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Abstract:   This article presents two approaches for automated building of knowledge bases of soil resources mapping. 
These methods used decision tree and Bayesian predictive modeling, respectively to generate knowledge from training data. 
With these methods, building a knowledge base for automated soil mapping is easier than using the conventional knowledge 
acquisition approach. The knowledge bases built by these two methods were used by the knowledge classifier for soil type 
classification of the Longyou area, Zhejiang Province, China using TM bi-temporal imageries and GIS data. To evaluate the 
performance of the resultant knowledge bases, the classification results were compared to existing soil map based on field 
survey. The accuracy assessment and analysis of the resultant soil maps suggested that the knowledge bases built by these 
two methods were of good quality for mapping distribution model of soil classes over the study area. 
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INTRODUCTION 
 

Land resources management and ecological 
environmental decision-making requires knowl-
edge about the spatial distribution, and quantity and 
quality of soil resources. Soil maps have tradition-
ally been made by interpretation of remotely sensed 
imagery supported by ground surveys. Thus, soil 
mapping becomes expensive, labor-intensive, and 
time-consuming exercises. Moreover, it also is 
subjective, and may result in inconsistencies in the 
assignment of soil type boundaries or names be-
tween different interpreters, and over time with 
individual interpreters (Skidmore, 1989). 

A number of studies used expert systems (also 

called knowledge-based systems) to do automatic 
soil mapping by reasoning like an expert (Huang 
and Jensen, 1997). Most expert systems are or-
ganized on three levels: data, knowledge base, and 
inference engine. The heart of the expert system 
approach is its knowledge base that contains a great 
deal of domain-specific knowledge (Luger and 
Stubblefield, 1993). 

The usual method of acquiring knowledge in a 
computer-usable format to build a knowledge base 
involving human domain experts and knowledge 
engineers (Huang and Jensen, 1997). The domain 
expert explicitly expresses his or her knowledge 
about a subject in a language that can be understood 
by the knowledge engineer, who translates the 
domain knowledge into computer-usable format 
and stores it in the knowledge base.  

This process presents a well-known problem 
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when creating expert system that is often referred to 
as the �knowledge acquisition bottleneck�. To 
solve this problem, much effort has been exerted in 
the artificial intelligence community to automate 
knowledge acquisition to obtain low-cast and 
high-quality knowledge bases. Studies on auto-
mated knowledge acquisition belong to the 
sub-field of artificial intelligence known as ma-
chine learning (Huang and Jensen, 1997). 

Machine learning techniques for classification 
can be based on either statistical pattern recognition 
or data mining techniques for induction of decision 
trees or production rules. Thus, the objective of this 
study was to employ two techniques, namely deci-
sion tree and Bayesian predictive modeling meth-
ods, for automated soil mapping. This method 
eliminates or reduces the difficulty caused by the 
�knowledge acquisition bottleneck�, and should 
allow expert system techniques to be adopted more 
easily by soil resources mapping scientists. 
 
 
THEORETICAL BASIS FOR AUTOMATED 
SOIL MAPPING 
 
Theoretical basis for soil inference 

The theoretical basis for soil inference is based 
on the classic concept of Jenny (1941; 1980) that 
soil is a product of interaction among climatic 
factors, landform, parent material, organism, and 
hydrological factors over time. Therefore, we may 
infer the soil type at a given location if we have data 
on local environmental conditions. This can be 
expressed in qualitative terms by  
 

( , , , , )S f Cl Og Pm Tp t=             (1) 
 
where Cl represents climate conditions, Og is for 
organism, Pm is parent material, Tp stands for to-
pography, and t is time. 

Eq.(1) illustrates the general relationship be-
tween the soil and its environmental factors. 
However, the details of the relationship are dif-
ferent at different places. It is very difficult at this 
stage to derive a mathematical formula for the re-
lationship because of the complexity and limited 

understanding of both soil forming processes and 
the paleo-environment. 

Over decades of study of soil-environment 
relationships, a great deal of empirical knowledge 
has been accumulated. Particularly, local soil 
scientists who study and map soils in their 
respective regions have accumulated detailed 
knowledge on soil-environment relationships. It is 
our belief that this empirical knowledge can be used 
to approximate relationship in Eq.(1) for soil 
resources category inference. 
 
Methodology of machine learning 

Machine learning is the science of computer 
modeling of learning processes. It enables a com-
puter to acquire knowledge from existing data or 
theories using certain inference strategies such as 
induction or deduction (Huang and Jensen, 1997). 
In this study, we focus on inductive learning and its 
application in building knowledge bases for auto-
mated soil mapping.  

A motivation for the use of this approach to 
build a knowledge base is that it requires only a few 
good examples to function as training data. This is 
often much easier than explicitly extracting com-
plete general theories from the domain expert. In 
machine learning from examples usually a set of 
examples is linked to a given output, the system 
then derives rules or statistical measures to link 
both parts. Both decision tree and Bayesian pre-
dictive modeling methods employed in this study 
need a few good training examples to derive the 
required knowledge. 

Generally, ground sampling is the best way for 
obtaining such training data. However, it is difficult 
to collect enough samples especially in a 
non-agricultural area under financial and personnel 
constraints. So it would be profitable to extend the 
usefulness of existing soil surveys. During soil 
survey, empirical soil-environment models are 
developed to make predictive statements about the 
spatial distribution of soil classes. These models are 
developed by inductive reasoning from field ob-
servations and are used to delineate soil classes. 
Models for predicting soil-environment distribution 
relate soils/soil classes to topographic position in 
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certain landforms, geology, vegetation communi-
ties, and remotely sensed data. Thus, it should be 
theoretically possible to integrate these data types 
within a once mapped area to re-build predictive 
rules for soil resources mapping. 

The association between an existing soil map 
for the Longyou area in Zhejiang Province, China, 
and other environmental and satellite sensing spa-
tial data was analyzed by using two rule induction 
methods(decision tree method and Bayesian pre-
dictive modeling) whose resulting maps were then 
compared with the original. The underlying as-
sumption was that these rule induction methods can 
reveal relationships between environmental vari-
ables that may help to predict the distribution of soil 
types and thus, in some way, mimic the mental 
model of the former surveyors. 
 
 
STUDY AREA AND MATERIALS 
 
Description of the study area  

The study area (28°44′ to 29°17′N, 119°02′ to 
119°20′E) locates in Longyou County, Zhejiang 
Province, China. According to the availability of 
the 1:50000 scale geological map, an area smaller 
than the administration region of Longyou County 
was selected as the study area of 777.8 km2. 

The climate is monsoon subtropical, with 
mean annual precipitation being about 1672 mm 
and the mean annual accumulation temperature 
reaching 5503 ºC. The area lies in the transitional 
zone between the North-Zhejiang Mountain range 
and the South-Zhejiang Mountain range with the 
alluvial plain formed by the Qujiang river running 
through the central part. 

The elevation in the study area ranges from 33 
m to 1439 m above sea level. The southern part is 
mountainous; the parent material is mainly gneiss, 
granite and tuff. The northern part is hilly region, 
mainly of red sandstone, limestone, and purple 
sandy shale parent material. The central part is the 
flat Jinqu Basin with variable fluvial deposits. 

Based on the former soil survey (The Second 
Chinese National Soil Inventory), there are five soil 
groups in the study area, namely Red soil, Yellow 

soil, Lithomorph soil, Fluvio-aquic soil and Rice 
paddy soil, with red soil being the main zonal soil 
of the region. 
 
Environmental variables used 

The predictive variables considered important 
for determining the distribution of soils over the 
study area included: parent material, landuse, ele-
vation and its derived terrain attributes, namely 
slope, aspect, profile curvature, plan curvature, 
upslope contributing area. In addition, the first 4 
principal components of bitemporal TM imageries 
of study area are employed to characterize the 
soil-forming environment. The existing soil map 
used as a ground-truth map. 

The 1:50000-scale soil map, geology and 
landuse map of the study area were digitized 
manually. Information on topographic data such as 
elevation, slope, aspect, profile curvature, plan 
curvature and upslope contributing area were ob-
tained from a digital elevation model (DEM) of the 
study area. The contour lines, 3D points, stream-
lines and ridgelines were digitized manually from 
the Chinese State Bureau of Surveying and Map-
ping 1:50000-scale series map with a 10-m contour 
interval. These above topographic objects were 
input to Arc/Info to build a TIN, and then were 
transferred into a raster-based DEM. The profile 
curvature, plan curvature and upslope contributing 
area were derived by Arc/Info Grid module, and 
then rescaled into 0~255 to make these variables 
easily analyzable. 

Two Landsat TM multispectral imageries of 
Longyou County obtained on 4th May, 2000 and 
5th June, 1997 respectively were used in this study. 
After layer stacking these two TM imageries into a 
single imagery with 12 bands (excluding two 
thermal bands of TM), principal components 
analysis was performed on the bitemporal TM 
imagery, in order to reduce the number of features 
and thereby improve computational efficiency. 
Only the first 4 principal components accounting 
for 99.4% of the total scenes variance were adopted. 
These principal components were rescaled to range 
in brightness from 0 to 255 to improve the 
computational efficiency. 
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Layerstacking the dataset and sampling the 
training data 

The raster data model was chosen to represent 
data layers and results in our method because the 
raster model is more suitable for representing con-
tinuous spatial variation of soil. All the data were 
geometrically corrected to a Gauss Kruger projec-
tion using the same map base (1:50000 scale con-
tour map) and resampled to a regular 30 m grid. 
These datasets were inputted, and stored as a 
stacked layer in the ERDAS Imagine. 

The objective of training is to provide exam-
ples of the concepts (in this study, it means 
soil-environment mental model) to be learned. 
When building a knowledge base for soil classifi-
cation, the examples should be a set of training 
objects, each of which is represented by a 
class-attribute value class vector such as [Soil-
Class_i, EnvironVariable_1, �, EnvironVari-
able_n]. The learning algorithm attempts to deduce 
from this training data set some generalized con-
cepts, i.e., rules that can be used to classify the 
remaining data (Huang and Jensen, 1997). 

A total of 90266 pixels (approximately 10% of 
the total pixels) were selected using stratified 
random sampling. The training pixels were then 
subdivided randomly into two datasets; one con-
sisting of 80786 pixels that were only used to de-
velop the knowledge base and the other with 9480 
pixels that were only used for accuracy assessment. 
 
 
KNOWLEDGE ACQUISITION PROCESS 
 
Decision tree modeling 

(1) A brief introduction of decision tree mod-
eling 

Decision tree is a non-parametric method for 
analyzing hierarchical relationships. Trees can 
identify and express nonlinear and non-additive 
relationships in a simple form. The idea behind 
decision tree is to recursively subdivide the training 
set of examples into homogeneous groups, using 
discriminating variables. The variable selection 
criterion is based on the entropy measure from 
information theory. Thus a variable is chosen, 

which results in the best discrimination of the 
dataset into the given classes. The procedure is 
repeated for each new subset of the dataset, until all 
data in a subset belong to as �pure� subsets as 
possible. 

There are a number of decision tree algorithms, 
such as Quinlan�s (1986; 1993) ID3 and C4.5, and 
so on. The C4.5 algorithm was selected in this re-
search because of its following advantages (Quin-
lan, 1993): 1) C4.5 is flexible. Unlike many statis-
tical approaches, it does not depend on assumptions 
about the distribution of variables values or the 
independence of the variables themselves; 2) C4.5 
is based on a decision-tree learning algorithm that 
is one of the most efficient forms of inductive 
learning. 

(2) decision tree generation 
A recursive �divide and conquer� strategy is 

used by C4.5 to generate a decision tree from the 
above training data. The input training data was a 
text file with each line representing a training ob-
ject. In this study, tree construction proceeds until 
the number of cases reaching each leaf is small (by 
default, n<5) or the leaf is homogeneous enough 
(by default, its deviance is <1% of the deviance at 
the root node). The resultant tree structure is shown 
in Fig.1. 

The decision tree obtained using the continu-
ous quantitative variables elevation, slope, aspect, 

 
 

Fig.1  The structure of the classification tree with 29 ter-
minal nodes  
Some simplified splitting criterion is given for the marginal
nodes with the largest reduction in deviance. All of the split-
ting criterion (i.e. production rules) are listed in Appendix I 

Geo: quaternary 
river alluvium Geo: others 

Elevation 
<49 m 

Land use:  
rice paddy 

Rice 
paddy soil 

Elevation 
≥559 m 

Elevation 
≥658 m 

Yellow 
soil 

Elevation 
≥49 m 

Elevation 
<559 m 
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upslope contribution area, PC1−PC4 and the cate-
gorical factor geology, landuse to predict Longyou 
soil classes had 89 nodes. Table 1 compares the 
original and pruned tree statistics. The misclassi-
fication error rate increases slightly from 0.1891 to 
0.1894 for the pruned tree with 29 terminal nodes. 
Yet more severe pruning further reduced the num-
ber of predicted classes: pruning to 20 or 11 
terminal nodes yielded 4 classes (Table1). 

It was clear that geology, landuse and eleva-
tion, which were used to split the trees at the highest 
nodes (Fig.1) were the most important variables for 
predicting Longyou soil classes. Of the DEM-de- 
rived terrain attributes, only slope and upslope 
contributing area were used to build the tree when it 
was pruned to 29 terminal nodes. 

(3) From decision tree to production rules 
Although decision tree is an important form of 

knowledge representation, it is rarely used directly 
in knowledge bases. Decision trees are often too 
complex to be understood, especially when they are 
large. A decision tree is also difficult to maintain 
and update. Therefore, it is often desirable to 
transform a decision tree to another form of 
knowledge representation, such as production rules. 
In fact, each path from the root to a leaf in a deci-
sion tree can be translated into a production rule. 
For example, the path from the root to the most left 
leaf in the decision tree in Fig.1 can be represented 
by a production rule, i.e.: 
 
(geology=�Quaternary river alluvium�) and (ele-
vation<49m) and (landuse=�rice paddy field�)→ 
(soil=Rice paddy soil) 
 

The performance of each rule was summarized 
 
 

 
 
 
 
 
 
 
 

by the statistics (n/m). n is the number of training 
cases covered by the rule and m shows how many of 
them do not belong to the class predicted by the rule. 
The rule�s accuracy was estimated by the Laplace 
ratio (n−m+1)/(n+2). The meaning of rule parts was 
shown in the following simple illustration: 
 

RULE 2: 
GEO=Quaternary river alluvium   

// if Geology type is �Quaternary river alluvium�, 
ELE ≤ 49 m  

//and if elevation is less than and equal to 49 m, 
LDU = rice paddy field 

//and if landuse type is �rice paddy field�, 
→ SOIL = Rice paddy soil  [0.897] 

//then soil class is �Rice paddy soil�. 
//The accuracy of this rule is 0.897. 

 
Totally, 29 predicting rules were transformed 

from the decision tree (see Appendix I). 
Because the rules are easy to understand, they 

can also be examined by human experts. With cau-
tion, they may be edited directly. Based on the 
result of the decision tree, the production rules were 
built as a file with the aid of ERDAS IMAGINE 8.4/ 

knowledge Engineer program. This file became the 
knowledge base and was the core part of the 
knowledge classifier. The subsequent knowledge 
classification was preformed by using the ERDAS 
IMAGINE 8.4/knowledge classifier program, and 
the resultant soil map is shown in Fig.2. 
 
Bayesian predictive modeling 

(1) A brief introduction to Bayesian predictive 
modeling 

Bayesian statistics constitute an alternative 
method for building predictive relationships between 
 
 
 
 
 
 
 
 
 
 

 

Variables employed by decision tree 
(ordered by appearance in tree) 

No. of terminal 
nodes 

Misclassication 
error rate 

No. of soil classes 
predicted 

GEO+ELE+LDU+PC3+PC4+PC1+ASP+ USCA + SLP + PC2 89 0.1891 5 
GEO+ELE+LDU+PC3+PC +SLP+USCA+PC2 33 0.1892 5 
GEO+ELE+LDU+PC3+SLP+USCA+PC2+PC4 29 0.1894 5 
GEO+ELE+LDU+PC3+SLP+USCA+PC2 20 0.1917 4 
GEO+ELE+LDU+PC3+SLP+PC2 11 0.2001 4 

 

GEO: geology; ELE: elevation; LDU: landuse; ASP: aspect; USCA: upslope contribution area; SLP: slope; PC1, PC2, PC3 and PC4: 1st, 2nd, 
3rd and 4th principal components of bitemperal TM data, respectively 

 

Table 1  Summary of original and pruned tree results 
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soil types and their environment. Mapping soil 
resources under this probability model is a process 
of deriving probability values of the given soil 
resource at each location (pixel) to a set of pre-
scribed soil resource classes. 

Bayes� theorem uses a prior and conditional 
probabilities to calculate the probability of an un-
certain event occurring. In this instance, let Sa be 
the soil class (for a=1, �, n classes) occurring at 
location Xij, that is at the ith row and jth column of 
the GIS raster database. Let Eb be an item of pre-
dictor variable (for b=1, �, k items of evidence) 
known at location Xij. Set up a hypothesis (Ha) that 
class Sa occurs at location Xij, 

A rule may be defined as 
 
 

b aE H⇒                         (2) 
 

That is, given a piece of evidence, then infer 
Ha. 

The probability of a given soil class at a given 
cell is then inferred using Bayes� theorem to update 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
the probability of the rule that the hypothesis (Ha) 
occurs at location (i, j) given a piece of evidence 
(Eb), i.e. 
 

( | ) [ ( ) ( )] / ( )a b b a a bP H E P E H P H P E=            (3) 

 
where ( | )b aP E H is the a priori conditional prob-
ability that there is a piece of evidence Eb given a 
hypothesis Ha that class Sa occurs at location (i, j); 

( )aP H is the probability for the hypothesis (Ha) that 
class Sa occurs at location (i, j) and is estimated by 
the experienced soil scientist or calculated on the 
field samples. ( )bP E  is the probability of the evi-
dence alone, or, the probability that any cell has an 
item of evidence {Eb}. 

Given the complexity of soil landscape, we 
would not expect a high degree of precision from 
one or two rules alone. The surveyor would con-
ventionally consider a range of evidence simulta-
neously and a similar function is performed here by 
combing rules in a single estimate of probability. 

Fluvio-aquic Soil Lithomorph Soil Rice Paddy Soil Yellow Soil 
Fluvio-aquic soil Lithomorph soil Red soil Rice paddy soil Yellow soil Water & built-up 

Fig.2  The soil maps of the study area 
(a) Reference soil map; (b) Inferred soil map based on classification tree; 

(c) harden soil map resulting from Bayesian predictive modeling 

(a) (b) (c) 
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Thus parallel inference method was employed in 
the inference process to calculate the joint prob-
ability of the soil classes� occurrence given n soil 
environment factors. 

Assuming conditional independence of the 
evidence, the joint probability from n contributing 
rules can be calculated as follows (Cook et al., 
1996): 
 

1
1

1

( | ,..., )
( | ,..., )

( | ,..., ) 1
a b

a b
a b

o H E E
p H E E

o H E E
=

+
           (4) 

1
1

( | ,..., ) ( )
k

a b a b
b

o H E E o H L
=

= ∏             (5)
    

( | )
( )

a b
b

a

o H E
L

o H
=                                            (6) 

( | )
( | )

1 ( | )
a b

a b
a b

p H E
o H E

p H E
=

−
                        (7) 

( )
( )

1 ( )
a

a
a

p H
o H

p H
=

−
                                     (8) 

 
where 1( | ,..., )a bp H E E is the joint probability that a 
hypothesis Ha that class Sa occurs at location (i, j) 
given n evidence Eb; Lb is the weighting value of the 
bth environmental variable for the soil Sa; 

1( | ,..., ),a bo H E E ( | )a bo H E  and ( )ao H represent the 

conditional odds format of p(Ha|E1, …, Eb), 
( | )a bp H E  and ( )aP H , respectively. 

(2) Bayesian probability modeling 
In a soil mapping exercise the joint probabili-

ties are generally developed using sample sites 
throughout the area to be mapped. At these sites the 
soil class to be predicted are identified, as are the 
on-site values of the evidence variables. In this 
study, the joint probabilities were calculated using 
the training data mentioned above. 

Based on the above result of classification tree, 
the evidence variables that might be helpful in 
identifying the soil type of the study area were 
geology, landuse, elevation, slope, upslope con-
tribution area, and PC1~PC4. Thus only these 9 
variables were adopted in the Bayesian predictive 
modeling. For each soil type, a point-by-point 
comparison with each predictor variable was used 

to derive a probability lookup table. 
The inference process was carried out using a 

raster data model with which probability values 
were computed for each grid cell. For a given soil 
type the inference system took a set of environ-
mental conditions of a pixel from the GIS database. 
It then used each of the probability lookup tables to 
calculate the joint probability value from each of 
the environmental variables. The combining in-
ference was used on these probability values to 
obtain the joint probability value for the pixel. The 
process continued onto the next pixel until all pix-
els in the area were visited. A map (Pa) of overall 
probability values for the given soil type a over the 
mapping area was then produced. The process 
continued onto the next soil type until all soil types 
were considered. 

Thus, the soil in a given location (i, j) can be 
expressed by an n-element vector 
 

1( ,... ,... )a n
ij ij ij ijp p p=P                         (9) 

 

where a
ijp is a probability measure of the soil at 

point (i, j) to the prescribed soil categorical unit a, 
and n is the number of soil categorical units in the 
area. 

We call vector P the soil probability vector 
(SPV). Thus, SPV at point (i, j) will be represented 
as SPVij. The assemblage of these probability maps 
(SPV) forms the probability representation of the 
soil resources over the area. 

In order to compare the inferred results with 
the existing soil maps at the point level, we hard-
ened the SPV to produce a crisp representation of 
soil information for each pixel by assigning to it the 
soil type which has the highest posterior probability 
{max 1( | ,..., )a bp H E E |a=1,�,n} at that location. 
The resultant soil maps obtained by using Bayesian 
predictive modeling are shown in Fig.3. 

 
 

RESULTS AND DISCUSSIONS 
 

Maps results from each of the methods detailed 
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above are shown in Fig.2 and Fig.3. The resulting 
maps were overlaid with the reference and the cor-
respondences between them were tested by 
cross-validation (Table 2 and Table 3). User�s ac-
curacy, producer�s accuracy and Kappa statistics 
were then applied to measure the overall agreement 
between the predicted and the reference data. These 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
misclassification rates suggested that there were 
some differences between the inferred soil maps by 
two methods and the existing soil map. 

For both methods, Yellow soil and Fluvio- 
aquic soil were predicted more successfully than 
Rice paddy soil and Red soil according to Kappa 
statistics. Neither method can successfully predict 

Fig.3   The probability maps of the soil in study area 
(a) Red soil; (b) Yellow soil; (c) Lithomorph soil; (d) Rice paddy soil; (e) Fluvio-aquic soil 

(a) (b) (c) 

(e) (d) 

  0.001−0.2 

0.2−0.4 

0.4−0.6 

0.6−0.8  

0.8−1.0  
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Lithomorph soil, although the Kappa value for it in 
Table 2 reached to 0.6273, the producer�s accuracy 
for this class was much worse (0.030) which sug-
gested almost 97% of this type was classified as 
other types.  

Both of the two methods predicted Red soil 
with similar accuracy, Kappa values for decision 
tree and Bayesian predicting modeling were 0.6307 
and 0.6627, respectively. User�s accuracy and 
producer�s accuracy were also close to each other. 

Rice paddy soil was in similar situation with 
red soil. With some slight difference, decision tree 
and Bayesian predicting modeling displayed the 
comparable effect for soil prediction. 

However, great differences existed in the pre-
diction of Fluvio-aquic soil and Yellow soil by the 
two methods. For Fluvio-aquic soil, producer�s 
accuracy of Bayesian predicting modeling was 
better than that of decision tree by 20%, whereas 
user�s accuracy of the former was worse than the 
latter by 15%. For Yellow soil, Bayesian predicting 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
modeling had better user�s accuracy but worse 
producer�s accuracy than decision tree modeling 
with differences of accuracy values reaching to 
10% and 20%, respectively. 

Overall accuracy provided another index for 
evaluating the prediction result. About 81.3% and 
79.3% of the total validating data were correctly 
predicted by decision tree modeling and Bayesian 
predicting modeling. This result suggested that, on 
general basis, these two methods had equivalent 
effect on soil class prediction over the study area 
although they displayed different effect for some of 
the specific soil type predictions. 

The differences between the inferred soil maps 
and the reference soil map might be caused by in- 
accuracies in the GIS data layers and the ambiguity 
or incompleteness of the knowledge bases. Errors in 
GIS data layers will reduce the mapping accuracy 
of the resultant soil maps derived by the machine 
learning techniques (Skidmore et al., 1991). The 
extent to which errors were  accumulated  from  the 

Table 2  Cross-tabulation of reference vs classes predicted with the decision tree 
 

Reference soil map 
 

Red soil Yellow soil 
Lithomorph 

soil 
Fluvio-aquic 

soil 
Rice paddy 

soil Total 
User�s 

accuracy Kappa 

Red soil 4088 50 90 1 795 5024 0.814 0.6307 
Yellow soil 172 581 0 0 30 783 0.742 0.7236 

Lithomorph soil 4 0 7 0 0 11 0.636 0.6273 

Fluvio-aquic soil 0 0 0 104 12 116 0.897 0.8948 

Rice paddy soil 433 0 134 56 2923 3546 0.824 0.7088 

Pr
ed

ic
te

d 
so

il 
m

ap
 

Total 4697 631 231 161 3760 9480   

Producer�s accuracy 0.870 0.921 0.030 0.646 0.777 Overall accuracy: 0.813 

 
Table 3  Cross-tabulation of reference vs classes predicted by using Bayesian predictive modeling 

 

Reference soil map 
 

Red soil Yellow soil 
Lithomorph 

soil 
Fluvio-aquic 

soil 
Rice paddy 

soil Total 
User�s 

accuracy Kappa 

Red soil 3828 125 57 2 601 4613 0.830 0.6627 
Yellow soil 85 453 0 0 5 543 0.834 0.8224 

Lithomorph soil 125 0 67 0 77 269 0.249 0.2303 
Fluvio-aquic soil 4 0 0 136 42 182 0.747 0.7429 
Rice paddy soil 655 53 107 23 3035 3873 0.784 0.6414 

Pr
ed

ic
te

d 
so

il 
m

ap
 

Total 4697 631 231 161 3760 9480   

Producer�s accuracy 0.815 0.718 0.290 0.845 0.807 Overall accuracy: 0.793 
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GIS data layers may be uncertain, but are analyzed 
theoretically and empirically in the following part. 

In this study, the existing soil map produced 
from soil surveys was digitized to be used as a 
�true� map and provide the soil classes information 
required for the machine learning. However, soil 
maps often contain a great deal of uncertainty as 
much of the quantitative and qualitative knowledge 
of the soil scientists regarding the occurrence of 
given soil units is not maintained in the map. There 
are some major problems regarding the use of 
current soil maps in geographic analysis (Burrough, 
1986) including limited coverage at a fixed scale, 
locational errors, attributes errors, and insufficient 
information in the mapping units due to the crisp 
logic and cartographic techniques with which soil 
maps are produced. 

Therefore, the knowledge of soil scientists 
about soil variation cannot be fully represented by 
soil maps so that some of the information mapped 
cannot be captured by the machine learning meth-
ods. The knowledge bases acquired by machine 
learning algorithm can be consequently ambiguous 
or incomplete. 

In addition, locational errors are introduced 
into soil maps by improper positioning of bounda-
ries between soil bodies. The introduction of loca-
tional errors is not due purely to the mistakes made 
by soil mapping experts but also due to the nature of 
soil boundaries. Soil varies gradually and the 
boundaries between different types of soil are often 
diffused than sharp (Mark and Csillag, 1990). 
However, soils have to be delineated into homo-
geneous polygons on soil maps. Therefore, it is 
difficult for any soil-mapping expert to draw a 
boundary between two soils without introducing lo- 

 
 
 
 
 
 
 
 
 
 

cational errors. 
The idea that the low predictive success of the 

two methods stems from positional inaccuracies in 
the polygon boundaries was tested by performing 
new map correlations after masking out 1 
pixel-width on either side of map polygon bounda-
ries of the original reference soil map. This de-
creased the number of validation samples from 
9480 to only 7186. The overall accuracy of the 
predicted map by using the decision tree increased 
from 81.3% to 89.0% and Kappa statistics increased 
from 0.6307 to 0.8029 for Red soil, from 0.7088 to 
0.8371 for Rice paddy soil. The overall accuracy of 
the predicted map by using the Bayesian probability 
method increased from 79.3% to 86.5% and Kappa 
statistics increased from 0.6627 to 0.8114 for Red 
soil, from 0.6414 to 0.7701 for Rice paddy soil. 

Table 4 lists the details of the decrease number 
for each soil classes. The results showed that the 
validating data for Lithomorph soil had the highest 
decrease rate, more than half of the total points 
located in the above masking-out region which 
implied Lithomorph soil dramatically tend to be 
spatially intermittent. 

Based on the results, we can find that both 
methods had difficulty in singling out the 
soil-environmental relationships for soil units that 
tend to be spatially intermittent, especially in the 
hilly region of the study area. It is true that at high 
elevations the environment is less heterogeneous 
than at low elevations in the study area. Thus, the 
soil class (Yellow soil) at high elevations tended to 
be spatially contiguous always had the higher 
classification accuracy. Understanding the rela-
tionships between spatially contiguous soil units 
and their environments would be easier than under- 
 
 
 
 
 
 
 
 
 
 

Table 4  Details of the decrease number for each soil classes 

 No. of original 
validation data 

No. of validation data 
after masking-out No. of decrease Rate of decrease 

Red soil 4697 3673 1024 21.8% 
Yellow soil   631   536     95 15.1% 
Lithomorph soil   231   112   119 51.5% 
Fluvio-aquic soil   161   123     38 23.6% 
Rice paddy soil 3760 2742 1018 27.1% 
Total 9480 7186 2294 24.2% 
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standing the relationships between intermittently 
distributed soil units and their environments. 

The reference soil map is not completely ac-
curate, neither is the other categorical maps (ge-
ology and landuse) nor the DEM, and further errors 
are propagated by using the DEM to derive terrain 
attributes. Lithomorph soil often occurs around 
small rock outcrops or along small spurious ridges 
and divides which could not be described well with 
the environmental variables, especially the topog-
raphic and parent materials variables employed. 
Therefore, it was difficult to establish the rela-
tionships between Lithomorph soil and these en-
vironmental variables. In detail, Lithomorph soil 
and Red soil essentially fall within similar elevation 
range, and have similar spectral reflectance due to 
their being overlaid by similar landcover types 
(mainly rangeland) in the northern part of the study 
area, where only the parent materials can be used to 
separate them. Thus prediction of these two soil 
classes is highly sensitive to any errors in the ge-
ology map. The low consistency measure between 
our resultant map and the existing soil map related 
to the Lithomorph soil implied that there might be 
some errors or omissions existing in the geology 
map. A larger scale (for example, 1:10000 scale) 
geology map would be helpful for improving the 
accuracy. 

Yet another possibility for the inconsistency 
rate of the machine learning methods is that the 
current environmental conditions are not those 
under which the soils developed. For example, we 
can easily be aware that the landuse type of some 
areas that underlaid the rice paddy soil in the ref-
erence soil map has changed from rice paddy field 
to other landuse type (rangeland or dry land) by 
overlaying landuse map or remotely sensed image-
ries. Thus, the soil type must have changed to some 
extent due to absence of the conditions of Rice 
paddy soil development. 

Therefore, the valid test of accuracy for the 
results is field ground-truthing of the predicted 
maps but not only by comparing with the existing 
soil map. Under financial and personnel constraints, 
however, it is generally difficult to collect enough 
field samples to assess the error in a statistically 
significant manner. 

The trees confirm that the spatial correlations 
evident from visual comparisons of overlays of the 
geology, landuse, spectral features and elevation 
with the Longyou soil map. In fact, Wang et al. 
(1986) considered landform as the highest category 
level of their soil visual interpretation. The soils on 
uniform landform were further subdivided on the 
basis of parent material and spectral reflectance. 
These researches including this study suggested 
that landform, geology, and multispectral imagery 
played important roles in the mental model used by 
soil experts to map the soil distribution in Zhejiang 
Province. 

As the terrain attributes derived from DEM, it 
is possible that profile curvature and plan curvature 
are not useful for predicting soil-environment rela-
tionships when the soil mapping units are large 
groups rather than genus of species and there is a 
mismatch between the scale of generalization of 
soil units and the terrain attributes. Lagacherie and 
Holmes (1997) concluded that the curvature vari-
ables were of limited usefulness in his study area in 
France. 

Bayesian probability methods achieved mod-
erate success in predicting soil map classes over the 
study area using geology, bitemporal TM imageries, 
landuse, DEM and its derived terrain attributes. 
Moreover, this representation of soil information is 
different from the conventional crisp representation. 
The existence of the soil at a location in a soil unit is 
expressed in terms of a probability value between 
0.0 and 1.0, and not a yes or no. Fig.3b and Fig.2a 
show the distribution of probability values and 
existing soil map, respectively, for Yellow soil. 
Compared with the existing soil map, the prob-
ability maps reveal more details at the spatial level. 
Therefore, the probability predictive modeling 
method is capable of eliminating the minimum 
mapping size problem in conventional soil mapping 
and by allowing more detailed spatial patterns of 
soil information to be represented. 

 
 

CONCLUSION 
 

This paper presents a process based on deci-
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sion tree technique and Bayes� Theorem for ac-
quiring knowledge about soil-environment rela-
tionships and also presents a case study that dem-
onstrated the use and potential of this process for 
extracting useful information from the existing 
maps. The case study showed that the process was 
moderately successful in extracting knowledge 
from the existing soil maps and other GIS data 
related to soil development. The implication is that 
this process would be useful in acquiring knowl-
edge about resource-environment relationships for 
mapping natural resources by using the decision 
tree and probability model. 

The decision trees suggested that there exist 
spatial correlations between some local environ-
mental variables and the Longyou soil types. These 
variables were confirmed to be geology, landuse, 
spectral features, elevation and some of its derived 
terrain attributes, with geology, landuse, and ele-
vation playing the most important roles in the 
mental model used by soil experts to map the soil 
distribution in local area. 

The probability images produced from the 
Bayesian predictive modeling have potential ad-
vantages over standard soil survey maps in terms of 
revealing spatial patterns of soil information and in 
terms of production cost. Rigorous field-testing is 
required to quantify the potential advantages of this 
technique in the derivation and representation of the 
spatial pattern of soil types. 
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Appendix I  29 predicting rules transformed from the decision tree* 
Rule 1: 

ELE < 49 m 
GEO = 6,9,17,261) 
LDU = 4,7,10,16,17,182) 
→ Soil = Fluvio-aquic soil  [0.878] 

 
Rule 2: 

ELE < 49 m 
GEO = 6,9,17,26 
LDU = 1,2,3,5,8,9,15,20 

→  Soil = Rice paddy soil  [0.897] 

Rule 3: 
ELE >= 49 m 
GEO = 6,17 
LDU = 1,2,4,7, 9,11,15,16 
→  Soil = Rice paddy soil  [0.780] 

 
Rule 4: 

ELE >= 49 m 
GEO = 6,17 
LDU = 3,6,8,10,13,18,19,20 

→ Soil = Red soil  [0.599] 
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Rule 5: 
ELE >= 49 m 
GEO = 9,26 
→  Soil = Rice paddy soil  [0.915] 

 
Rule 6: 

ELE < 559 m 
GEO !=3) 6,9,17,26 
LDU = 1,2,6 
PC3 < 98 
SLP < 18 
→  Soil = Red soil  [0.670] 

 
Rule 7: 

ELE < 559 m 
GEO != 6,9,17,26 
LDU = 1,2,6 
PC3 < 98 
SLP >= 18 
→  Soil = Red soil  [0.716] 

 
Rule 8: 

ELE < 559 m 
GEO != 6,7,9,12,16,17,23,26,27 
LDU = 1,2,6 
PC3 >= 98 
USCA < 3 
→  Soil = Red soil  [0.649] 

 
Rule 9: 

ELE < 559 m 
GEO != 6,7,9,12,16,17,23,26,27 
LDU = 1,2,6 
PC3 >= 98 
USCA >= 3 
PC2 < 126 
→  Soil = Rice paddy soil  [0.545] 

 
Rule 10: 

ELE < 559 m 
GEO != 6,7,9,12,16,17,23,26,27 
LDU = 1,2,6 
PC3 >= 98 
USCA >= 3 
PC2 >= 126 
→  Soil = Red soil  [0.664] 

 
Rule 11: 

ELE < 559 m 
GEO = 12,16,23,27 
LDU = 1,2,6 
PC3 >= 98 AND < 115 
→  Soil = Rice paddy soil  [0.538] 

 
Rule 12: 

ELE < 559 m 
GEO = 12,16,23,27 
LDU = 1,2,6 
PC3 >= 115 
→  SOIL = Red Soil  [0.610] 

 
Rule 13: 

ELE < 73 m 
GEO = 12,13,15,16,18,19,22,23,27 
LDU != 1,2,6 
PC3 < 111 
PC4 < 116 
→  Soil = Red soil  [0.702] 
 

Rule 14: 
ELE < 73 m 
GEO = 12,13,15,16,18,19,22,23,27 
LDU != 1,2,6 
PC3 < 111 
PC4 < 95 
→  Soil = Rice paddy soil  [0.544] 

 

 

Rule 15: 
ELE < 73 m 
GEO = 12,13,15,16,18,19,22,23,27 
LDU != 1,2,6 
PC3 < 111 
PC4 >= 95 AND <116 
→  Soil = Rice paddy soil  [0.597] 

 
Rule 16: 

ELE < 73 m 
GEO = 12,13,15,16,18,19,22,23,27 
LDU != 1,2,6 
PC3 < 111 
PC4 >= 116 
→  Soil = Red soil  [0.746] 

 
Rule 17: 

ELE < 73 m 
GEO = 12,13,15,16,18,19,22,23,27 
LDU != 1,2,6 
PC3 >= 111 
→  SOIL = Red soil  [0.824] 

 
Rule 18: 

ELE >= 73 m and < 559 m 
GEO = 12,13,15,16,18,19,22,23,27 
LDU = 13 
→ Soil = Lithomorph soil  [0.638] 

 
Rule 19: 

ELE >= 73 m and < 559 m 
GEO = 12,13,15,16,18,19,22,23,27 
LDU = 4,7,8,9,10,14,15,16,18,20 
→  Soil = Red soil  [0.713] 

 
Rule 20: 

ELE >= 73 m and < 559 m 
GEO = 12,13,15,16,18,19,22,23,27 
LDU != 1,2,6 
→  Soil = Red soil  [0.706] 
 

Rule 21: 
ELE < 559 m 
GEO = 4,8,10,14,20,21,24,25 
LDU != 1,2,6 
PC2 < 98 
→  Soil = Red soil  [0.825] 

 
Rule 22: 

ELE < 559 m 
GEO = 1,2,3,4,5,11 
LDU != 1,2,6 
PC2 < 23 
→  Soil = Red soil  [0.492] 

 
Rule 23: 

ELE < 559 m 
GEO = 1,2,3,4,5,11 
LDU != 1,2,6 
PC2 >= 23 and <83 
→  Soil = Rice paddy soil  [0.683] 

 
Rule 24: 

ELE < 559 m 
GEO = 1,2,3,4,5,11 
LDU != 1,2,6 
PC2 >= 83 and <98 
→  Soil = Red soil  [0.524] 
 

Rule 25: 
ELE < 559 m 
GEO = 1,2,3,4,5,11 
LDU != 1,2,6 
PC2 >= 98 

→  Soil = Red soil  [0.900] 
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  Rule 26: 
ELE >= 559 m and < 658 m 
GEO = 6,9,17,26 
PC2 < 104 
→  Soil = Rice paddy soil  [0.542] 

 
Rule 27: 

ELE >= 559 m and < 602 m 
GEO != 6,9,17,26 
PC2 >= 104 

→  Soil = Red soil  [0.683] 

 

Rule 28: 
ELE >= 602 m and < 658 m 
GEO = 6,9,17,26 
PC2 >= 104 
→  Soil = Yellow soil  [0.565] 

 
Rule 29: 

ELE >= 658 m 
GEO != 6,9,17,26 
→  Soil = Yellow soil  [0.834] 

 

 

* GEO: geology; ELE: elevation; LDU: landuse; ASP: aspect; USCA: upslope contribution area; SLP: slope; PC1, PC2, PC3 and  
PC4: 1st, 2nd, 3rd and 4th principal components of bitemperal TM data, respectively 
1) Geology codes see Appendix II; 2) Landuse codes see Appendix III; 3) != means �not equal to�  

Appendix II  Geology codes derived from the 1:50000 scale geological map of the study area 
 

Code Geological type Code Geological type 
1 Granite, J3 15 Silty mud stone, K1c 
2 Granite, J3Sc 16 Conglomerate, K1z 
3 Felsite, νοπJ3 17 Silty mud stone, K2j 
4 Rhyolite, J3j3 18 Gritstone, K2q 
5 Arkose quartzite, K1 19 Silty mud stone, O1 
6 Diorite 20 Silty mud stone, Z1x 
7 Andesite 21 Tuff, J3 
8 Diabase 22 Siliceous shale, Є1h 
9 Ultrabasic rock 23 Marlite, Є3-O1x 
10 Peridotite, Pt 24 Quartz sandstone, P1-2l 
11 Gneiss, Pt1 25 Quartz sandstone, T3W 
12 Silty mud stone, J3l1 26 River alluvium, Qhyal 
13 Conglomerate, J3l2 27 River alluvium, Qp2 
14 Tuff, J3x1   

Appendix III  Landuse codes derived from the 1:50000 scale landuse map of the study area 
 

Code Landuse type Code Landuse type 
1 Irrigated rice paddy field 11 Bamboo 
2 Rice paddy field without irrigation 12 Shrubbery 
3 Irrigable land 13 Sparse woodland 
4 Dryland 14 Afforestation land 
5 Vegetable land 15 Built-up 
6 Other gardens 16 Water 
7 Mulberry field 17 Overbank flood plain 
8 Tea garden 18 Grassland 
9 Citrus garden 19 Bare rock 

10 Woodland 20 Other unused land 


