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Abstract:    The sequences {Zi,n, 1≤i≤n}, n≥1 have multi-nomial distribution among i.i.d. random variables {X1,i, i≥1}, {X2,i, 
i≥1}, …, {Xm,i, i≥1}. The extreme value distribution GZ(x) of this particular triangular array of i.i.d. random variables Z1,n, Z2,n, …, 

Zn,n is discussed in this paper. We found a new type of not max-stable extreme value distributions, i) 
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Fj, …, Fm belong to the same MDA. 
 
Key words:  Extreme value distribution, Maximum domain of attraction (MDA), Mixed distribution functions 
doi:10.1631/jzus.2005.A0315                     Document code:  A                    CLC number:  O211.4 
 
 
INTRODUCTION 
 

In Jiang (2004a; 2004b) we considered the case 
of mixing two sequences, with m=2, and proved that 
the limit distribution is often still an extreme value 
distribution, hence max-stable. But in some cases 
mixtures of extreme value distributions such as i) 

1 2
( ) ( )A x xα αΦ Φ  and ii) 

1 2 1 2( ) ( ) ( ),A x xα α α αΨ Ψ <  iii) 

ΛA(ρx)Λ(x) (0<ρ<1) occur. The question was posed 
whether with the mixture of more than 2 distributions, 
a more general class of limit distributions can be 
observed which contains even mixtures of different 
types of extreme value distributions. In this paper we 
will investigate this situation. 

The question can be formulated into the fol-
lowing mathematical model: Let {X1,i, i≥1}, {X2,i, 
i≥1}, …, {Xm,i, i≥1} be m sequences of independent 
and identically distributed random variables with 
distribution functions Fj(x) for j, 1≤j≤m (Jiang, 2002). 
Assume 

 
 

Fj(x)∈MDA(Gj) i.e. for every j, there exist normaliz-
ing sequences αj,n, βj,n such that 
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Consider the limit ( ) lim Pr{ ( ) }Z n n nn
G x M Z xα β

→∞
= ≤ +  

with Mn(Z)=max(Z1,n, Z2,n, …, Zn,n) and for some 
sequences 0≤pj,n≤1, for 1≤j≤m and normalizing con-
stants αn, βn. 
 
 
QUESTIONS TO BE ANALYZED 
 

If pj,n→pj∈[0,1), does the above extreme value 
distribution GZ(x) exist? In which case, is it a 
max-stable distribution? If not, what GZ(x) distribu-
tions are possible? In which case, is GZ(x) Fréchet, 
Gumbel or Weibull? What are the relationships be-
tween GZ(x) and G1(x), …, Gm(x)? Does the prob-
ability pj,n influence the form of the extreme value 
distribution GZ(x)? 

This model is motivated for instance by the idea 
that the extreme values can be contaminated by some 
more than 2 other random variables. In other situa-
tions, extreme values are based on observations which 
stem from several sources with rather different dis-
tributions. 

Let 
jFx be the right endpoint of distribution 

function Fj(x) for j, 1≤j≤m. In this paper we discuss 
the case in which Fj(x) (1≤j≤m) have the same right 
endpoint and belong to the same MDA with pj,n→0. 
 
 
RESULTS FOR EQUAL RIGHT ENDPOINTS 
 

In this section we derive the limit distribution 
GZ(x) with pj,n→0 for j with 1≤j≤m−1, and pm,n→1, 
assuming that

1
... .
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r
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= ∈ ∞  by Khintchine theorem 

(Resnick, 1987) there exists a function c(x)∈[0,∞) 
such that 

 

, ( ) log ( ) ( )m n m n n mnp F x G ax b c xα β+ → − + =  
 
for some a>0 and b∈(0,∞). 
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thus the terms of the r.v. Xr have no influence on the 
limit distribution GZ(x). Hence, w.l.o.g. we can sup-
pose that every Fj(x) (1≤j≤m−1) in our model satisfies 
 

( )
lim

( )F

j

x x
m

F x
F x→

= ∞ .                                           (2) 

 
On the other hand, if for large n, npr,n<∞, then 

, ( ) 0,r n r n nnp F xα β+ →  the term of the r.v. Xr, has 
also no influence on the limit distribution GZ(x). 
w.l.o.g. in our model we can also suppose that for 
every j with 1≤j≤m 
 

npr,n→∞,                                       (3) 
 
and thus the normalizing sequence , ,[ , ]jj n j np nα α′ = and 

, ,[ , ]jj n j np nβ β′ =  exist for every j with 1≤j≤m. 

Furthermore, we can order the sequences{Xi,J, 
J≥1}, 1≤i≤m−1. w.l.o.g. we can suppose 
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=  we can order them as we want. 

Lemma 1    Suppose that continuous Fj(x)∈MDA(Gj) 
satisfy Eqs.(2) and (4) for j with 1≤j≤m. 

i) If ( ) ( ),
mmF x MDA α∈ Φ  then ( ) ( )

jjF x MDA α∈ Φ  

for j with 1≤j≤m−1 and α1≤α2≤…≤αm−1≤αm. 
ii) If ( ) ( ),

mmF x MDA α∈ Ψ  then ( ) ( )
jjF x MDA α∈ Ψ  

for j with 1≤j≤m−1 and α1≤α2≤…≤αm−1≤αm. 
Proof    i) Since ( ) ( )

mmF x MDA α∈ Φ and xF=∞, 

( ) ( )
jjF x MDA α∈ Φ  or Fj(x)∈MDA(Λ) for j with 

1≤j≤m−1. But if Fj(x)∈MDA(Λ), then by Lemma 1 in 

Jiang (2004a) we get 
( )

lim 0.
( )F

j

x x
m

F x
F x→

=  This is contra-

dictory to Eq.(2). Thus, ( ) ( )
jjF x MDA α∈ Φ for j with 

1≤j≤m−1. Hence, the statement follows by Eq.(4) and 
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Lemma 1 in Jiang (2004a). 
ii) The proof is similar to that in i). 
If Fm(x)∈MDA(Λ) and xF=∞, then for every j 

with 1≤j≤m−1, Fj(x)∈MDA(Φα) or MDA(Λ). Since 
Fj(x) satisfies Eq.(2) for every j with 1≤j≤m−1, by 
Lemma 1 in Jiang (2004a), w.l.o.g. we can suppose 

( ) ( )
jjF x MDA α∈ Φ for j with 1≤j≤k, and 

Fj(x)∈MDA(Λ) for j with k+1≤j≤m, respectively, or 
Fj(x)∈MDA(Λ) for all j with 1≤j≤m. Similarly, if 
Fm(x)∈MDA(Λ) and xF<∞, w.l.o.g. by Lemma 1 in 
Jiang (2004a) we can suppose ( ) ( )

jjF x MDA α∈ Ψ  

for j with 1≤j≤k, and Fj(x)∈MDA(Λ) for j with 
k+1≤j≤m, respectively, or Fj(x)∈MDA(Λ) for all j 
with 1≤j≤m. Since the remaining cases were treated in 
Lemma 1, the following cases will be dealt with: 

i) xF=∞ and Fj(x)∈MDA(Λ) for j with 1≤j≤m. 
ii) xF=∞, ( ) ( )

jjF x MDA α∈ Φ  for j with 1≤j≤k  

and Fj(x)∈MDA(Λ) for j with k+1≤j≤m. 
iii) xF<∞ and Fj(x)∈MDA(Λ) for j with 1≤j≤m. 
iv) xF<∞ and ( ) ( )

jjF x MDA α∈ Ψ  for j with 

1≤j≤k and Fj(x)∈MDA(Λ) for j with k+1≤j≤m. 
Lemma 2    Assume that Fj(x)∈MDA(Λ) satisfy 
Eqs.(2) and (4) for j with 1≤j≤m. Let  
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exist for every j with 1≤j≤s≤m. Then λj/s≤1 and 
λ1/s≤λ2/s≤…≤λs−1/s. 
Proof    Since Fj(x)∈MDA(Λ) satisfy Eqs.(2) and (4) 
for j with 1≤j≤m, we have for j<s 
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Hence, by Lemma 1 in Jiang (2004a) we get λj/s≤1. 
On the other hand, for i<j≤s 
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Now we can deal with the above situations. 
Lemma 3     Assume that ( ) ( )

jjF x MDA α∈ Φ  satisfy 

Eqs.(2), (3) and (4) for j with 1≤j≤m. If for all j, s with 
1≤j,s≤m, , , ,( ) [0, ,j n j s n j snp F Aα′ → ∈ ∞)  then there 

exists an index r, such that r=max{s≥1:Aj,s<∞ for 
every j with 1≤j≤s}. 
Proof    By Lemma 1, we get α1≤α2≤…≤αm. 

If , , ,( )j n j m n j mnp F Aα′ → < ∞  for 1≤j≤m−1, then 

r=m; if there exist some j, such that Aj,m=∞, let 
s1=max{1≤j≤m−1:Aj,m=∞}. If 

1 1, , ,( )j n j s n j snp F Aα′ →  

<∞ for 1≤j≤s1−1, then r=s1. Otherwise, we can con-
tinue this step. Since A1,1=1<∞,  then r≥1. This com-
pletes the proof.                                                              
Theorem 1    Under the assumptions of Lemma 3, 
then the limit distribution of MZ(x) with the normal-
izing sequences ,n r nα α′=  and βn=0 is 
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where r is given in Lemma 3. 
Proof    By Lemma 1, we get α1≤α2≤…≤αm. 

For r given in Lemma 3 and every l with r<l≤m 
there exists s<l, such that , , ,( )s n s l n s lnp F Aα′ → = ∞ . 
Hence, 
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and by Lemma 2 in Jiang (2004b) for j with s<j≤m, 
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and by Lemma 2 in Jiang (2004b) for j with s<j≤m, 
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2) If s>r, there exists s1<s, such that 

1 1 1, , ,( ) .s n s s n s snp F Aα′ → = ∞  Hence, as in the derivation 

in Eqs.(5) and (6) we have for j with s1≤j≤m, 
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If s1≤r, then 

1 ,s rA < ∞ . Thus, as in the derivation 

in Eqs.(7) and (8) we have for j with s1≤j≤m  
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and by Lemma 2 in Jiang (2004b) for j with s<j≤m, 
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If s1>r, we repeat the step and get s2>s3>…>si. 

Since m<∞, after some limited number of steps we get 
si≤r which shows that , ,lim ( ) 0,l n l r nn

np F α
→∞

′ =  for all l>r. 

Thus also , , , ,( ) ( ) 0,l
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which completes the proof.  

We can call the extreme value distribution 
1, 1,
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ture distribution. Similarly, 1, 1,
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xα×Ψ can be called Weibull mixture distribution 

and we have the following theorem. 
Theorem 2    Assume that ( ) ( )

jjF x MDA α∈ Ψ  sat-

isfy Eqs.(2), (3) and (4) for 1≤j≤m with xF<∞. If for 
all j, s with 1≤j,s≤m, , , ,( ) [0, ]j n j s n j snp F Aγ ′ → ∈ ∞ . 

Then 
i) there exists an index r, such that 

r=max{s≥1:Aj,s<∞ for every j with 1≤j≤s}; 
ii) the limit distribution of MZ(x) with the 

normalizing sequences ,n r nα α′= and βn=xF is 
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Lemma 4     Assume that Fj(x)∈MDA(Λ) satisfy 
Eqs.(2), (3) and (4) for j with 1≤j≤m.  If for all j, s with 
1≤j,s≤m, , , ,( ) [0, ],j n j s n j snp F Aβ ′ → ∈ ∞ then there ex-

ists an index r, such that r=max{s≥1:Aj,s<∞ if λj/s>0 or 
Aj,s=0 if λj/s=0 for every j with 1≤j≤s}. 
Proof    If , , ,( )j n j m n j mnp F Aβ ′ → < ∞  if λj/m>0 or 

Aj,m=0 if λj/s=0 for 1≤j≤m−1, then r=m. If there exist 
some j, such that Aj,m=∞ if λj/m>0 or Aj,m>0 if λj/m=0, 
let s1=max{1≤j≤m−1:Aj,m=∞ if λj/m>0 or Aj,m>0 if 
λj/m=0}. 

If 
1 1, , ,( )j n j s n j snp F Aβ ′ → < ∞  if 

1/ 0j sλ >  or 

1, 0j sA = if 
1/ 0j sλ =  for 1≤j≤s1−1, then r=s1. Other-

wise, we continue this step. Since A1,1=1<∞, then r≥1. 
This completes the proof.                   
Theorem 3    Under the assumptions of Lemma 4, 
then for any x the limit distribution of MZ(x) with the 
normalizing sequences ,n r nα α′= and ,n r nβ β ′=  is 
 

1, 1,
1/ 1/( ) ( ) ( ) ( )r r rA A

Z r r rG x x x xλ λ−
−= Λ Λ ×Λ… , 

 
where r is given in Lemma 4. 
Proof    We discuss the following two cases. 

A) xF=∞: 
For r given in Lemma 4 and every l with r<l≤m 

there exists s<l, such that , , ,( )s n s l n s lnp F Aβ ′ → = ∞  if 
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λs/l>0 or As/l>0 if λs/l=0. Thus, 
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by Lemma 2 in Jiang (2004b) for j with s<j≤m  
 

,

,

( )
lim 0

( )
j s n

n
j l n

F
F

β
β→∞

′
=

′
.                                             (9) 

 

1) If s≤r, then As,r<∞ or ,
,

,

( )
lim

( )
s r n

s rn
s s n

F
A

F
β
β→∞

′
= < ∞

′
, 

which implies by Lemma 2 in Jiang (2004b) for j with 
s<j≤m and for any ε and large n, 
 

, 1
,

,

( )
( )

r r n
s r

r s n

F
A

F
εβ

β
−

′
≤ < ∞

′
. 

 
Hence, 
 

, , ,

, , ,

( ) ( ) ( )
lim lim 0

( ) ( ) ( )
r r n r s n r r n

n n
r l n r l n r s n

F F F
F F F

β β β
β β β→∞ →∞

′ ′ ′
= =

′ ′ ′
. 

 
Also by Lemma 2 in Jiang (2004b) for j with r<j≤m  
 

,

,

( )
lim 0

( )
j r n

n
j l n

F
F

β
β→∞

′
=

′
,                                           (10) 

 
implying for l and any x 
 

/

, , , , ,

, , ,

,

,

( ) ( ) ( )
lim lim

( ) ( ) ( )

( )
                              =e lim 0.          (11)

( )
l r

l r n r n r r n r n l r n

n n
l l n l r n l l n

l r nx

n
l l n

F x F x F
F F F

F
F

λ

α β α β β
β β β

β
β

→∞ →∞

−

→∞

′ ′ ′ ′ ′+ +
=

′ ′ ′

′
=

′
 

Hence, 
 

, , ,

, ,
, ,

,

lim ( )

( )
lim ( ) 0           (12)

( )

l n l r n r nn

l r n r n
l n l l nn

l l n

np F x

F x
np F

F

α β

α β
β

β

→∞

→∞

′ ′+

′ ′+
′= =

′

 
2) If s>r, there exists s1 with s1<s, such that 

1 1 1, , ,( )s n s s n s snp F Aβ ′ → = ∞ if
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Hence, as in the derivation in Eq.(9) we have for 
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Thus, as in the derivation in Eqs.(10), (11) and (12) 
we have for j with s≤j≤m,  
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Hence we also get, 
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If s1>r, we repeat the step and get s2>s3>…>si. 

Since m<∞, after some limited number of steps we get 
si≤r. This completes the proof. 

B) xF<∞: 
The proof is similar to that in i). 
The     extreme     value     distribution    ( )ZG x =  

1, 1,
1/ 1/( ) ( ) ( )r r rA A

r r rx x xλ λ−
−Λ Λ ×Λ…  can also be called 

Gumbel mixture distribution. 
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CONCLUSION 
 

Fréchet mixture, Gumbel mixture and Weibull 
mixture can be not max-stable distribution. 
Theorem 4    i) If α1=αr, then a Fréchet mixture is 
Fréchet distribution. 

ii) If α1<αr, then a Fréchet mixture is not 
max-stable. 
Proof    i) If α1=αr, then αi=αr for all 1≤i≤r−1 and  
 

1
1/

1

( ) ( ) ( ) ( ),i r

i r r r

r
A

i
x x x B xαβ

α α α α

−
−

=

Φ ×Φ = Φ = Φ∏  

 

where 
1

1

1
r

i
i

B A
−

=

= +∑ which implies our statement. 

ii) Let α1<αr. If αi=αj for some 1≤i<j≤r, then 
 

 ( )( ) ( ) ( ).j i ji

i j j

A A AA x x xα α α
+Φ Φ = Φ  

 
Hence, w.l.o.g. we suppose that α1≤α2≤…≤αr. 

Now suppose 
1

1

( ) ( ) ( )i

i r

r
A

i
G x x xα α

−

=

= Φ ×Φ∏ is 

max-stable. Thus, there exist constants αr>0 and bk 
such that 
 

1 1

1 1

( ) ( ) ( ) ( )i i

i r i r

r r
kA Ak

k k k k
i i

a x b a x b x xα α α α

− −

= =

Φ + ×Φ + = Φ ×Φ∏ ∏
 

By taking logarithms, this is equivalent to 
 

1 1

1 1

( ) ( )i ir r

r r

i k k k k i
i i

k A a x b k a x b A x xα αα α
− −

− −− −

= =

+ + + = +∑ ∑
 
where α1<α2<…<αr. 

For fixed k, let x 0, then the right hand side of 
the above equality tends to approach ∞, but if bk≠0, 
then the left hand side of the above equality is 
bounded, this is a contradiction. Hence bk=0 and 

 
1 1

1 1

( ) ( ) .i ir r

r r

i k k i
i i

k A a x k a x A x xα αα α
− −

− −− −

= =

+ = +∑ ∑        (13) 

 
This is equivalent to 
 

11 1

11 1

1

1
2 1 1

1

1
2 1 1

1( ) 1 ( ) ( )

1                = ( ) 1 .

i r

i r

r
i

k k k
i

r
i

i

AkA a x a x a x
A A

AA x x x
A A

α αα α α

α αα α α

−
−− −

=

−
−− −

=

 
+ + 

 
 
+ + 

 

∑

∑
 

 

Let x→∞, for any fixed k we get 1 1kk αα − = , and hence 
11/

k k αα = . Inserting it into Eq.(13) 
 

1 1

1 1
1 / 1 /

1 1

i i ir r r

r r

i i
i i

A k x k x A x xα α α αα α α α
− −

− − −− − −

= =

+ = +∑ ∑  

 
By multiplying both sides with rxα  we get 
 

1 1

1 1
1 / 1 /

1 1

1i r i r ir

r r

i i
i i

A k x k A xα α α α α αα α
− −

− − −−

= =

+ = +∑ ∑ . 

Let x→0, for any k we get 11 / 1rk α α− = . Hence, 
α1=αr, this is a contradiction.  
Theorem 5    i) If α1=αr, then a Weibull mixture is 
Weibull distribution. 

ii) If α1<αr, then a Weibull mixture is not 
max-stable. 
Proof    The proof is similar to that in Theorem 4.  
Theorem 6    i) If λ1=λ2=…=λr−1=1, then a Gumbel 
mixture is Gumbel distribution. 

ii) If there exist at least one parameter λi<1, 
1≤i≤r−1, then a Gumbel mixture is not max-stable. 
Proof    i) If λi=1 for all 1≤i≤r−1, then 
 

1

1

( ) ( ) ( ) ( log )i

r
A B

i
i

x x x x Bλ
−

=

Λ ×Λ = Λ = Λ −∏ , 

 

where
1

1

1 ,
r

i
i

B A
−

=

= +∑  which implies our statement. 

ii) If λi=λjj for some 1≤i<j≤r, then 
 
 ( ) ( ) ( ).j i ji A A AA

i j jx x xλ λ λ+Λ ×Λ = Λ  

 
Hence, w.l.o.g. suppose that 0<λ1<λ2<…<λr−1<1=λr. 

Let Ar=1. Now suppose 
  

1

1

( ) ( ) ( )i

r
A

Z i
i

G x x xλ
−

=

= Λ ×Λ∏  
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is max-stable, it means that there exist constants ak>0 
and bk such that: 
 

1 1

1 1

( ( ) ( ) ( ) ( )i i

r r
kA A

i k k i
i i

a x b x x xλ λ
− −

= =

Λ + ×Λ = Λ ×Λ∏ ∏ . 

 
By taking logarithms, this is equivalent to 
 

( )

1 1

e e .i k k i

r r
a x b x

i i
i i

k A Aλ λ− + −

= =

=∑ ∑                           (14) 

 
Thus, 
 

1
1 1

11

log
( )( )

1
2 1

( )
1

2 1

e 1 e

              e 1 e .

k k
i k k

i

k ra x b
a x bi

i

r
xx i

i

AA
A

AA
A

λ
λ λ λ

λ λλ

 
− + − 

− − + 

=

− −−

=

 
+ 

 
 

= + 
 

∑

∑
 

 
Let x→∞, we have for any fixed k, 
 

1
1

log

1e
k k

ka x b
A

λ
λ

 
− + − 

  ∼ 1
1e

xA λ− . 
 

This results in  
 

11,   log /k ka b k λ= = . 
 

Inserting it into Eq.(14) 
 

11 /

1 1

e ei i i

r r
x x

i i
i i

A k Aλ λ λ λ− − −

= =

=∑ ∑ . 

 
By multiplying both sides with ex, we get 
 

1 1

1 1
1 / (1 ) (1 )1 1/

2 2

e e 1i i i

r r
x x

i i
i i

A k k Aλ λ λ λλ
− −

− − −−

= =

+ = +∑ ∑ , 

 
Let x→−∞, we have for any fixed k, 
 

11 1/ 1k λ− = , 
 
which implies  λ1=1 and 
 

1 1
1

2 2

e ei i i

r r
x x

i i
i i

A k Aλ λ λ
− −

− − −

= =

=∑ ∑ . 

 
By multiplying both sides with 2e xλ , we get 
 

2 22

1 1
1 ( ) ( )1

3 3

e e 1i i i

r r
x x

i i
i i

A k k Aλ λ λ λ λλ
− −

− − −−

= =

+ = +∑ ∑ , 

 
Let x→−∞, we have for any fixed k, 
 

21 1k λ− = , 
 
which implies λ2=1 and similarly, for i with 3≤i≤r−1, 
λi=1. 

Hence, λ1=λ2=…=λr−1=1, this is a contradiction.  
Fréchet mixture, Gumbel mixture and Weibull 

mixture in Theorems 1, 2, 3 can be represented as 
mixed generalized extreme value distribution 
(MGEV)

1 , , ( )
r

H xρ ρ… as follows: 

 

1

1/

1

, ,

1

exp{ (1 ) }

             if 0 or 0,
( )

exp{ exp{ }}

              if 0  for all 

i

r

r

i r
i

r r
r

i i
i

i

A x

H x
A x

i r

ρ

ρ ρ

ρ

ρ ρ

λ

ρ

−

=

=


− +


 > <= 
 − −


= ≤

∏

∏
…     (15) 

 
where 1+ρrx>0, Ai∈(0,∞) and λi∈[0,1) for 1≤i≤r−1, 
λr=Ar=1 and ρ1≥ρ2≥…≥ρr≥0 or ρ1≤ρ2≤…≤ρr≤0. 
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