’ l’""x%” ],.I‘;IJrl:l}}Jr ES‘”(f) =

2” v (= 1250\ KA o :
n +7r1 4](n+1) ( J)Zl f‘[‘IJO ’-11 ’. .’l‘izlj’l‘liﬁr]l"rk:l + Emn(.f)’
j=1

Where

|
E. () = J,IRM(J":I)(l — 2D dx =

. L | |
4 71.]“[150’ .1'%3, ‘“’x,%“vx,zl“,xilﬂyxj(xz — 1)“U”(x)2«‘+1(1 _ 12)1/2(11.

If f€EPo, 1, 0-10 then fLals 23 s 22 22, 25, » 2 J€ P, _,. It follows from Eq.
(11D that E,,,(f)=0
Proof of Corollary 2.2
Proof For 1=_j=<<s5, s& N, it is easy to check that

ntl ntl

AR ; 21 . 21 _j-1 1 3 1, 2i-1 . 21 j-1
L/f[l‘]o »xy S b e = T _4mk,jf[lJ0 » St LA ]+
k 0 2’] 1k 0

{f[*IJO’xzj ]’. ’xn ’ n+l:|+ f[l‘lo ’x%J : LI %zj ]’ ;z+l:|’ (20)
where

{j—l, ifk=0o0rn+1,
2;j — 1, itk =1,""n.

my,; =

It follows from Lemma 3.5 that

ntl 71

) 2j-1 . 2j j—1 — NV T 2j-1 .. 2j-1_ j-1
_Jmk]fflJO ’le xnj ’ n+l’x/€:| - Zlf [l‘]() ’xlj xnj S (21)
k= k=0

Now Corollary 2.2 follows from Theorem 2.1 and Egs. (200 — (21).

Proof of Theorem 2.3

Proof We have by Newton’s divided fifference formula that

f(x)Z%(f(xo)(l )+ o, D — 2+ g 2y 2 12— 1),
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Multiplying both sides of the above equation by U, (x) and integrating with respect to

weight (1 — z2) 12

and noting Eq. (14), we obtain

1

1
L = 2| At U = 22 = 1/2da + S| A= U

1
(1 — 222 dx ) - J_If[xoy 2,10 2 U, Ca)(1 — 222 dr =

1
g(f(x()) + (_ 1)r{f(xn+l)) _J lf‘[x()’xrﬁrl’x:lUn(x)(l - x2>1/2dl’. (22)

Now replacing f(z) in Theorem 2.1 by fl x¢sx, 1>« ] and a straightforward calculation by
using Eq. (22), we see that Theorem 2.3 follows from Theorem 2.1 and Lemma 3.1 since f
[l’()’ Lp+17 x:lep(Zerl)nJrZS—l if \fe P(25+l)n+25+ l-

Proof of Corollary 2.4

Proof The proof of Corollary 2.4 is similar to that of Corollary 2.2.

n+l

” j 2j-1 ues 2j-1 j
Ef[x’o’l”lj ’ » x5/ ’ljnﬂ’xle]
i{ 21 ...
2 _f[.lo s X ’ ’

where

K
m;w {2]_1

1 £ , ) . o )
= 27 —1 {Z 7n]€,jf‘|:l‘/0’l’%] 1""’1'%] l’x{IJr]:l -
k=0 J Jj=1

l‘ijil’ .1‘{1+]:| -+ ]CI: .IJO’ l‘%jil, °cy I%jil, lJ,:rJrll }}’

ifk=0o0r n+1,
ifk=1,">n.

Now Corollary 2.4 follows from Theorem 2.3 and Lemma 3.5.
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