
Yan et al. / J Zhejiang Univ SCI   2004 5(11):1318-1321 1318

 

 

 

 

Time-dependent response of laminated isotropic strips 

with viscoelastic interfaces* 

 

YAN Wei (严  蔚)1, CHEN Wei-qiu (陈伟球)†1,2  
(1Department of Civil Engineering; 2State Key Lab of CAD & CG, Zhejiang University, Hangzhou 310027, China) 

†E-mail: chenwq@ccea.zju.edu.cn 

Received July 15, 2004;  revision accepted July 25, 2004 

 

Abstract:    The two dimensional problem of simply supported laminated isotropic strips with viscoelastic interfaces and 
under static loading was studied. Exact solution was derived based on the exact elasticity equation and the Kelvin-Voigt 
viscoelastic interfacial model. Numerical computations were performed for a strip consisting of three layers of equal 
thickness. Results indicated that the response of the laminate was very sensitive to the presence of viscoelastic interfaces. 
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INTRODUCTION 
 

A traditional premise in the theory of com-
posites is the continuity of tractions and displace-
ments at constituent interfaces. However, the in-
terfaces are generally weaker than the plies in 
laminates, which then frequently suffer from failure 
(such as delamination, interlaminar slip, etc.) due to 
high stress concentration at the interfaces. Before 
the final failure, these interfaces are usually 
weakened and become imperfect due to the emer-
gence of microcracks. There are numerous papers 
in the literature dealing with various aspects of 
composites with imperfect interfaces (Benveniste, 
1985; Hashin, 1991a; Zhong and Meguid, 1996; Yu 
and Zhong, 1999; Shu and Soldatos, 2001). In most 
works, such as those mentioned above, the response 
of laminates under static loading does not vary with 
time. More recently, He and Jiang (2003) derived 
an exact two-dimensional solution for isotropic 

laminates with viscous interfaces and showed that 
the response of laminates varies remarkably with 
time, especially at the initial stage. Chen and Lee 
(2004) proposed an efficient and accurate 
semi-analytical method for the analysis of an-
gle-ply laminates in cylindrical bending with vis-
cous interfaces. Both studies revealed that, as time 
approaches infinity, the viscous interfaces will lose 
the ability of transferring shear stress totally. 
However, this seems unsuitable for certain types of 
practical composites, especially within the frame-
work of small deformation. According to Hashin 
(1991b), a viscoelastic interface will be more ap-
propriate for characterizing the creep and relaxa-
tion behavior of interlaminar bonding material 
under high temperature circumstance. 

In this paper, we discuss the two-dimensional 
responses of a simply-supported laminated iso-
tropic strip (or rectangular plate in cylindrical 
bending) with viscoelastic interfaces of Kel-
vin-Voigt type model, subjected to sinusoidal 
loading. As a primary exploration, we assume that 
each layer in the strip is elastically isotropic. An 
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exact solution is derived and numerical results are 
given and discussed. 
 
 
SOLUTION PROCEDURE 
 

Consider an n-layered simply-supported 
laminated isotropic strip (plate in cylindrical 
bending) as shown in Fig.1. The strip has width of l, 
and is simply supported at x=0 and x=l. The 
Young’s modulus and Poisson’s ratio of the kth 
layer are Ek and µk respectively. The constitutive 
law of the kth layer is then written as (He and Jiang, 
2003) 
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where u and w are the displacements in x- and 
z-directions, respectively. σx and σz are the normal 
stresses, and τxz is the shear stress. The equilibrium 
equations can be written in terms of displacements 
as 
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Considering a sinusoidal loading p=p0sin(αx) 
(α=π/l) applied on the top surface, we will solve 
Eq.(2) under the following boundary and interfacial 
conditions 
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where δ(k) is the relative sliding displacement at the 
kth interface. In this paper, we assume that the shear 
stress and sliding obey the Kelvin-Voigt viscoe-
lastic law 
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where ( )kδ  is the sliding velocity (the dot over a 
quantity denotes differentiation with respect to 
time), and ( )

0
kη  and ( )

1
kη  are the elastic constant and 

viscous coefficient, respectively. Setting ( )
0 0kη = , 

we get the viscous model studied by He and Jiang 
(2003). The solution to Eq.(2) had already been 
derived by He and Jiang (2003) as  
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where ( )k

iC  are integral constants to be determined. 
The corresponding expressions for stresses are 
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Fig.1  Sketch of the strip in cylindrical bending
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Further, as in the viscous model (He and Jiang, 
2003), we assume the following form for the sliding 
displacement 

 
( ) ( ) cosk k xδ δ α= ,                             (10) 

 

where ( )kδ  is function of t. 
The above solution has satisfied the simply 

supported conditions in Eq.(4), and there are still 4n 
conditions in Eqs.(3) and (5) to be considered with 
totally 4n unknown constants ( )k

iC  (i=1, 2, 3, 4; k=1, 

2, …, n). These constants are directly related to 
( )kδ , which can be exactly solved from Eq.(6), a 

first-order ordinary differential equation (or equa-
tion set for multiple viscous interfaces). In this 
paper, we assume that the relative sliding dis-
placement is zero at the initial time. This corre-
sponds to the case that the load has already been 
applied on the laminate before the interfaces begin 
to exhibit a viscoelastic character. 
 
 
NUMERICAL COMPUTATION 
 

We consider a symmetric three-layered strip, 
for which the Poisson’s ratio of each layer (of same 
thickness) is the same and is denoted by µ. We take 
µ=0.3, l=10h, E2=3E1=3E3, (1) (2)

0 0η η= , (1) (2)
1 1η η=  in 

the numerical calculation. 
The twelve unknown constants ( )k

iC  (i=1, 2, 3, 

4; k=1, 2, 3) are obtained in terms of 
(1)

δ  and 
(2)

δ , 
which can be determined from Eq.(6) as 
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where 
λ1=−0.00622826238719−B       
λ2=−0.02154074160281−B  
a1=0.17022582+7.902617B 
b1=−0.00011002−0.018017B 
c1=−0.0850578−3.9423B 
c2=−0.08516802−3.960317B                     (12) 

     
in which (1)

0 1 1/t h Eη= , (1)
0 1/B h Eη= . 

Most results obtained are similar to that ob-
tained by He and Jiang (2003) for viscous interfaces, 
except for the magnitude, and hence are not given 
here for brevity. The most significant difference is 
that the viscoelastic interface will not lose the 
ability of transferring shear stress when t→∞, 
which should be more realistic for certain practical 
situations. The distribution of shear stress along the 
thickness direction is highlighted in Fig.2 for dif-
ferent parameters. The curve of B=0 shown in 
Fig.2b corresponds to the degenerated viscous in-
terfaces, for which the shear stress τxz becomes zero 
when t→∞. 
 
 
CONCLUSION 
 

Using Kelvin-Voigt model, the response of 
simply-supported laminated strip with viscoelastic 
interfaces was investigated under sinusoidal 
transverse loading. An exact solution is obtained by 
extending the existent analysis for viscous inter-
faces. The prominent feature of viscoelastic inter-
faces is that they always hold the function as in-
terlaminar bonds, although weakened. This should 
be more realistic for composites under an envi-
ronment of relatively higher temperature.  

In this paper, we only solve a two-dimensional 
problem, and each layer in the strip is elastically iso-
tropic. The present work may provide a useful means 
of comparison for future research on more compli-
cated problems. 
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Fig.2  Through-thickness distribution of τxz(l/4,z)  (a) B=0.01;  (b) t →∞  
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