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Abstract: Remote sensing techniques have the potential to provide information on agricultural crops quantita-
tively » instantaneously and above all nondestructively over large areas . Crop simulation models describe the
relationship between physiclogical processes in plants and environmental growing conditions. The integration
between remote sensing data and crop growth simulation model is an important trend for yield estimation and
prediction, since remote sensing can provide information on the actual status of the agricultural crop. In this
study, a new model( Rice-SRS) was developed based mainly on ORYZA1 model and modified to accept remote
sensing data as input from different sources. The model can accept three kinds of NDVI data: NOAA
AVHRR (LAC)-NDVI; NOAA AVHRR (GAC)-NDVI and radiometric measurements-NDVI. The integra-
tion between NOAA AVHRR (LLAC) data and simulation model as applied to Rice-SRS resulted in accurate
estimates for rice yield in the Shaoxing area, reduced the estimating error to 1. 027%, 0. 794% and
(—0.787%) for early, single, and late season respectively. Utilizing NDVI data derived from NOAA
AVHRR (GAC) as input in Rice-SRS can yield good estimation for rice yield with the average error
(—7.43%). Testing the new model for radiometric measurements showed that the average estimation error
for 10 varieties under early rice conditions was less than 1% .
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INTRODUCTION

Rice is the most important staple food in the
world; it has fed more people over a longer peri-
od than has any other crop. Asia accounts for
90% of the world’ s production and consumption
of rice because of its favorable hot and humid cli-
mate. In China, although the rice cropping area
represents only 29.1% of the total national crop-
growing area, rice production contributes
43.7% of total national grain production, repre-
senting 22.8% and 36.9% of total world crop-
ping area and production respectively ( Xiong et
al. »1992) . Information on crop production is of
fundamental importance for the decision-makers
of a country, and correct decisions are dependent
on timely and accurate information.

ORYZAI1 simulates crop growth under irri-
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gated conditions, with optimum supply of nutri-
ents{ wherein N is explicit input as leaf-N con-
tent), and without pest and disease infestation.
It is based on SUCROS model and MACROS-
L1D module. An important advantage of this
model is that it can be used to simulate realistic
yields and to assess the impact of planting date,
weather, and latitude at measured leaf N con-
tents. This is in contrast to models for potential
production that have a fixed pattern of leaf pho-
tosynthesis in time ( Kropff et al.,» 1994). The
model of ORYZAL as described above was devel -
oped to formalize and synthesize knowledge on
the processes governing crop growth. When ap-
plied to operational uses such as yield estimations
this model appears to be impractical, as it is diffi-
cult to gather data on crops during the crop cal-
endar year; and as crop vigor changes over time
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so ideally, data should be collected several times
during the growing seasons, an expensive task
given the size of the areas involved. Further-
more> this model often appears to fail when
growing conditions are nonoptimal ( caused by
stresses, e.g.» fertilizer deficiency, pest and dis-
ease incidence, severe drought, frost damage).
Therefore, for yield estimation, it is necessary to
”check” modeling results with some sort of infor-
mation on the actual status of the crop through-
out the growing season. Optical remote sensing
can provide such information. Remote sensing
techniques with multispectral repetitive coverage
have shown promise for use in estimating the a-
gronomic parameters and monitoring the changes
in these parameters during the growth cycle of
the crop. An important goal of agricultural re-
mote sensing research is to spectrally estimate
crop variables related to crop conditions which
can subsequently be entered into crop simulation
and yield models( Ahlrichs and Bauers 1983). To
utilize the full potential of remote sensing for the
assessment of crop conditions and yield predic-
tion, it is essential to quantify the relationships
between agronomic parameters and spectral
properties of the crop(Patel et al. » 1985). Use
of satellite spectral data for estimation of crop
yields is an attractive prospect since yield is relat-
ed to crop vigor> which is related to the spectral
response of the crop vigor, which in turn is relat-
ed to the spectral response of the crop measured
by satellite sensor ( Barnett and Thompsons
1982). Such technology resulted from more
decades long research on ways to make much
better global forecasts. There are reports of vari-
ous studies on the suitability of satellite data for
estimating crop yields. The correlation between
the spectral reflectance of crops and agronomic
variables encouraged application of those data in
crop yield modelsC Tucker et al. > 1980; Richard-
son et al. » 1982).

This study focuses on using remote sensing
data in modeling of Zhejiang Province’ s rice yield
per unit area for different seasons.

APPROVED MODEL

The main idea of developing this model was
to combine the power of the simulation model

(ORYZA1) with the accurate and timely infor-

mation of remote sensing data for rice yield esti-

mation. So, our approach here was to replace the
simulated leaf area index (LLAI) with LAI calcu-
lated by using normalized difference vegetation
index (NDVD), derived from remote sensing da-
ta possibly from NOAA ( National Oceanic and
Atmospheric  Administration 7 AVHRR ( Ad-
vanced Very High Resolution Radiometer) LLAC
(Local Area Coverage)> or NOAA AVHRR
GAC (Global Area coverage), or radiometric
measurements. This calculated LAI can be cb-
tained in the field and entered directly into the
model (Fig. 1).

[Weather Datal [ Latitude |
} i

| Simulation Model |

!

| Calculated LAI I

! i

Remote Sensing Field Measuremen__l

Estimated yield

Fig.1 Flowchart of rice yield estimation by the new

model (Rice-SRS)

The main task for the new model is to esti-
mate rice yield by using simulation and remote
sensing> so the name of the new model is Rice-

SRS.

1. Correction for green vegetation fraction
The same NDVI signal may result from dif-

ferent sub-pixel structures of a satellite pixel
(Price 1992). Fig. 2 shows possible combina-
tions of horizontal and vertical densities that may
reflect the same signal.

According to statisticss each unit area (pixel for
example) in rice field contains 92. 669% rices
4.006% bare-soil, and 3.29% waterbody.

Bare sail consisted of built banks, beaches, field
banks and agricultural roads. Whereas the water-
body includes pondss irrigation channels etc. .

Sos the obtained NDVTI from each pixel is:
NDVI =(% so0il X0.05)+ (% water X

0.01) + (% rice X NDVI,) (1

Where, 0.05 and 0.01 are the NDVI values
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for barescil and waterbody respectively.

NDVL, is the real NDVI for rice.

The value 0. 01 was chosen for waterbody
because the water here is very shallow and the
background will affect this values as well as the
water cannot be pure or clean.

Finally we can calculate the real value for rice
by putting in the above values as follows:

NDVI, =[ NDVI — (0.002003 +

0.0003294>1/ 0.926999
NDVI, = (NDVI —0.002333>/0.926999 (2)

So every value of NOAA AVHRR-NDVI will be
corrected by the model according to the Eq. (2).

@.
.@

Variable density vegetation

At-sensor
signal

Satellite
sensor pixel

Nondense vegetation

Dense vegetation

7 1 Uniform full vegetation

Fig.2 Schematic representation of satellite sensor pixel
models.

2. Estimating LAl from NDVI

The program uses three different approaches
for calculating ILAI according to the source of re-
mote sensing data. In the case of satellite-derived
data, the model simulates LAl first. Then the
simulated LLAI value for a specific dates ( remote
sensing acquisition date) is used as input in an-
other procedure Csubroutine) to calculate LAI by
remote sensing data. As a results several LAI
values equal in number toc the number of acquisi-
tion remote sensing data will be obtained. The
last step is to use these calculated LLAI values in
another procedure to generate daily ILAI values
by using interpolation techniques, and then, to
use the daily-calculated values in yield estimation
procedures.

In the case of radiometric measurements,
there is no need to simulate LLAI, because LAI
will be calculated in another way as we will see
later, but the calculated LLAI values will be en-
tered into the same procedure to generate daily

LLAI values as mentioned above. The three ap-
proaches are explained in detail as follows:

(1) Estimating LAI from NOAA AVHRR
(LAC> NDVI

Following the correction of NDVI for the
green vegetation fraction, the leaf area index was
calculated by the method of by Yin & Williams
(1997 ) but with some modifications. Their
LAI-NDVI model is as followings:

LAL = LAI,, < (NDVIi —

NDVI,.0) /CNDVI,,.— NDVI,;) (3D
Where:
LAI is leaf area index at date (A ;
NDVI ;. and NDVI, .. are the minimum and
maximum NDVI Cpositive values) in the image
on date i3
NDVI: is NDVI value for the studied area on
date A.

In the original model was the biweekly date,
but in this model is the date of remote sensing
measurements regardless of the period.

For estimating maximum and minimum ND-
VI, they can be estimated as NDVI for fully
vegetated pixels and bare-soil pixel in each im-
age. Seller et al. (1996), for example, defined
them as the lower and upper 2% — 5% NDVI
for each biome. In the new model the values O.
05, and 0. 64 were selected to be the minimum
and maximum NDV], agreeing with Malingreau
(1986 because of its suitability to our data as
shown in Fig. 3.

For LLAI,,, it will be simulated by the model
itself and then will be used to calculate LAli» be-
cause the simulation model CORYZA1) gives the
rice yield under optimum condition, so the simu-
lated LAI should be the maximum LAI for the
date i.

(2) Estimating LAI from NOAA AVHRR
(GAC) NDVI

Because of its low resolution (4km), NOAA
AVHRR (GAC) must undergo two stages of
corrections. First, the correction for green vege-
tation fraction by Eq. (2D, and then calculation
of the tangent of this corrected value, so that:

NDVI = Tan (NDVI,) (4)

The last value will be used to derive LAI in
similar approach for NOAA AVHRR (LAC) ac-
cording to the Eq. (3).

(3) Estimating LAI from radiometric mea-
surements
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Ilig.3 Histogram of NDVI digital numbers of NOAA image on June 26 1998

According to the NDVI values the program
will choose the way for calculating LAI. So» if
the value is less than 0.86, LAI will be calculat-
ed according to Richardson et al. (1992) s e-

quation:
LAI =0.13%xpl 4.26( NDVI) ] 3

If the NDVI value equals or is higher than
0.86 the model will calculate LAl according to
Ramakrishna et al. (1989)” s equation as fol-
lows:

NDVI =In (LAI/0.65) <0.34 6

Or in another mathematical form:

LAI = expC CNDVI/0.34) —0.431) (7D

RESULTS AND DISCUSSION

1. Case of NOAA AVHRR (LAC) data

The main objective of this study is to estimate
rice grain yield for different growing seasons and
different areas by combining simulation model with
remote sensing data. 1o achieve our objective, we
used NDVI values as input in our new model
(Rice-SRS). Table 1 summarizes the obtained re-
sults for single rice cropping area in Jiaxing, and
double rice cropping area Yin County.

Table 1 Rice yield estimation results for Jiaxing and Yin County

Simulation for

Simulation for Simulation for

Rice-SRS Rice-SRS Rice-SRS
Year 1998 1998 1998
Site Jiaxing Yin County Yin County
Season Single Early Late
Reported Yield(kg/ha) 7845 6240 6990
Estimated Yield(kg/ha) 9129.97 8113.10 8632.67 5892.51 9302.36 7398.59
Est. error (%) 16.38 3.42 38.34 —-5.57 49.08 5.85
Latitude 30.78 29.87 29.87
DOYS 143 89 175
DOYTR 172 119 207
DOYF 258 172 267
DOYM 301 192 308
DGS 158 103 133
DVRJ 0.0003266 0.001668 0.000531
DVRI 0.0007576 0.0007576 0.0007576
DVRP 0.0007955 0.0007955 0.0007955
DVRR 0.0017659 0.0023214 0.0019861
DVS at Maturity 2.004 2.044 2.005
TSTR 407.34 324.63 627.84
TSE 2157.80 1139.65 1774.44
TSM 2728.14 1570.44 2277.94

Note: DOYS, DOYTR, DOYE, DOYM are day of year for seeding, transplanting, flowering and maturity, respectively. DGS is the number of days in
growing season. DVR]J, DVRI, DVRP, DVRR are constants for development rates during basic vegetative phases photoperiod-sensitive phase, panicle
formation phase, and Grain filling phases respectively. DVS is development stage. TSTR, TSF TSM are temperature sum for transplanting, flowering

and maturity.
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The estimated errors for early, single and
late rice seasons were ( —5.57, 3.42 and 5.85)
respectively. It is good to obtain such results
since> the weather data used for the two areas
was that over Shaoxing in 1998. Of course the
three areas are similar geographically, very close
to each other. The elevation for the three areas

ranges form 4.8 tc 7.0 m.

2. Case of NGAA AVHRR (GAC) data

Table 2 and Table 3 summarize the main
dataset used as input in the model Rice-SRS to
estimate rice yield using NDVI derived from
NOAA AVHRR (GAC) Data.

Table 2 Summary of the relevant dates in three single rice seasons in Jiaxing

Year Seeding Transplanting Flowering Maturity
1982 May 11 May 31 Aug 27 Oct 22
1983 May 6 Jun 15 Aug 16 Oct 26
1984 May 13 Jun 2 Aug 20 Oct 28
Table 3  Single rice NDVI values on three dates for each season (Jiaxing)
1982 1983 1984
NDVI Date NDVI Date NDVI Date
0.2 Jul 6 0.2 Jun 8 0.2 Jun 10
0.37 Aug 11 0.35 Aug 1 0.38 Aug 4
0.3 Sep 26 0.3 Aug 30 0.3 Aug 15

Although the dataset was very simple, as it
contains three dates only, the results obtained by

the mcdel were well reasonable as it shown in

Table 4.

Table 4 'The main results for yield estimation using NOAA AVHRR (GAC) data as
input in Rice-SRS for Jiaxing County over three years

Year Reported Yield(kg/ha) Estimated Yield(kg/ha) Error( %)
1982 11790 10951.12 -7.1

1983 11040 10842.17 -1.79
1984 12705 11005. 30 —13.38

Best estimate was obtained for the year 1983
with —1.79% estimating error,> followed by the
year 1982 and then 1984. The average error for
three years was ( —7.43%).

The main reason for such good results using
only three dates is that, the second NDVI value
for each year was given as the highest NDVI-
peak throughout the season, which means head-

ing stage. These results assure the importance of
selecting NDVI measurements-date suitable for
rice yield estimation.

3. Case of radiometric measurements

Use of the Table 5 data as input in Rice-SRS
and monthly average weather data, yielded the
results shown in Table 6.

Table 5 NDVI values derived from radiometric measurements for 18 varieties during
early season at certain for phenological stage

Jun 2 Jun 10 Jun 9 June 18

Variety NDVI NDVI NDVI NDVI
A 0.7593 0.8439 0.8485 0.8626
B 0.7344 0.8804 0.8917 0.8640
C 0.7306 0.8484 0.8943 0.8947
D 0.7861 0.8453 0.8774 0.8593
E 0.7237 0.8517 0.8947 0.8615
F 0.7566 0.8409 0.8591 0.8590
G 0.7096 0.8552 0.8594 0.8593
H 0.7279 0.8703 0.8712 0.8547
1 0.7492 0.8216 0.8781 0.8684
J 0.7187 0.8538 0.8700 0.8358
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Table 6 Estimated yield and estimating error for 1§ varieties during early
rice using radiometric measurements as input in Rice-SRS

Variety Observed yield(kg/ha) Estimated yield(kg/ha) Estimating error ( % )
A 9218 9171 —0.509
B 9473 9071 —4.241
C 8093 8454 4.473
D 8160 8027 —1.629
E 8220 9078 10.433
F 8370 8136 —2.791
G 8475 8159 —3.725
H 8783 7926 —9.747
1 8093 9138 12.919
J 7905 7808 —1.228

Best estimate was for variety ( A) with an
estimating error of -0. 509 and worst result was
for (1D with overestimate of up to 12.919. The
average error for all varieties was 0. 396.

We have to mention that the four acquisition
dates for radiometric measurements corresponded
to tillering, booting> heading and milking stages
respectively. This suitable distribution of dates
high qualify reliable estimates.
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