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Abstract:    In this work, the analysis of robust stability and design of robust H∞ output feedback controllers for a class of 
Lur’e systems with both time-delays and parameter uncertainties were studied. A robust H∞ output feedback controller based 
on Linear Matrix Inequalities (LMIs) was developed to guarantee the robust stability and H∞ performance of the resultant 
closed-loop system. The presented design approach is based on the application of descriptor model transformation and 
Park’s inequality for the bounding of cross terms and is expected to be less conservative compared to reported design 
methods. Finally, illustrative examples are advanced to demonstrate the superiority of the obtained method. 
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INTRODUCTION 
 

Control of delay systems has been a topic of 
recurring interest over the past decades since time 
delays are often the main causes for instability and 
poor performance of systems and encountered in 
various engineering systems such as chemical 
process, long transmission lines in pneumatic sys-
tems, and so on (Hale, 1977; 1993). During recent 
years, a large amount of attention has been paid to 
the problem of stabilization of linear systems and 
nonlinear systems with time-delays. For the case of 
uncertain systems with time-delays, the method 
based on the concepts of quadratic stability and 

quadratic stabilizability has been shown to be ef-
fective in dealing with these problems in both 
continuous and discrete contexts, some sufficient 
conditions in the form of the GBRL (generalized 
bounded real lemma) are derived (Yu and Chen, 
1997; Yu and Chu, 1999; Su et al., 1997). 

On the other hand, H∞ control problem has at-
tracted much interest in the past decades. One of its 
main advantages is that it is insensitive to exact 
knowledge of the statistical characteristics of noise 
signals. Choi and Chung (1997) developed con-
troller design method for linear systems with 
time-variant and time-invariant state delays, re-
spectively, both based on the LMI approach. Guo 
(2002) studied the problem of H∞ output feedback 
control for time-delay systems with nonlinear and 
parametric uncertainties and derived some suffi-
cient conditions based on GBRL and LMI tech-
nology. Unfortunately, all the proposed methods of 
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robust H∞ control for time-delay systems are con- 
servative. The main source of conservatism, on the 
one hand, that is caused by the distributed nature of 
delay which has not been successfully tackled; on 
the other hand, the treatment of norm-bounded 
uncertainties as an additional disturbance (Fu et al., 
1992) or the polytopic uncertainty via a single 
Lyapurov function (Choi and Chung, 1997; Guo, 
2002) leads to conservative results. Recently, a new 
approach to H∞ filtering was introduced (Fridman 
and Shaked, 2001; Fridman et al., 2003). This ap-
proach applies a Lyapurov-Krasovskii functional 
and is based on an equivalent descriptor model and 
deriving a bounded-real lemma (BRL) for the 
corresponding adjoint system; the derived results 
have less conservatism. However, due to the dif-
ficulty in dealing with the problem of H∞ output 
feedback control, to the best of our knowledge, the 
problem of H∞ output feedback control for a class 
of uncertain Lur’e systems with time-delays has not 
been fully investigated yet.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

functions over [0,∞). Cτ=C([−τ,0], Rn) denotes the 
Banach space of continuous vector functions map-
ping the interval [−τ,0] into Rn with topology of 
uniform convergence. ||⋅|| refers to either the 
Euclidean vector norm or the induced matrix 
2-norm.  
 
 
SYSTEM DESCRIPTION AND DEFINITIONS 
 

Consider the following uncertain Lur’e sys-
tems with time-delays described by 
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The system Eqs.(1), (2) and (3) is denoted as 

Σ∆, where x(t)∈Rn  is the  state  vector,  u(t)∈Rm  is

In this work, the problem of H∞ output feed-
back control was studied for a class of uncertain 
Lur’e systems with time-delays based on the idea of
Fridman et al.(2003). The nonlinear terms ap-
pearing in the uncertain Lur’e delay system lead to
difficulty in designing a robust H∞ output feedback
controller. For simplicity, if some assumptions are 
made on the nonlinear terms, the sufficient condi-
tions for the existence of delay dependent robust 
H∞ output feedback control in terms of LMIs can be
obtained; which guarantees the H∞ performance of
the resultant closed-loop system, and the H∞ output
feedback controllers, can be easily obtained by 
using LMI Toolbox. Compared with the results
(Guo, 2002), the conservatism is obviously less-
ened. Finally, illustrative examples are advanced to
demonstrate the superiority of the obtained method.

Throughout this note, for real symmetric ma-
trices X and Y, the notation X≥Y (respectively, X>
Y) means that the matrix X−Y is positive-semide-
finite (respectively, positive-definite). AT denotes 
the transpose of A. A(⋅) denotes time-variant ma-
trix. (⋅) denotes the variable of the time-variant 
matrix. L2[0, ∞)  is the space of square integrable



Cao et al. / J Zhejiang Univ SCI   2004 5(9):1114-1123 

 

1116

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

where Kj and Kji are diagonal matrices composed of 
the elements of positive scalars. 

Throughout this paper, we shall use the fol-
lowing concepts and introduce the following useful 
lemmas. 
Definition 1 (The problem of robust H∞ output 
feedback control)    The uncertain Lur’e time-delay 
systems (Σ∆) is said to be robust H∞ output feedback 
controllable if there exists a linear output feedback 
control law  

 

                 
: c c c c

spc
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such that the resultant closed-loop system is not 
only robustly stable but also satisfies the following 
condition,  
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for a given scalar γ >0, for all non-zero w(t), 
w(t−h1(t))∈L2[0,∞) and for all admissible parame-
ter uncertainties. In this case, Σspc is said to be a 
robust H∞ output feedback control law for system 
(Σ∆). 
Lemma 1 (Boyd et al., 1994)    Given vectors x, y, a 
positive definite symmetric matrix R with appro-
priate dimensions, we have 
 

±2xTy≤xTRx+yTR-1y 
 
Lemma 2 (Boyd et al., 1994)    Given matrices Θ, Γ 
and Ξ with appropriate dimensions and Θ is 
symmetric, then  
 

Θ+ΓF(δ)Ξ+(ΓF(δ)Ξ)T<0 
 
for all F(δ) satisfying FT(δ)F(δ)≤I, if and only if 
there exists a scalar ε >0 such that 
 

Θ+εΓΓT+ε−1ΞTΞ<0. 
 

control input vector, w(t)∈Rp is the disturbance 
input vector from L2[0,∞), y(t)∈Rr is the meas-
urement vector, z(t)∈Rq is controlled output vector. 
C, Ai, B1i, B2i, C1i, C2i, D1i, D2i, D3i, E1i, E2i and E3i

(i=0,1,2,…k) are known real constant matrices with
appropriate dimensions. ∆Ai(⋅), ∆B1i(⋅), ∆B2i(⋅), 
∆C1i(⋅), ∆C2i(⋅), ∆D1i(⋅), ∆D2i(⋅), and ∆D3i(⋅) 
(i=0,1,2,…k) are time-variant matrices represent-
ing norm-bounded parameter uncertainties, and are 
assumed to be of the following form, 
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where G11, G21, G31, H11, H12, H13, H14, H15, and 
H16 are known real constant matrices with appro-
priate dimensions. The time-variant matrix F(x,t) 
with Lebesgue measurable elements satisfies 
 

FT(x,t)F(x,t)≤I,  ∀t.                    (5)
 

hi(t) and gi(t) are unknown scalars denoting the
delays in the state and control, respectively, and it
is assumed that there exist positive numbers h, g, hi,
gi  and τ such that 
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hold for all t, i=1,…,k. φ(t) is smooth vector-valued 
continuous initial function defined in the Banach 
space Cτ. In this paper, nonlinear terms are as-
sumed to be of the following form 
           

2( ) { ( ) (0) 0, 0 ( ) ( 0)}j j j j jσ σ σ σ σ⋅ = = < ≤ ≠f f f f K
                                           j=1, 2, 3 

2( ) { ( ) (0) 0, 0 ( ) ( 0)},ji ji ji ji jiσ σ σ σ σ⋅ = = < ≤ ≠f f f f K
                                    i=1, 2,… k                                  (7)
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ROBUST H∞ OUTPUT FEEDBACK CONTROL 
 

In this section, the problem of robust H∞ output 
feedback control for system Eqs.(1)−(3) is dis-
cussed. First, the sufficient condition for the exis-
tence of robust H∞ output feedback control without 
parameter uncertainties is derived.  

For simplicity and without loss of generality, 
we assume k=1. Define T T T=[  ]cx x x , T

1f =[f1
T   f2

T], 

and T T T
11 11 1 31 1[ ( ( ( ))  ( ( ( ))];t h t t h tσ σ= − −f f f the 

following augmented model ( Σ ) can be derived 
from Eqs.(1), (2), (3) and (8),  
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An equivalent descriptor form representation 

of Eq.(10) is given by Fridman (2001), 
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The nonlinear terms described in Eq.(7) are 

equivalent to the following expression, 
                   

fj(σ)(fj(σ)−KjCx(t))≤0 
and  

fji(σ)(fji(σ)−KjiCx(t))≤0,  j=1,2,3, i=1. …,k 
 
which implies that                          
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From inequality (12) and the above description, we 
can get  
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Introduce the following Lyapunov-Krasovskii 

functional for the system Eq.(11),  
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where 
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Then, the following Lemma can be obtained. 

Lemma 3    Consider the system Eqs.(1),  (2)  and 
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Proof    Note that if inequality Eq.(15) holds, from
the reported results (Yu and Chen, 1997; Yu and
Chu, 1999), we can easily obtain that the system
( Σ ) is asymptotically stable.    

To prove Eq.(9), we have 
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( ( )) ( ) ( )

(1 ) ( ( )) ( ( ))

( ) ( ) (1 )

t t

t h t t g t

H H H H

i
i

i
i

i
i

t s s s s

s s t t t h t

t h t t t

h t h t t h t

t t g

− −

=

=

=

− − ⋅

+ + − ⋅

− − +

− − − −

+ − −

∫ ∫

∑

∑

∑

R R R

x C C x x C C

x x C X C x

x C X C x

x C X C x

ξ ξ ξ ξ

ξ

β β

T
1

4
T T 2 T
2 2 2 1

1

2 T
1 1

( ( ))

( ( )) ( ) ( ) ( ) ( )

( ( )) ( ( ))                                  (16)

i
i

t g t

t g t t t t t

t h t t h t

γ

γ
=

− ⋅

− + −

− − −

∑

x

C X C x z z w w

w w
 

Due to the asymptotic stability of x(t), and w(t) 
is square integrable on [0,∞), it follows that ξ(t) 
∈L2[0,∞) from Eq.(11). Similar to the prove of 
Theorem 2.1 (Fridman, 2001), some inequalities 
can be obtained, substitute the obtained inequalities 
into Eq.(16) and integrate the resulting inequality in 
t from 0 to ∞. At the same time, consider the fol-
lowing equation,  
 

 T T T
1 1 1 1 1 1 0

T
1 2 2 1

 T T T T
1 1 1 1 2 2 0

[ ( ( ))( ) ( ( ))

        + ( ( )) ( ( ))]d

[ ( )( ) ( )d   (17)

H H

T

H H

t h t t h t

t g t x t g t t

t t t

∞

∞

− + −

− −

= + +

∫

∫

x C C C C x

x C C

x C C C C C C x
   

     

 

we finally can obtain that Eq.(9) is satisfied if the 
LMI Eq.(15) holds, by Schur complements. This 
completes the proof. 

From Eq.(15), we can observe that Ψ<0. By 
expansion of the block matrices, we have 

T
3 3( ) 0− + <P P , it implies that  P  is  a  nonsingular 
   
 

 
 
 
 
 
 
 
 
 
 

 

matrix. Defining 
 

11

2 3

−  
= =  

 

Q
P Q

Q Q
0

                  (18) 

 
then multiply Eq.(15) by diag{QT,I,I,I,I, I,I,I} and 
diag{Q,I,I,I,I,I,I,I} on the left side and right side, 
respectively, and denotes the result as M', i.e. 
 
M'=diag{QT,I,I,I,I,I,I,I}Mdiag{Q,I,I,I,I,I,I,I}(19) 
 

In order to linearize the resulting optimization 
problem, we look for Q1 that has the following 
block diagonal structure, 
 

                          1
12

 
=  

 

I
Q

Q
                               (20) 

 
where Q12 is a positive definite matrix. This re-
striction is adopted to clear up the bilinear terms 
appeared in Eq.(15), and will introduce an addi-
tional conservation to the solution proposed, but 
compared with the reported result (Guo, 2002) on 
H∞ output feedback control, its conservation is still 
lessened. In particular, if we choose 
 

               
T T 1

2 2 3 2,  ( ) ,c c c c
−′ ′= =R C R C R C R C           (21) 

 
by expansion of the block matrices, we have 
 

Tdiag{ , , , , , , , }

diag{ , , , , , , , }                      (22)
c

c

′ ′′= ⋅M I I I I I I I C I M
I I I I I I I C I

 

where  M″<0 is shown in Eq.(23),  
 
 
 
 
 
 
 
 
 
 
 
 

11 12 17 18 111

22 23 24 25 26 27 29 210 211
2 T

10
2 T

11
T

1

1

1 1

1 2

         
H

h
g

γ
γ





−
−

−
′′ = −

−
−

−
− ′

′

*
* * I D
* * * I D
* * * * I D

M * * * * * U
* * * * * * U
* * * * * * *
* * * * * * * * R
* * * * * * * * * R
* * * * * * * * * *

0 0 0 0 0 0
0

0 0 0 0 0 0 0
0 0 0 0 0 0

0 0 0 0 0
0 0 0 0 0

0 0 0 0
I 0 0 0

0 0
0

5

Θ Θ Θ Θ Θ
Θ Θ Θ Θ Θ Θ Θ Θ Θ

Φ

0                          (23)





 
 
 
 
 

< 
 
 
 
 
 
 
 
 
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and Φ5′ is Φ5 in Eq.(15) that 2R  is replaced by R3 in 
Eq.(21), 
 

T T
21 21 22 23

11 T T
22 23 24 24

,
 + +

=  + + 

Q Q Q Q
Q Q Q Q

Θ  

T
31 21 0 1

12 T T T
33 22 20 21

T T T
32 23 20 21

T T
34 24

( )

( )
         c

 − + +
=  − + +

− + +
− + 

Q Q A A
Q Q G B B

Q Q C C B
Q Q H

Θ

 

T T
31 31 32 33

22 T T
32 33 34 34

 − − − −
=  − − − − 

Q Q Q Q
Q Q Q Q

Θ ,   

10
23

30

,
c

 
=  

 

B
B D

Θ 11
24

31c

 
=  

 

B
B D

Θ , 

25

1 10 11 11

1 30 11 31

,
c c

λ λ
λ λ

=

    
    
    

E E
B E B E

0 0

Θ

T TT T
1 31 3321 23

17 26 27 T TT T
32 3422 24

, , ,
    

= = =     
    

F Q QQ Q
Q QQ Q

0
0 0

Θ Θ Θ

T
1 2110

18 29 210T T
2120

, , ,
c

     
= = =     

   

A BC
B CG D

0 0
0 0 0

Θ Θ Θ

T T T T
31 33 31 33

211 1 1T T T T
32 34 32 34

[         ]h g
   

=    
   

Q Q Q Q
Q Q Q Q

0 0 0 0Θ

[
]
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193 194 195           ,

=

0 0

Θ Θ Θ Θ Θ Θ Θ

Θ Θ Θ
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T T
10 11

191 192 193 T TT T
2120

, , ,
     

= = =     
   

C C
G DG D

0
0

Θ Θ Θ  

194

T T
1 1 2 1

T T
12 3 1

/ /
/

K K
K

λ λ
λ

=

    
    
    

C C
Q C

0 0
0

Θ

 

195

T T
11 11 21 11

T T
12 31 11

/ /
/

λ λ
λ

=

    
    
    

C K C K
Q C K

0 0
0

Θ

  
Now, we are in a position to give the design 

method for a robust H∞ output feedback controller. 

Theorem 1    Consider the system of Eq.(10), for a 
given scalar γ >0, Eq.(9) is satisfied for all nonzero 
w(t), w(t−h1(t))∈L2[0,∞), if there exist matrices 
Q12>0, Q21, Q22, Q23, Q24, Q31, Q32, Q33, Q34, H, G, 
Bc,  positive definite symmetric matrices 1

1 1 ,−=U U  
1

1 1 ,−=R R  R2, R3, 1,ij ij
−=X X  j=1,…,4, i=1,2, and 

positive scalars 1 2 11 21, , ,λ λ λ λ  such that linear matrix 
inequality (LMI) Eq.(23) holds. In this case, the 
parameters of the controller can be solved and 

 
1 1

12 12,    ,    .c c c c
− −= = =A HQ C GQ B B  

 
Remark 1    For the scalar γ, we can obtain the mini 
mum value by the following optimal algorithm: 
 

min γ,  
subject to Eq.(23). 

 
The upper bound of delays h1, g1 can be ob-

tained by stepwise iteration, the steps are stated as 
follows: First, the LMI (23) is solved in terms of the 
given values h1, g1>0, if there exists a feasible so-
lution, then the values of h1, g1 are increased step by 
step; otherwise the values are reduced to half values 
step by step. Repeat the above procedure, finally, 
the upper bound of delays h1, g1 can be obtained 
according to any precision. 

Assuming k=1, the augmented model is de-
scribed as follows, 

 

0 1 1

2 1

1 1 1 1 11 11

0 1 1

2 1 10

11 1 20 2 21 2

( ) ( ( ))

( ( ))

( ( ))
:

( ) ( ( ))

( ( ))
( ( ))

L

t t h t

   + t g t

  t h t

t t h t

  t g t
  t h t

∆ ∆

∆ ∆

∆
∆

∆ ∆

∆ ∆

∆

 = + −


− +
 + − + +Σ 

= + −
 + − +
 + − + +

x A x A x
A x B w
B w E f E f

z C x C x
C x D w
D w E f E f

         
(24) 

 
where (⋅)∆=(⋅)+∆(⋅), the parameter uncertainties in 
the system ( L∆Σ ) can be rewritten as 
 

0 1 2 0 1

0 1 2 10 11

 
 
 

A A A B B
C C C D D

∆ ∆ ∆ ∆ ∆
∆ ∆ ∆ ∆ ∆

 



Cao et al. / J Zhejiang Univ SCI   2004 5(9):1114-1123 

 

1121

[ ]1
1 2 3 4 5

2

( , )x t
 

=  
 

G
F H H H H H

G
       (25) 

 
where 
 

[ ]11 11
1 2 21 21

31

,  ,
c

 
= = 

 

G G
G G G G

B G 0
 

11 12
1 2

15

,  ,
c

   
= =   

  

H H
H H

H C 0
 

13 14
3 4 5

15

,  ,  
c

     
= = =     

    

H H
H H H

H C
0

0 0
. 

 
Then the problem of robust H∞ output feed-

back control can be presented as the following 
Theorem 2. 
Theorem 2    Consider the uncertain Lur’e delay 
system Eq.(24), for a given scalar γ >0 Eq.(9) is 
satisfied for all nonzero w(t), w(t−h1(t))∈L2[0,∞), if 
there exist matrices Q12>0, Q21, Q22, Q23, Q24, Q31, 
Q32, Q33, Q34, H, G, Bc, positive definite symmetric 
matrix 1,U 1

1 1 ,−=U U R2, R3, 1
1 1 ,−=R R  1,ij ij

−=X X  

j=1,…4, i=1, 2, and positive scalars λ1, λ2, λ11, λ21, 
α such that linear matrix inequality (LMI) Eq.(26) 
holds. 
 

              

T
11 12

T 1
11

12

0N α
α
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′′ 
 = − < 
 − 

M
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Ω
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0
0

              

(26) 
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618 1 .
  
  =   
  

H GΠ
0 0

0
0

0 0
 

 
Proof    If LMI Eq.(26) holds, by Schur comple-
ment, it follows that 
           
             T 1 T

11 11 12 12 0α α −′′ + + <M Ω Ω Ω Ω                    (27) 
 
Therefore, we can deduce  
 

  
T T

11 11

1 T
12 12

diag{ , , , , , , , , , }(

     )diag{ , , , , , , , , , } 0
c

c

α

α −

′′ +

+ <

I I I I I I I I C I M
I I I I I I I I C I

Ω Ω
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Eq.(22) implies that 
 

T T
11 11

1 T
12 12

diag{ , , , , , , , , , }(

    )diag{ , , , , , , , , , } 0
c

c

α

α −

′ +

+ <

M I I I I I I I I C I
I I I I I I I I C I

Ω Ω

Ω Ω
 

Defining 
T

11

T
1

diag{ , , , , , , , , }

      diag{ , , , , , , , , } ,
c

=

I I I I I I I C I
Q I I I I I I I I L

Ω
 

12

2

diag{ , , , , , , , , }
       diag{ , , , , , , , , }.

c

=
I I I I I I I C I

L Q I I I I I I I I
Ω

 

 
Then we can deduce from Eq.(19) that the follow-
ing inequality holds, 
 
                 T 1 T

1 1 2 2 0α α −+ + <M L L L L                      (28) 
 

On the other hand, substituting Eq.(25) into the 
LMI Eq.(15), considering the description Eq.(4) of 
uncertainties, and transforming the linear matrix M 
in Eq.(15) into M∆, we have 

 
T

1 2 1 2( ( ), ) ( ( ( ), ) )x t t x t t∆ = + +M M L F L L F L        (29) 
 

By Lemma 2 and Eq.(28), we can obtain   
                       
                         0∆ <M                                      (30) 
 
Thus, from Lemma 3 and Eq.(30), this completes 
the proof of Theorem 2. 
 
 
NUMERAL EXAMPLES 
 
Example 1    Consider the system Σ , whose system 
matrices (Guo, 2002) are given by  

 

0 1

1.1 0.5 0.2 0.25
0, , ,

0 0.2 0.3 0.1
− −   

= = =   −   
F A A  

10 11 20 21

0.1 0 1.5 0.8
, , , ,

0.1 0 2.0 0.5
−       

= = = =       −       
B B B B    

[ ] [ ]10 11 20

1 0.5
0.1 0.1 , 0.05 0.01 , ,

0 0.5
 

= = =  
 

C C C       

10 11 20 210.1, 0, 0.5, 0.1,= = = =D D D D      

21 30 31

10 11

0.1 0.1 0.1 0
, , ,

0 0.1 0 0

0.3 0 0.05 0
, ,

0 0.1 0 0.1

     
= = =     

     
   

= =   − −   

C D D

E E
        

30 1

0.5 0 1.0 0 0.2 0
, , ,

0 0.1 0 1..0 0 0.1
     

= = =     −     
E C K

2 11

0.15 0 0.2 0
, .

0 0.1 0 0.1
− −   

= =   −   
K K  

 

Choosing λ1=λ2=λ11=λ21=1, based on Theo-
rem 1 and by using the LMI-toolbox in Matlab, we 
obtain the minimum values of γ, as a function of the 
bound h1 and g1, they are described in Table 1. A 
minimum value of γ=0.7335 is obtained, compared 
to the achievable value (Guo, 2002) of γ=1.0000.  

 
 
 
 
 
 
 
 
 
 
 
 
 
The upper bound of delays h1 and g1 are 

0≤h1≤0.7456 and 0≤g1≤0.6402, respectively, com-
pared with the bound 0≤h1=g1≤0.5 (Guo, 2002). 
When h1=g1=0.5, the corresponding matrices of the 
robust H∞ output feedback controller are 
 

[ ]

1.9842 1.2866
,

1.2977 2.8531

1.5266 2.5252
,

0.8444 3.0860

0.4071 0.6216 .

c

c

c

− 
=  − 

− 
=  − 
= −

A

B

C

 

 
Example 2    Consider the system L∆Σ  with the same 
 

Table 1  Relation of the bound of time-delays with per-
formance index 

h1 g1 γmin 
0 0 0.7335 
0.3 0.2 0.9215 
0.4 0.3 0.9865 
0.5 0.5 1.1743 
0.6 0.53 1.4987 
0.7 0.6 2.3816 
0.745 0.64 4.3659 



Cao et al. / J Zhejiang Univ SCI   2004 5(9):1114-1123 

 

1123

matrices as Σ  in example 1 and with parametric 
uncertainties (Guo, 2002) described by 

 

11 21 31 11

12 13 14 15 16

0.1 0.1
, 0, , [0.1 0.1],

0.2 0.1
[0.01 0], 0.1, 0.2, 0.

−   
= = = =   −   
= = = − = =

G G G H

H H H H H
 

Based on Theorem 2, a minimum value of γ= 
0.8869 is obtained, compared with the achievable 
value (Guo, 2002) of γ=1.2000; it is found that this 
system is robustly stable and has H∞ performance 
for any time-delay 0≤h1≤0.8974, 0≤g1≤0.7179, 
compared with the bound (Guo, 2002) 0≤h1=g1≤0.5. 
When h1= g1=0.5, the corresponding matrices of the 
robust H∞ output feedback controller are 

 

[ ]

3.9796 2.8539 4.0545 4.0543
, ,

2.6516 3.4823 4.4230 4.4232

0.2649 0.2428 .

c c

c

− − −   
= =   − − −   
= −

A B

C

 
 

CONCLUSION 
 

In this paper, a design method of robust H∞ 

output feedback controller has been presented for a 
class of Lur’e systems with time-varying 
multi-delays in the states, input and measurement 
outputs, and with both nonlinear and parametric 
uncertainty appeared in all system matrices. Fea-
sible design procedures are provided based on the 
LMI-based convex optimization approach. The 
sufficient conditions are presented which guarantee 
that the Lur’e systems have robust H∞ performance, 
moreover, the results obtained are less conservative 
than the reported results due to the efficient BRL 
that was derived for uncertain Lur’e time-delay sys- 
 
 
 
 
 
 
 
 

tems based on an equivalent descriptor representa-
tion of the system and due to the Park’s efficient 
overbounding method. The numerical examples 
show that the presented results have the less con-
servation. 
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