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Abstract:    Mutual information is an important information measure for feature subset. In this paper, a hashing mechanism 
is proposed to calculate the mutual information on the feature subset. Redundancy-synergy coefficient, a novel redundancy 
and synergy measure of features to express the class feature, is defined by mutual information. The information maximi-
zation rule was applied to derive the heuristic feature subset selection method based on mutual information and redun-
dancy-synergy coefficient. Our experiment results showed the good performance of the new feature selection method. 
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INTRODUCTION 
 

Feature subset selection (FSS) is a data mining 
fundamental problem to select out relevant features 
and cast away irrelevant and redundant features 
from an original feature set (Liu and Motoda, 1998). 
If a feature subset satisfies the FSS measure and has 
the minimal size, it is regarded as the optimal fea-
ture subset. Complete search strategy is the way to 
obtain an optimal feature subset. Branch and Bound 
(Narendra and Fukunaga, 1977), Focus (Almuallim 
and Dietterich, 1991), ABB (Liu et al., 1998) use 
the complete search strategy. However, the com-
plete search strategy is NP-hard (Blum and Rivest, 
1992; Chen et al., 1997). When dataset is 
high-dimensioned, it becomes time-consuming. 

Heuristic search and stochastic search are em-
ployed to find the sub-optimal feature subset 
quickly. However, these methods often yield un-
satisfying FSS results. A good FSS method should 
achieve high-quality feature subset selection 
quickly. 

Mutual information is an important informa-
tion measure for feature subset. It has been taken as 
an FSS measure, where the high-valued features are 
selected and the low-valued features are simply 
discarded. That often reserves redundant features 
and deletes relevant features. This paper presents a 
novel FSS method to solve these problems; and is 
organized as follows. In Section 2, the mutual in-
formation is calculated by a hashing mechanism. A 
novel FSS measure, redundancy-synergy coeffi-
cient, is defined. Then, the information maximiza-
tion rule is introduced. In Section 3, a new FSS 
method based on information maximization rule is 
presented, which is called Maintaining Mutual 
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Information and Minimizing Redundancy-Synergy 
Coefficient (MMIMRSC). The basic idea of 
MMIMRSC is introduced first, and then the naive 
version of MMIMRSC (Naive MMIMRSC) is 
given. After discussing the shortcoming of Naive 
MMIMRSC, the final and better version of 
MMIMRSC is presented. In Section 4, MMIMRSC 
is tested by thirteen benchmark UCI datasets. Sec-
tion 5 gives conclusions. 
 
 
THEORETICAL FRAMEWORK 
 
Basic definitions and theorems 

A sample set S can be denoted by {(F,P)i | 
i=1,…,m}, where m is the total number of instances, 
F is the original feature set of S, { f1,…, fp}, and P is 
the class feature of S. The mutual information of F 
and P can be calculated by (Cover, 1991), 

 
I(F;P) = I(P)−E(P | F)                                  (1) 

 
where I(F;P) is the mutual information between F 
and P, I(P) is the entropy of the class feature P, and 
E(P|F) is the conditional entropy of the class fea-
ture P. They can be calculated by,  
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where p(⋅) is the probability density function (pdf ). 
However, the calculation of E(P|F) will be very 
hard when there are continuous features in F. It is 
difficult to obtain the pdfs of the continuous fea-
tures. Moreover, since the feature set F consists of 
multiple features, the integration of those con-
tinuous pdfs is also very difficult. Thus, all con-
tinuous features are discretized first in this paper. 

In a sample set S where all features are discrete, 
instances that match their features in the feature 
subset A (A⊆F) constitute a subset of S, so S can be 
divided into different subsets. This process is called 
a partition. Assume that the class feature P parti-
tions S into smaller subsets {Pi|i=1,…,u}, and u is 

the number of classes. The size of a subset Pi is pi. 
The feature set F partitions S into smaller subsets 
{Sj| j=1,…,v}. The size of a subset Sj is sj. The class 
feature P partitions Sj into smaller subsets 
{Sij|i=1,…,u, j=1,…,v}. The size of the subset Sij is 
sij. Now, I(P) and E(P|F) can be expressed in detail 
under the condition of dataset partition, by 
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In calculating the mutual information of fea-

ture subset, the partition of sample set is essential. 
Normally, the Cartesian product of feature values is 
used for the partition, which needs to consider 
every possible feature value combination (a feature 
value combination forms a sample subset in parti-
tion). Therefore, much time and memory are 
needed to partition the sample set. The equation 
0lg0=0 is stated in the definition of entropy (Cover, 
1991). Thus, only those sample subsets that are 
produced by partitioning S, are needed to calculate 
the value of mutual information. Solving the above 
problem, hashing mechanism is proposed to parti-
tion the sample set (Liu and Setiono, 1996). The 
hashing function used in this paper is stated as in 
Eq.(6), where MOD is the function to obtain the 

remainder of D dividing 
1

*
p

i
i

i vf
=
∑ , vfi is the value of 

feature fi (i=1,…,p) (feature value is denoted by 
integer), and D is the length of the hashing table.  

 

Hash(F)=MOD (
1
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p
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The hashing mechanism saves a lot of time and 

memory for partition, and it makes the size of any 
partition smaller than m. Assuming that an addition 
operation is a basic operation, the mutual informa-
tion can be calculated with the approximate time 
complexity O(m).  
Monotonicity    If A⊂B⊆F, then I(A;P)≤I(B;P) 
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(Cover, 1991). 
Definition 1  (equivalent feature set and equivalent 
feature subset)  

A,B⊆F. If I(A;P)=I(B;P), then A is called an 
equivalent feature set of B, or A and B are equiva-
lent. Additionally, if A⊆B, then A is called an 
equivalent feature subset of B. 
Definition 2  (reduced equivalent feature set and 
reduced equivalent feature subset) 

A,B⊆F. If A and B are equivalent, and any 
feature subset of A except A is not the equivalent 
feature set of B, then A is called a reduced equiva-
lent feature set of B. Additionally, if A⊆B, then A is 
called a reduced equivalent feature subset of B. 

In terms of the above two definitions, all 
equivalent feature subsets of F partition S into the 
same sample subsets. They contain the same mutual 
information as F.  
Theorem 1    A,B⊆F. If A is an equivalent feature 
set (subset) of B, there is one reduced equivalent 
feature set (subset) of B contained by A at least.  
This theorem can be proved easily by Definition 1 
and Definition 2. 
Theorem 2    A⊆B⊆F. If A is an equivalent feature 
subset of F, then B is an equivalent feature subset of 
F. This theorem can be proved easily by the 
monotonicity of mutual information and Definition 
1. 
Theorem 3    A⊆B⊆F, f∈A,B, and A is an equiva-
lent feature subset of B. If B−{ f } is not an equiva-
lent feature subset of B, then A−{ f } is not an 
equivalent feature subset of A. 
Proof    Since A⊆B, A−{ f }⊆B−{ f }. By the 
monotonicity of mutual information, I(A−{f };P)≤ 
I(B−{ f }; P), and I(B−{ f };P)<I(B;P), so I(A−{ f }; 
P)<I(A;P). Therefore, A−{f } is not an equivalent 
feature subset of A. Theorem 3 is proved. 

In terms of Theorem 3, if I(B−{ f };P)<I(B;P), 
then f  must be in all equivalent feature subsets of B. 
 
Redundancy-synergy coefficient of feature sub-
set 

Brenner defined redundancy-synergy index 
(Eq.(7)) taken as a measure of the synergistic abil-
ity and redundancy for a pair of neurons ( f1, f2) 

conveying information about the stimulus P 
(Brenner et al., 2000).  

 
RSpairs( f1,f2)=I( f1, f2;P)− [I( f1;p) + I( f2;P)]       (7) 

 
In the extreme case where f1=f2, the two neu-

rons provide the same information about the 
stimulus P, yielding RSpairs(f1, f2)=I(f1, f2;P)−[I(f1; 
P)+ I( f1;P)]=−I(  f1;P). That means one of the two 
neurons is completely redundant. On the other hand, 
a bigger RSpairs value shows a bigger synergistic 
interaction between f1 and f2. Practically, f1 and f2 
can be regarded as two random variables or features. 
An extended redundancy-synergy measure of 
RSpairs is defined by Definition 3. Unlike RSpairs 
defined by the difference of mutual information, 
redundancy-synergy coefficient is defined by the 
quotient of mutual information as follows:  
Definition 3    Redundancy-synergy coefficient of 
F (RSC(F)) is determined by Eq.(8), 
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Redundancy-synergy coefficient describes the 

synergistic ability of features to contain the class 
feature information. It ranges from 0 to ∞ (Yaglom 
and Yaglom, 1983). The smaller the redun-
dancy-synergy coefficient, the weaker the syner-
gistic capability. On the other hand, redun-
dancy-synergy coefficient also describes the re-
dundancy between the features. The more the re-
dundancy between features is, the smaller the re-
dundancy-synergy coefficient is. 
Theorem 4    f1, f2∈A. If A−{ f1} and A−{ f2} are two 
equivalent feature subsets of A, and I( f1;P)>I( f2;P), 
then RSC(A−{ f1})>RSC(A−{ f2}).  This theorem can 
be proved easily by Definition 1 and Definition 3. 
Theorem 5    If A is an equivalent feature subset of 
B, then RSC(A)≥RSC(B). This theorem can be  
proved easily by Definition 1 and Definition 3. 

Redundancy-synergy coefficient of feature 
subset can be understood better by two cases. Given 
two features f1 and f2 (A={ f1, f2}), we show the 
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factors of RSC(A) (Fig.1). The shadow in Fig.1 is 
the redundant information between f1 and f2. A big 
shadow produces a small RSC(A), since I(A;P) is 
small and I( f1;P)+I( f2;P) does not vary. Assume 
that A and B are two different equal-sized subsets of 
F, and I(A;P)=I(B;P). The inequality, RSC(A)> 
RSC(B), means there are more redundant class in-
formation in B. Therefore, more redundant features 
can be cast away from B without decreasing the 
mutual information.  

 
 
 
 
 
 
 
 
 
 
 
 
 

 
Information maximization rule 

Fano’s inequality is expressed in Eq.(9) (Fano, 
1961), where P̂  is the estimate of P after observing 
F, and ˆ( )eP P P≠  is the probability of ˆP P≠  (i.e. 
probability of error). Fano’s inequality determines 
the lower bound of the probability of error for a 
classifier, (E(P|F)−1)/logu. Of course, the classifier 
determines whether the lower bound can be reached. 
In terms of Fano’s inequality, the lower bound of 
probability of error is minimized when the mutual 
information of feature subset is maximal. For a 
certain sample set S, any feature subset containing 
the maximal class information obtains the minimal 
lower bound of probability of error. 
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Theorem 6    For a sample set S, its original feature 
set F and the equivalent feature subsets of F obtain 
the minimal lower bound of probability of error. 
This theorem can be proved easily by Definition 1 

and Fano’s inequality.  
 
 
FEATURE SUBSET SELECTION METHOD 
 

According to Theorem 6, the minimal reduced 
equivalent feature subset of F obtains the minimal 
lower bound of probability of error, so it has the 
same classifiability as F. It is the object of FSS to 
find the minimal reduced equivalent feature subset 
of F. However, it is time-consuming to find the 
minimal reduced equivalent feature subset of F by a 
complete search, especially for high-dimensioned 
datasets. In this paper, a heuristic FSS method is 
presented, which aims to find a small reduced 
equivalent feature subset of F. This method is a 
process of maintaining the mutual information of F 
(i.e., the mutual information of F is a bound for FSS) 
and minimizing redundancy-synergy coefficient, 
which is called Maintaining Mutual Information 
and Minimizing Redundancy-Synergy Coefficient 
(MMIMRSC). 

The method starts from F as a root, finds a new 
root according to two rules from the child feature 
subsets of a current root (a child feature subset of 
the current root is produced by deleting a feature 
from the current root), and so forth, then stops if no 
new root is found. The two rules are: (1) the new 
root is the child equivalent feature subset of the 
current root; (2) the new root has the smaller re-
dundancy-synergy coefficient than other child 
equivalent feature subsets of the current root. That 
is the basic idea of MMIMRSC. 

There is often more than one child equivalent 
feature subset of a current root. Which child 
equivalent feature subset of the current root should 
be selected as the new root? Smaller redun-
dancy-synergy coefficient means that more possi-
ble redundant features can be cast away without 
decreasing mutual information, so the child 
equivalent feature subset of the current root with 
minimal redundancy-synergy coefficient is selected 
as the new root. Obviously, the FSS result of 
MMIMRSC is a reduced equivalent feature subset 
of F. 

Fig.1  Factors of RSC(A) 

I(F;P)

I( f1;P) I( f2;P)

I(A;P)
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Naive Maintaining Mutual Information and 
Minimizing Redundancy-Synergy Coefficient 
method 

The Naive MMIMRSC shown below is a 
straightforward and naive MMIMRSC method. For 
each root, all child equivalent feature subsets are 
found first through evaluating each child feature 
subset of the root, and then the child equivalent 
feature subset with minimal redundancy-synergy 
coefficient is taken as the new root. 

 
Method: Naive MMIMRSC 

Input:   S − a sample set  
F − the original feature set of S 

                   R − an empty feature subset 
                   Q − a set of feature subsets 

Output: a small reduced equivalent feature 
subset of F 

Step 1  Calculate I(F;P); 
Step 2  R F; 
Step 3  Find all child equivalent feature sub-

sets of R, and put them into Q; 
Step 4  If Q is empty, go to Step 7; else go to 

Step 5; 
Step 5  Find the feature subset with the small- 

est redundancy-synergy coefficient from Q as R;  
//find a new root 

Step 6  Empty(Q); Go to Step 3;  
//make Q be empty, and loop from Step 3 

Step 7  Return R; 
The running time of FSS method is related to 

two factors: (1) the search space size (the number of 
evaluated feature subsets); (2) the time of evaluat-
ing a feature subset. Naive MMIMRSC runs a 
backward deleting search. Considering the original 
feature subset F is also evaluated, the number of 
evaluated feature subsets is smaller than 
0.5*p*(p+1)+1. Since the time complexity of 
evaluating a feature subset is O(m) approximately, 
the time complexity of Naive MMIMRSC is O(mp2) 
approximately. 

 
Maintaining Mutual Information and Mini-
mizing Redundancy-Synergy Coefficient 
method  

Though Naive MMIMRSC is a heuristic 

method, there are many redundant feature subsets 
evaluated. In one case, assume that R is a root and 
R−{ f1} is the new root found from R. If R−{ f2} is 
not an equivalent feature subset of R (i.e., 
I(R−{ f2};P)<I(R;P)), then R−{ f1}−{ f2} is not an 
equivalent feature subset of R according to Theo-
rem 3. That means R−{ f1}−{ f2} should not be 
evaluated any more after R−{ f2} is evaluated. 
However, R−{ f1}−{ f2} is still evaluated in Naive 
MMIMRSC.  

In another case, in order to find the new root, 
Naive MMIMRSC needs to find all child equivalent 
feature subsets of R, which results in evaluating all 
child feature subsets of R. However, assume that 
the features in R are sorted ascendingly by their 
mutual information values. By visiting in order the 
feature in the sorted features, the first found child 
equivalent feature subset of R is the new root since 
it has the minimal redundancy-synergy coefficient 
according to Theorem 4. Therefore, the other child 
equivalent feature subsets of R need not be evalu-
ated anymore. 

In order to avoid the above two cases, two 
additional rules are proposed as follows: (1) for a 
root R, if I(R−{f | f∈R};P)<I(R;P), f is reserved in 
any evaluated feature subset in future; (2) sort 
features ascendingly by their mutual information 
values, which makes the first found child equiva-
lent feature subset of R be the new root. The final 
version of MMIMRSC method is presented as fol-
lows. For simplicity, it is called MMIMRSC.  

 
Method: MMIMRSC 

Input:   S − a sample set  
F − the original feature set of S 
R − an empty feature subset 

Ascending_Sequence − an ascending sequence 
of features by the mutual information values 

Output: a small reduced equivalent feature 
subset of F 

Step 1  Calculate each I( fi ;P); 
Step 2  Ascending_Sequence Sort(I( fi ;P)); 
Step 3  Calculate I(F;P); 
Step 4  R F; 
Step 5  Get feature f from Ascending_Sequence 

in order, if I(R−{ f };P)=I(F;P) R R−{ f }; //find a 
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new root, else f is reserved in R; 
Step 6  Return R; 

 
The MMIMRSC method sorts features as-

cendingly by their mutual information values, starts 
first from the original feature subset F as a root, 
takes the first found child equivalent feature subset 
of the current root as a new root by visiting in order 
the features in Ascending_Sequence, and so forth. 
This is stopped after each feature in Ascend-
ing_Sequence is visited in order.  

In MMIMRSC, when a feature { f | f∈R} in 
Ascending_Sequence is visited, the feature subset 
R−{ f } is evaluated. Two cases may be presented. In 
one case, if I(R−{ f };P)<I(R;P), the feature f is 
reserved in future evaluated feature subset ac-
cording to Theorem 3. In the other case, if 
I(R−{ f };P)=I(R;P), R−{ f } is just the new root since 
it has the minimal redundancy-synergy coefficient 
according to Theorem 4. MMIMRSC begins to 
search for a new root from R−{ f }. In MMIMRSC, 
when the feature f in Ascending_Sequence is vis-
ited, the features ahead of f in Ascending_Sequence 
have been deleted or reserved. If R−{ f } is the new 
root found from R, MMIMRSC only needs to visit 
the rest of the features in Ascending_Sequence to 
find the new root from R−{ f }. MMIMRSC satisfies 
the two rules for a new root and the two additional 
rules. Therefore, MMIMRSC finds the same roots 
as Naive MMIMRSC.  

In MMIMRSC, each feature in Ascend-
ing_Sequence is visited only once. Considering the 
original feature subsets F being evaluated, the 
number of evaluated feature subsets is p+1, so the  

 
 
 
 
 
 
 
 
 
 
 
 

time complexity of MMIMRSC is O(mp) ap-
proximately. With the same FSS result, MMIMRSC 
is a simpler method than Naive MMIMRSC. 
 
An example 

For a better understanding of MMIMRSC, an 
example is given. Assume that F={f1, f2, f3, f4}, 
I( f1;P)>I( f2;P)>I( f3;P)>I( f4;P), and { f1, f3} is the 
only reduced equivalent feature subset of F. The 
FSS processes of Naive MMIMRSC and 
MMIMRSC are shown in Fig.2 and Fig.3 respec-
tively, where boldface denotes equivalent feature 
subset of F, and broken arrowhead line denotes the 
order of evaluating feature subsets in MMIMRSC. 
Any equivalent feature subset of F contains f1 and f3 
according to Theorem 1, and any feature subset 
containing f1 and f3 is an equivalent feature subset 
of F according to Theorem 2. Thus, the search 
process can be understood easily.  

The number of evaluated feature subsets is 
4+3+2+1=10 in Naive MMIMRSC, but 4+1=5 in 
MMIMRSC. However, the roots are the same in 
Naive MMIMRSC and MMIMRSC. MMIMRSC is 
indeed a fast and simplified version of Naive 
MMIMRSC. 
 
 
EXPERIMENTS 
 

Our experiments will verify three objectives: 
(1) MMIMRSC can find a small equivalent feature 
subset of F; (2) MMIMRSC has a small search spa- 

 
 
 
 
 
 
 
 
 
 
 
 
 
 Fig.2  FSS process of Naive MMIMRSC

{ f1, f2, f3, f4}

{ f1, f2, f3} { f1, f2, f4} { f1, f3, f4} { f2, f3, f4}

{ f1, f2} { f1, f3} { f2, f3}

{ f1} { f3}

Fig.3  FSS process of MMISMRSC 

{ f1, f2 , f3, f4}

{ f1, f2, f3}

{ f1, f3}

{ f3 }

{ f1, f2 }

{ f4, f3 , f2, f1 }Ascending_Sequence:



Yang et al. / J Zhejiang Univ SCI   2004 5(11):1382-1391 1388

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

the original feature sets were also evaluated by the 
above two machine learning methods.  

BFSD: For the objective (1), MMIMRSC was 
employed to run FSS for the three UCI datasets. We 
did not obtain the FSS results by using complete 
search after many hours of FSS running. For 
comparison, LVF (Liu and Setiono, 1996) was 
employed to run FSS for BFSD, since the complete 
search method was time-consuming and even in-
applicable. Unlike ABB running a complete search, 
LVF runs a stochastic search. In this paper, the 
parameters of LVF, maxTries and allowed incon-
sistency rate were fixed as p2 and 0 respectively. 
For the objective (2), the search space size and 
running time of MMIMRSC were recorded when 
MMIMRSC was running FSS for each dataset by 
the method mentioned previously. The running 
time and search space of LVF were ignored since 
they vary with different runnings. For the objective 
(3), C4.5 and Naive-Bayes were employed to 
evaluate the feature subsets selected by MMIMRSC 
and LVF. For comparison, the original feature sets 
were also evaluated by the above two machine 
learning methods. 

The default parameters (-m2 -c25) of C4.5 
were fixed as the parameters for C4.5 running. All 
the experiments were done on Dell PowerEdge2500 
server (Pentium IV 1 GHz, 512 M memory) running 
Microsoft Windows 2000 Server Edition. 
 
Group I  

In this group of experiments, MMIMRSC was 
tested by SFSD. The FSS results are shown in   
Table 1. MMIMRSC had the same FSS solutions as 
FOCUS and ABB. That showed MMIMRSC almost 
found an optimal feature subset, though 
MMIMRSC was not a complete search method.  

For Parity5+2, the FSS results of MMIMRSC, 
FOCUS and ABB were the same since f1 = f6 and f2 = 
f7. The found feature subsets of LED7 and Lenses 
were the same as their original feature sets respec-
tively, which showed that each feature of them was 
relevant. 

The search space sizes and running time of 
MMIMRSC, FOCUS and ABB are shown in Table 
2. The search space sizes and running time of MM- 

ce and spends short running time; and (3) the fea-
ture subset selected by MMIMRSC can be fit for
various machine learning methods.  

 
Experiment design 

In order to verify the three objectives, thirteen
UCI datasets (www.ics.uci.edu/~mlearn/MLReposi-
tory.html) were employed in our experiments. The
datasets were Corral, Monk1, Monk3, Parity5+5,
Parity5+2, LED7, Vote, Lenses, Zoo, Solar,
Mushroom, Sonar and Mfeat (Multiple Features
Database). Parity5+2 is a modified version of Par-
ity5+5 by replacing its 6th and 7th features with its
1st and 2nd features respectively. Obviously, there
are redundant features in Parity5+2. 

All continuous features were discretized by 10
equal width intervals. The thirteen datasets were
divided into two groups: the Small Feature Set
Datasets (SFSD, p≤20) and the Big Feature Set
Datasets (BFSD, p>20). The first ten datasets be-
longed to SFSD, and the next three datasets be-
longed to BFSD. Two groups of experiments were
designed for SFSD and BFSD respectively as fol-
lows. 

SFSD: For the objective (1), MMIMRSC was
employed to run FSS for above ten UCI datasets.
For comparison, FOCUS and ABB were also em-
ployed to run FSS for above ten UCI datasets. For
the objective (2), the numbers of evaluated feature
subsets in MMIMRSC, FOCUS and ABB were
recorded when they ran FSS for each dataset. The
number of feature subsets in the whole search space
(2p−1≈2p) was given. Also, the running time of
each method was tested indirectly. In order to avoid
disturbance by the instability of the computer run-
ning in this experiment, we ran 100 times of an FSS
continuously (called a continuum of the FSS). The
continuum was run 10 times independently, and the
mean running time of the FSS in each continuum 
(denoted by ti, i=1,…,10) was calculated by 100 
dividing the running time of the continuum. The 
running time of the FSS t was calculated by 10

dividing 
10

1
i

i
t

=
∑ . For the objective (3), C4.5 and Na-

ive-Bayes were employed to evaluate the feature
subsets selected by  MMIMRSC.  For  comparison,
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IMRSC were much less than that of FOCUS and 
ABB. FOCUS, a sequential forward exhaustive 
search had a smaller search space for Zoo than ABB 
since the optimal feature subset of Zoo had a small 
size. For LED7 and Lenses, MMIMRSC and ABB 
had equal search space sizes and almost equal running 
time, since the search processes stopped after the 
original feature sets were visited. Notably, the 
bigger the whole search space is, the smaller the 
Ratio of MMIMRSC is. 

10-fold cross validation of C4.5 method was 
employed as a machine learning method to test the 
feature subsets selected by MMIMRSC. The results 
of 10-fold cross validation of C4.5 method are 
shown in Table 3. Monk3 had the same tree sizes 
and error rates before and after FSS. Monk1, Par-
ity5+5 and Vote had smaller tree  sizes  and  error 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

rates after FSS. Corral and Zoo had bigger tree sizes 
and smaller error rates after FSS. Parity5+2 and 
Solar had smaller tree sizes and bigger error rates 
after FSS. As in (Murphy and Pazzani, 1994), a 
smaller tree size did not always lead a smaller error 
rate. LED7 and Lenses had the same tree sizes and 
error rates respectively before and after FSS since 
all features were relevant.  

The error rates of 10-fold cross validation of 
Naive-Bayes before and after FSS are shown in 
Table 4. Monk1, Monk3, Parity5+5, Parity5+2, 
Vote and Zoo had smaller error rates after FSS. 
Corral and Solar had bigger error rates after FSS. 
LED7 and Lenses had equal error rates. 
 
Group II 
   In this group of experiments, MMIMRSC was te- 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 2  Search space sizes and running time of FSS for SFSD 
 

 

MMIMRSC FOCUS ABB Dataset #All 
#Ev Ratio t (ms) #Ev Ratio    t (ms) #Ev Ratio t (ms) 

Corral 26    7 0.109 2±0     42 0.656 6±0       12 0.188    3±0 
Monk1 26    7 0.109 4±0     24 0.374       10±0       20 0.313 19±0 
Monk3 26    7 0.109 4±0     35 0.547       15±0       20 0.313   19±0 

Parity5+5 210   11 0.011 50±0   518 0.506 636±1    112 0.109 406±2 
Parity5+2 210   11 0.011 49±0    386 0.377 419±0    228 0.223 650±2 

LED7 27    8 0.063 50±0    127 0.992 492±1       8 0.063   51±0 
Vote 216  17 0.000 42±1 39967 0.610 48595±51    908 0.014 2697±4 

Lenses 24     5 0.313 1±0      15 0.938 1±1        5 0.313     1±0 
Zoo 216  17 0.000 5±0   4951 0.076 884±13 25344 0.387 132456±377 

Solar 212   13 0.003 10±0   4031 0.984    2823±1       24 0.006   32±0 
#All is the whole search space size, #Ev is the number of feature subsets evaluated, Ratio is #Ev divided by #All, and t is denoted by 
mean±standard deviation 

 
Table 1  FSS results for SFSD 

 

Dataset m p u r MMIMRSC FOCUS ABB 
Corral  128  6 2 4 { f1−f4} { f1−f4} { f1−f4} 
Monk1  432  6 2 3 { f1, f2, f5} { f1, f2, f5} { f1, f2, f5} 
Monk3  432  6 2 3 { f2, f4, f5} { f2, f4, f5} { f2, f4, f5} 

Parity5+5 1024 10 2 5 { f2−f4, f6, f8} { f2−f4, f6, f8} { f2−f4, f6, f8} 
Parity5+2 1024 10 2 5 { f3−f7} { f1−f5} { f1−f5} 

LED7 3200  7 10 7 { f1−f7} { f1−f7} { f1−f7} 
Vote  435 16 2 9 { f1−f4, f9, f11, f13, f15, f16} { f1−f4, f9, f11, f13, f15, f16} { f1−f4, f9, f11, f13, f15, f16}

Lenses    24  4 3 4 { f1−f4} {f1−f4} { f1−f4} 
Zoo  101 16 7 5 { f3, f4, f6, f8, f13} { f3, f4, f6, f8, f13} { f3, f4, f6, f8, f13} 

Solar  323 12 6 10 { f1−f6, f9−f12} { f1−f6, f9−f12} { f1−f6, f9−f12} 
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sted BFSD. The FSS results, search space sizes and 
running time of FSS are shown in Table 5. Table 5 
shows that MMIMRSC found the equivalent fea-
ture subset of F with a quite small size. LVF found 
much bigger feature subsets than MMIMRSC. Es-
pecially, there were still 279 features in the FSS 
result for Mfeat dataset. In this case, LVF almost 
did not complete a role of dimension reduction. The 
search space sizes and running time of MMIMRSC 
were also quite small. The search space sizes and 
running time of LVF were ignored since it was a 
stochastic search method. 

 
 
 
 
 
 
 

 
 
 
 

 
 
 
 
 

The results of 10-fold cross validation of C4.5 
are shown in Table 6. For Mushroom, the error rate 
after MMIMRSC running was the same as that of F. 
For Sonar, the tree size (from 55 to 30) and error rate 
(from 33.14% to 28.83%) were both decreased 
largely after MMIMRSC running. For Mfeat, the 
tree size (from 495 to 391) was decreased largely. 
Table 6 shows that C4.5 had smaller error rates 
after MMIMRSC running than after LVF running. 

The error rates of 10-fold cross validation of 
Naive-Bayes are given in Table 7. Table 7 shows 
that all the error rates were decreased after 
MMIMRSC running. Especially for Mfeat, the 
error rate was decreased from 52.60% to 9.10% 
after MMIMRSC running, but the error rate was 
still 48.40% after LVF running. That means the 
MMIMRSC upgraded obviously the learning result 
of Naive-Bayes. 
 
 
CONCLUSION 
 

A hashing mechanism was used in this paper to 
calculate mutual information of feature subset. By 
mutual information, redundancy-synergy coeffi-
cient was defined as a measure of synergistic ability 
and redundancy of features. MMIMRSC was pre-
sented in terms of the information maximization 
rule.  

Thirteen benchmark datasets were employed 

Table 3  Results of 10-fold cross validation of C4.5 for SFSD 
 

 

Before After 
Dataset 

Tree size Err rate (%) Tree size Err rate (%) 

Corral 12.56±1.33 0.86±2.57 13.00±0.00    0.00±0.00 
Monk1 41.44±0.88 2.33±5.46 41.00±0.00     0.00±0.00 
Monk3 19.00±0.00 0.00±0.00 19.00±0.00     0.00±0.00 

Parity5+5   67.67±10.05 7.19±3.87 61.60±8.38     4.49±6.87 
Parity5+2 63.00±0.00 0.00±0.00 62.40±1.90    0.98±3.10 

LED7 73.20±3.82   26.66±1.50 73.20±3.82 26.66±1.50 
Vote 15.70±4.99 5.32±4.26 15.40±5.44     4.89±3.44 

Lenses   6.50±1.08     16.66±32.39   6.50±1.08     16.66±32.39 
Zoo 18.60±3.50 8.00±6.32 19.40±2.45     6.32±6.84 

Solar 34.10±4.04   28.84±4.30 32.50±2.36   30.06±5.96 
‘Before’ denotes C4.5 running before FSS, and ‘After’ denotes C4.5 running after FSS. All results are denoted by mean±standard 
deviation 

 
 
 

Dataset Before (%) After (%) 

Corral 10.96±9.33 12.50±6.52 
Monk1 25.00±4.72 24.49±5.17 
Monk3   2.78±2.63   2.37±1.82 

Parity5+5 63.25±4.55 63.14±4.57 
Parity5+2 60.36±3.61 57.49±7.23 

LED7 26.50±1.87 26.50±1.87 
Vote   9.67±6.02   6.70±3.15 

Lenses   34.99±41.90   34.99±41.90 
Zoo     9.00±11.01   4.82±6.65 

Solar 31.28±4.95 33.75±8.70 
‘Before’ denotes Naive-Bayes running before FSS, and ‘After’ 
denotes Naive-Bayes running after FSS. All results are de-
noted by mean±standard deviation 

Table 4  Error rates of 10-fold cross validation of Na-
ive-Bayes for SFSD 
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to test MMIMRSC. The feature set size ranged 
from 4 to 649, and the sample set size ranged from 
24 to 8124. Experiments showed that MMIMRSC 
gives good feature selection results quickly, espe-
cially for high-dimensioned datasets. Importantly, 
the feature subsets selected by MMIMRSC improve 
the learning performance of the machine learning 
method. 
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Table 5  Results, search space sizes and running time of FSS for BFSD 
 

MMIMRSC LVF Dataset m p u 
FS #Ev r t (ms) rLVF 

Mushroom 8124 22 2 { f5, f8, f12, f19, f20} 23 5    2389±3 6 

Sonar 208 60 2 { f10, f11, f12, f36, f49} 61 5      104±1 16 

Mfeat 2000 649 10 { f73, f77, f131, f185, f257, f644, f645, f647, f649} 650 9 83107±51 279 
FS denotes the feature subset selected by MMIMRSC, t is denoted by mean±standard deviation, rLVF is the size of feature subset selected 
by LVF 

Table 7  Error rates of 10-fold cross validation of Na-
ive-Bayes for BFSD 

 

Dataset Before (%) 
After MMI- 
MRSC (%) 

After LVF 
(%) 

Mushroom 0.42±0.21  0.17±0.13 0.32±0.26 

Sonar 29.79±17.97 24.50±4.62 29.62±12.38
Mfeat 52.60±2.53   9.10±1.54 48.40±2.58 

 

Table 6  Results of 10-fold cross validation of C4.5 for BFSD 
 

 

Before After MMIMRSC After LVF Dataset 
Tree Size  Err Rate (%) Tree Size Err Rate (%) Tree Size Err Rate (%)

Mushroom 31.20±1.52   0.00±0.00 33.00±0.00   0.00±0.00 31.70±1.49   0.00±0.00 
Sonar   55.00±12.65   33.14±12.16   30.00±11.97 28.83±7.11   41.00±12.64 31.62±8.74 
Mfeat 495.00±45.75 11.00±1.65 391.00±47.48 12.05±2.30 433.00±43.71 13.25±2.75 

 


