http: //www. zju. edu. cn/jzus;

E-mail: jzus@zju.edu.cn

ISSN 1009 - 3095 Journal of Zhejiang University SCIENCE V.4, No.5,P.555 - 559, Sep. — Oct., 2003

Distributed certification application via a trusted dealer

LIU Duan-yang(X% FH)T, PAN Xue-zeng(i# 719D, PING Ling-diC*F-#4)
C Department of Computer,> Zhejiang University » Hangzhou 310027, China)

"E-mail: 1dy_ zj @ hotmail . com

Received Sept.10,2002; revision accepted Jan.2,2003

Abstract:

Distributed certification via threshold cryptography is much more secure than other ways to protect

certification authority (CAD s private key, and can tolerate some intrusions. As the original system such as

ITTC, etc., is unsafe, inefficient and impracitcal in actual network environment, this paper brings up a new

distributed certification scheme, which although it generates key shares concentratively, it updates key shares

distributedly, and so, avoids single-point failure like ITTC. It not only enhances robustness with Feldman ver-

ification and SSL protocol, but can also change the threshold (¢, k) flexibly and robustly, and so, is much

more practical . In this work, the authors implement the prototype system of the new scheme and test and ana-

lyze its performance.

Key words:
Document Code: A

INTRODUCTION

It is well-known that certification authority
(CAD is the core component of public crypto-
graphic infrastructure (PKID) ; and that the secu-
rity of its private key is very vital. If the private
key is compromised, the whole PKI will be cor-
rupted. Generally, there are two types of CA:
On-line and Off-line. Off-line CA is more se-
cure; but not good for PKI” s development. On-
line CA can provide easy and quick servicess;
but needs measures to secure its private key and
keep its services stable.

Secret sharing via threshold cryptography can
tolerate internal or external intrusions and will
promote the security. Generally, Lagrange secret
sharing in Shamir(1979) is used; but it requires
reconstruction of the key in a place to sign a
message> and is easy to fail. ITTC system in
Malkin et al. (2000) presented a distributed
certification scheme>
sions and certify a request without reconstruction
of a private key.

But ITTC system does not satisfy practical
application completely. Although it generates

which can tolerate intru-

Distributed certification, Trusted dealers Robust, Flexible
CLC number:

TP393.08

RSA key pairs distributedly and avoid single-
point failure, it needs the assumption that each
entity in secret sharing is absolutely honest and
reliable, which is very difficult to satisfy in prac-
tice. And the generation also takes too much
time, which is decribed in Malkin’ s experi-
ment. With increasing key size> time expense
will double even much more. At the same time,
the share distribution is not robust and secure.
The scheme in Frankel et al.(1998) is more ro-
bust, but requires much more time than that of
ITTC system.

In this paper, we bring up a new scheme
wherein key generation centers on a trusted deal-
er> but key update is distributive; and so avoid
single-point failure. At the same time, the new
scheme enhances robusiness with Feldman verifi-
cation mechnisms in key generation and update .
Moreover, it can change the threshold value (¢,
k) flexibly and robustly, which is required in
practice.

The paper describes the main process and al-
gorithm of the new scheme, and their implemen-
tation. Section 2 describes the system model.
Section 3 and 4 demonstrates algorithms of the

% Project supported by the Nature Science Foundation of China(No. 69974031 and Zhejiang Nature Science Foundation (No. 600014

556

LIU Duanyang, PAN Xuezeng et al.

key operation. Section 5 presents the detailed
performance of the whole system.

SYSTEM MODEL

The whole system is shown in Fig.1. Each
share server in Fig.1 administrates his own key
share. Share servers are servers of CAs in the
sense of functionality .

share
server
1
CA
share Dealer
server
CA
share
server

Fig.1 System model

CA: CA in Fig. 1 is different from general
certificate authority and is a client relative to
share servers. CA interacts with outside users
and receives their certification request. After CA
receives the certification request, it distributes
this request to - out-of-% share servers to sign.
After receiving the reply from the share servers,
CA multiplies the results and makes a check
(detailed check protocol in Malkin et al . » 2000)
before responding to the certification request.
CA and share servers can be viewed as a whole,
and for certification applicants the whole process
is transparent just as normal CA. That is to say,
an outsider communicating with the CA is un-
aware that the corresponding private key is stored
in shared form. The detailed process of distribut-
ed certification is given below:

Setup: Let threshold cryptography be i-out-
of-k> let d; be the share key of the share server
and NV be the modulus of RSA;

Step 1: CA server receives the certification
request, which is in PKCS10 (Public Key Cryp-
tography Standards # 10) format. According to
the request and system policy, CA server gener-
ates the corresponding certificate message M and
computes the hash valuve H = hash (M) (Note:
SHA-1 algorithm is used in this system) .

Step 2: CA server randomly selects the trust-

ed set Sc {1,2,*» k) where 1 S| = ¢, and
distributes the hash value H and the set S to
these ¢ selected share servers (Note: each peer
identifies the others with SSL protocol and inner
X.509v3 certificates) .

Step 3: Share server i signs the hash value
H with his share d; and computes the signature
SIG; = H* mod N where x = d; * H (i —

ves-{i}
y)71'C0 — v . Then each responds with corre-

sponding result.
Step 4: CA server collects ¢ share servers’

signatures SIG;, and SIG =

H! H;zl‘SIGi mod N . Then the signature SIG

is verified with RSA public key. If the verifica-
tion fails, key check protocol will be applied to
identify the corrupted shares. CA server will
kick the corrupted share outs reselect the set S
and return to step 2. (Note: key check protocol
is described in Malkin’s article) .

Step 5: CA server generates X.509v3 with
the signature SIG and the message M, and thus
accomplishes the certification .

Note: The certificates of inner entities can
pledge to accomplish the computation of the val-
vex = d; * H (i =)0 =) . Each share

vE §-{i}
server can know its value of from the CN field of

its certificate (see the description of the entity of
Dealer) . And no one can change the value of i .

Share server: CA’s private key is shared
with threshold cryptography. Kach share server
administrates his share key. Of course, a share
server can manage multiple keys and serve a
number of CAs. As private key is shared with
threshold cryptography, the whole system can
tolerate intrusion in some degree. Each server
holds one share which leaks nothing about the
private key. So» even if a few share servers are

computes

penetrated and the secrets stored in them are ex-
posed or corrupted, there is no compromise to
the overall system safety. In other words, an at-
tacker learns nothing from penetrating a few of
the share servers. The system can identify cor-
rupt share servers and recover compromised keys
by key shares update protocol .

Dealer: In the whole system> the dealer is a
trusted base> and can issue certificates for inner
entities> generate RSA keys, update key shares
and other functions.

1) Inner certificate issuance: The whole sys-

Distributed certification application via a trusted dealer

557

tem uses the Secure Socket Layer(SSL) to au-
thenticate and encrypt all communication. The
dealer governs the issuance of a X.509v3 certifi-
cate to each entity(CA, share servers and dealer
itself). In order to identify each entity, the CN
(Common Name) field(RFC 2459) in each cer-
tificate contains a string that allows other parties
to authenticate it. The field (CN) is described
in the following table:

Table Common name of each entity
Entity CN
CA [CERAUTH N
Share Server [SHARE N]
Dealer [DEALER N]

When establishing an SSI-secured connec-
tion, both peers must send their certificates to
establish mutual authentication. Each peer veri-
fies the certificates it receives and then parses it
to extract the identifying string to ensure that the
other peer is authentic. If a certificate is not
sent, if verification fails, or if the identity string
does not match what was sent in the protocol,
the connection fails. At the same time, the cer-
tificates of share server show its value i and no
one can change it. So each share can compute
its share of certification signature correctly and
avoids the need for key reconstruction in a
place.

2) Key shares generation: On his initiative,
the dealer can generate RSA key pairs locally,
compute the ¢-out-of-% shares of private key and
distributes key shares to the corresponding share
servers. During the process of share distribu-
tion> Feldman verification can ensure shares are
correct and any forged and compromised share of
the private key will be kicked out. The detailed
discussion is in Section 3.

3) Key shares update: Although CA’ s pri-
vate key is secure via threshold cryptography, as
a mobile adversary who may penetrate different
share servers in different time period, it is not
secure enough. A mobile adversary may get the
private key by penetrating ¢ (system threshold)
share servers; so shares must be updated period-
ically, after which the new share of each share
server is different from the old one. And no ad-
versary can get any information about new shares
from the old shares. The dealer will instruct all

share servers to update its shares by key shares
update protocol (described in Section 4) .

KEY SHARES GENERATION

The normal secret sharing is Shamir’ s La-
grange Algorithm (Shamir, 1979), which is ef-
ficient but cannot secure shares distribution.
Distributive key shares generation more secure
than Shamir’ s, such as Boneh and Franklin’ s
algorithm (Boneh et al., 1997) and the algo-
rithm of Frankel et al. (1998). Boneh and
Franklin’ s avoids the failure of single point, is
not secure and efficient enough. BF algorithm
requires that every share server is honest but cu-
rious, which the practical network environment
does not satisfy. From the test result of the
Malkin et al . (1999) algorithm, it is not very
efficient. Sometimes it needs 20 minutes to gen-
erate RSA keys. The Frankel et al. (1998) al-
gorithm is more secure and robust than the BF
algorithm, but needs a large amount of computa-
tion and takes much more time and network
bandwidth.

We bring up a new key generation method
based on a trusted dealer. Key shares are gener-
ated in the trusted dealer and distributed secure-
ly and robustly by Feldman verification and SSL
protocol . Although key shares are generated in a
place initailly, it can update key shares distrib-
utedly Cdescribed in Section 4), which also
avoids the possibility of single-point failure . The
key shares generation is described below:

Setup: Trusted dealer D generates RSA pa-
rameters: a modulus /N, a public key e and a
private key d. Let K= 11! and the threshold be
CtskDs where k=2t — 1 and k < 11. As ged
(e s K*) =1, A, B can be computed to satisfy 1
= eA + K’ B, using the extended Euclidean al-
gorithm. Note that d = A + d’L* mod ® (n)
where d’ = dB mod ®(n).

Step 1: D chooses a random polynomial: F
(x)=Fy+ Fix + "+ F_; x5 where F;
€R0, K, -, 2KN**“t} and F(O) = F, =

d'L? for l<j<t—1. D computes shares: F
(i) for 1 < i<k and distributes them securely
by SSL protocol .

Step 2: D randomly chooses g € Z, » where

g’ s order is maximal, and computes Feldman

558

LIU Duanyang, PAN Xuezeng et al.

verifications values: E; = g’ mod N for i€ 0,
-**, t — 1} and publishes g and all Feldman ver-
ification values.

Step 3: Share server i verifies the value

F(i) whether
t-1

gV = H(Ej)” mod N
j=0

where V = ¢ or not;

Step 4: If all share servers pass the verifica-
tion> the corresponding share key d; = F(i).
Or elses the process restarts from Step 1;

Step 5: D computes each public key share
V.= g% mod N and destroys secrets : the pri-
vate key d,> polynomial F (i) and its coeffi-
cients.

KEY SHARES UPDATE

In order to prevent a mobile adversary who
can corrupt different share servers in different
time period> we need update all key shares peri-
odically and recover corrupted shares. The pro-
tocol below is not only able to update and recover
shares, but is also able to change the threshold
Ct, k) flexibly and robustly. Although key share
is generated in one place in this scheme, key
update protocol is distributive and able to avoid
single-point failure. The detailed protocol is de-
scibled below:

Step 1: Dealer D randomly selects a trusted
set SC {1,2,*5 k} where | S| =¢. And D
generates a random message M> and demands
signature of this message from ¢ selected Share
Servers .

Step 2: D verifies the signature with the
public key. If it is not corrects the protocol re-
selects the trusted set S and restarts from step 1.

Step 3: D instructs the t selected Share
Servers to update and others to wait.

Step 4: Share Server i € S randomly con-

structs ¢-degree polynomial:
Fi(x)=Fi,0+Fi,1x+"'+Fi,t_1xt_1
where its coffients F;,; belong to {0, K, -+,

2K*N**t} for j belong to the set {1,-**,¢—1}
and F; (0D = F,, = d;Z;, where Z;, =

jes- G}

i_—]j . Share Server i computes d,,; = F;(j) for

7 belongs to the set {1,-**, £} and Feldman ver-
ification values E; ; = g" for j &€ {0, **+» t —
1}. Then it distributes d;, ; securely by SSL pro-
tocol and publishes all verification values E,, ;.
Step 5: Share server j(;& {1, =+, k}) re-
ceives its secret share d;; and all verification

values E; . and verifies each share like Feld-

i

man’s article. If the verifications is correct, it

computes new secret share d; = Zdi, j and com-

ics

putes and publishes the public key V; = g% .
Note: In order to agree with practice, the

threshold ¢ and k£ can be changed in step 3,

which the dealer D can instruct share servers

with a new threshold Cz, k).

PERFORMANCE

The system prototype is implemented on open
SSI(2001.11). The SSL protocol provides mu-
tual authentication with X. 509v3 certificates .
The system makes a standard extension in the
format of X.509v3, which gives a uniform se-
quence number to each share server. And so no
one can imitate share servers. At the same time,
in order to recover corrupted shares, the system
satisfies k=2t — 1, which can tolerate some in-
trusions. The following timing measurements of
distributed certification were taken on six intel-
based PC’s. All were running on Redhat Linux
(release 7.0). The computers were connected
by 10base-T Ethernet.

Latency and throughput are the parameters of
characterization of the system. Latency is the
time that a CA has to wait for all requests to be
serviced. And throughput is the number of re-
quests that can be serviced per second. Table 1
shows the latency and throughput for several key-
sizes. And Table 2 shows the performance of two
CA servers with 10 tasks and 1024 bits key,
which are runing at the same time.

We can learn something regular from Table 1
and Table 2 that the latency and throughput have
something to do with key-sizes, task numbers
and the value of ¢ and k. A key of larger size
results in more communications and longer com-
puting time> so as key size increasess; the
throughput decreases and the latency increases.
And the more tasks, the higher loads on the
servers and the latency increases. But key shar-

Distributed certification application via a trusted dealer

559

ing can balance the loads in some degree as dif-
ferent share servers can be selected at concurrent
requestss so on the opposition the throughput in-
The balancing ability of key sharing is
related to the ratio t/k, and the smaller this ra-

creases.

tio is> the more requests can be processed. At
the same time> key sharing tolerates ¢t — 1 re-
stricted servers being corrupted and distributed
certification can continue to serve efficiently.

Table 1 Latency and throughput

key size tasks no sharing 2-out-of-3 3-out-of-5
1024bits 2 0.044s 45.7/s 0.276s 7.24/s 0.371s 5.38/s
1024bits 10 0.226s 44.2/s 1.046s 9.56/s 1.263s 7.92/s
2048bits 2 0.234s 8.54/s 0.623s 3.21/s 0.730s 2.74/s
Table 2 Multi CA servers Verifiable Secret Sharing. In: Proceedings of the 28th
CA 2-out-of-3 3-out-of-5 Symposium on Foundations of Computer Science; [EEE
Computer Society Press; New York, p. 427 —437.
CAO 1.753s 5.705/s 1.852s 5.399/s Frankel, Y., MacKenzie; P. D. and Yung, M.,1998. Ro-
CAl 2.121s 4.715/s 2 341s 4.272/s bust Efficient Distributed RSA-Key Generation. In:
Proceeding of the thirtieth Annual ACM Symposium on
Theory of Computing (STOC), ACM Press> New York,
p.663 —672.
CONCLUSIONS Malkin, M., Wu, T. and Boneh, D., 1999. Experiment-

Threshold cryptography can secure CA” s pri-
This
paper describes in detail a new scheme for dis-
tributed certification via threshold crytography
and solves the vital problems of distributed certi-
fication such as key generation, key update,

vate key much more than general methods.

etc.

References

Boneh, D. and Franklin, M., 1997, Efficient Generation of
Shared RSA Keys. In: Proceedings Crypto’ 97, Spring-
er Press, California, p.425 —439.

Feldman, P., 1987. A Practical Scheme for Noninteractive

jzus @ zju.edu.cn

ing with Shared RSA Key Generation. In:
of the Internet Society” s 1999 Symposium on Network
and Distributed System Security (SNDSS), Springer
Press, California, p. 43 —56.
Malkin, M., Wu, T. and Boneh,

trusion Tolerant Applications. In:

Proceedings

D., 2000. Building In-
Proceeding of DAR-
PA Information Survivability Conference and Exposition,
IEEE Computer Society Press, New York, 1:74 — 87.

Open Security Socket Layer (OpenSSL), 2001. Available at
http: //www . open-ssl . org/

Public Key Cryptography Standard (PKCS), 2001 . Available
at http: //www . rsa-security . com/rsalabs/pkes/

Shamir, A.,1979. How to share a secret. Communications
of ACM, 22(11):612 - 613.

Request For Comment 2459 (RFC 2459), 2002. Available

at http: //www . ietf. org /xfc/

S S S S S S e S S e S S S S e S s _>>\>\t/

Welcome visiting our journal website:
http:// www . zju. edu . cn/ jzus
) Welcome contributions & subscription from all over the world

the journal, or related matters

;
§
§
§
%
The editor would welcome your view or comments on any item in %
iz
) Please write to: Helen Zhang, managing editor of JZUS %

§

Tel/Fax 86 — 571 — 87952276

