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Abstract:  The sequences {Z;,, 1<i<n}, n>1 have multi-nomial distribution among i.i.d. random variables {X,, i1}, {Xz,,
21}, ..., {X,,; i21}. The extreme value distribution Gz(x) of this particular triangular array of i.i.d. random variables Z, ,, Z, ,, ...,

r—1
Z,, 1s discussed in this paper. We found a new type of not max-stable extreme value distributions, i) G,(x) = H(I) 2: (x)x D, (x);

i=1

r—1 r—l
i) G,(x) =2 (x)x ¥, (x); i) G,(x)=[[A*(Ax)x Ax), 122, 0<arZa<...<a, and 4,e(0,1] for i, 1<i<r—1 which occur if

i=1 i=1

Fj, ..., F, belong to the same MDA.
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INTRODUCTION Fi(x)eMDA(G)) i.e. for every j, there exist normaliz-

ing sequences a;,, 5, such that
In Jiang (2004a; 2004b) we considered the case

of mixing two sequences, with m=2, and proved that R _
limF/(«, x+ B;,) =G, (x).

the limit distribution is often still an extreme value n—w®
distribution, hence max-stable. But in some cases
mixtures of extreme value distributions such as 1) Consider the sequences {Z;,, 1<i<n}, n>1,

CD; ()@, (x) and ii) ‘Pil (0¥, (x) (& <a,), ii)) ~ which are defined by:

A(px)A(x) (0<p<1) occur. The question was posed
whether with the mixture of more than 2 distributions,
a more general class of limit distributions can be
observed which contains even mixtures of different Z,,=1X,, with probability p, ,
types of extreme value distributions. In this paper we ' ' '

will investigate this situation. " N
The question can be formulated into the fol- X,,;, with probability p, ,

X,, with probability p, ,

lowing mathematical model: Let {X;, =1}, {Xz,
21}, ..., {Xu i21} be m sequences of independent
and identically distributed random variables with
distribution functions F(x) for j, 1<j<m (Jiang, 2002).
Assume

where ij,n=1 andp,, > p; 20 (1< j<m).

J=1

Hence,

P =29, F ), (1)
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Consider the limit G, (x) = lim Pr{M, (Z) < a,x + f3,}

Wlth Mn(Z):maX(Zl,no ZZ,VH
sequences 0<p;,<1, for 1<j<m and normalizing con-
stants ,, .

, Zny) and for some

QUESTIONS TO BE ANALYZED

If p;,—p;€[0,1), does the above extreme value
distribution Gz(x) exist? In which case, is it a
max-stable distribution? If not, what G(x) distribu-
tions are possible? In which case, is Gz(x) Fréchet,
Gumbel or Weibull? What are the relationships be-
tween Gz(x) and Gy(x), ..., G,(x)? Does the prob-
ability p;, influence the form of the extreme value
distribution Gz(x)?

This model is motivated for instance by the idea
that the extreme values can be contaminated by some
more than 2 other random variables. In other situa-
tions, extreme values are based on observations which
stem from several sources with rather different dis-
tributions.

Let x, be the right endpoint of distribution

function F(x) for j, 1<j<m. In this paper we discuss
the case in which Fi(x) (1<j<m) have the same right
endpoint and belong to the same MDA with p; ,—0.

RESULTS FOR EQUAL RIGHT ENDPOINTS

In this section we derive the limit distribution
GAx) with p;,—0 for j with 1<j<m-1, and p,,,—1,

assuming that

F
1m ﬁ
x—)xF Fm (x)

(Resnick, 1987) there exists a function c(x)e[0,0)
such that

Xp ==X =Xp SO0 If

=d. €[0,0), by Khintchine theorem

np,, F, (e, x+ B,) — —logG, (ax +b) = c(x)

for some a>0 and e (0,).
For large n

np)',)'IF_'V (anx + ﬂn) - pr,ndr (nﬁm (aﬂx + ﬁn ))
~ p,,d.c(x) >0,

thus the terms of the r.v. X, have no influence on the
limit distribution G4(x). Hence, w.l.o.g. we can sup-
pose that every F(x) (1<j<m~—1) in our model satisfies

. F(x)
lim =2 =00
S ()

)

On the other hand, if for large n, np, ,<oo, then
nprqnl?:, (a,x+pB,)—0, the term of the r.v. X,, has
also no influence on the limit distribution Gz(x).
w.l.o.g. in our model we can also suppose that for
every j with 1<j<m

NPy y—>0, 3)

and thus the normalizing sequence «, = a; nd

Jolnp; .n]a
' . . .
B.=p np, .y €XISt for every j with 1<j<m.

Furthermore, we can order the sequences{X;
J>1}, 1<i<m—1. w.l.o.g. we can suppose

F

ﬁ =c¢,,and 1=c;> c2>...2¢;p-12C,=0, 4)
X>xp Fi(x)

. . F
where if ¢/=c; and i<j, then assume lim ﬁ >1 and
= F(x)
. F
if lim = (x) =1 we can order them as we want.
X‘)XF F/ (x)

Lemma 1 Suppose that continuous Fj(x)e MDA(Gj))
satisfy Eqs.(2) and (4) forj with 1<j<m.

) If £, (x) e MDA(®,, ), then F(x) e MDA(®, )
for j with 1<j<m—1 and o<an<.. . L0120y,

i) If F),(x) e MDA(Y,, ), then F,(x) e MDA(Y, )
for j with 1<j<m—1 and o<, . . L0120,
Proof 1) Since F, (x)e MDA(®, ) and x=o,
F.(x)e MDA((DQ/ ) or Fi{x)eMDA(A) for j with
1<j<m—1. But if Fj(x)e MDA(A), then by Lemma 1 in
. _ F®
Jiang (2004a) we get lim =

= E,(x)

dictory to Eq.(2). Thus, F;(x) e MDA(CDQ/_ ) for j with

=0. This is contra-

1<j<m-1. Hence, the statement follows by Eq.(4) and
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Lemma 1 in Jiang (2004a).

i) The proof is similar to that in 1).

If F,(x)eMDA(A) and xz=x, then for every j
with 1<j<m—1, F(x)e MDA(®,) or MDA(A). Since
Fi(x) satisties Eq.(2) for every j with 1<j<m—1, by
Lemma 1 in Jiang (2004a), w.l.o.g. we can suppose

Fj(x)eMDA(dba/) for j; with 1<<k,  and

Fi(x)eMDA(A) for j with k+1<j<m, respectively, or
Fi(x)eMDA(A) for all j with 1<j<m. Similarly, if
F,(x)eMDA(A) and xp<co, w.l.o.g. by Lemma 1 in
Jiang (2004a) we can suppose Fj(x)eMDA(‘Pa/)

for j with 1<j<k, and Fi(x)e MDA(A) for j with
k+1<j<m, respectively, or Fix)e MDA(A) for all j
with 1<j<m. Since the remaining cases were treated in
Lemma 1, the following cases will be dealt with:

1) xp=o0 and Fj(x)e MDA(A) for j with 1<j<m.

1) xp=o0, F;(x)e MDA((I)aj) for j with 1<k

and Fj(x)e MDA(A) for j with k+1<j<m.
iii) xz<oo and Fi(x)e MDA(A) for j with 1<<m.
iv) xp<co and F(x)e MDA(‘Pa/ ) for j with

1<j<k and Fy(x)e MDA(A) for j with k+1<j<m.
Lemma 2 Assume that Fy(x)e MDA(A) satisfy
Egs.(2) and (4) for j with 1<j<m. Let

A, = lim £
e [0

exist for every j with 1<j<s<m. Then A;<1 and
il/sﬁlz/sﬁ. . .Sﬂs,l/s.

Proof Since Fj(x)e MDA(A) satisfy Eqs.(2) and (4)
for j with 1<j<m, we have for j<s

Hence, by Lemma 1 in Jiang (2004a) we get A;,<1.
On the other hand, for i<j<s

I AGIAGY A

ﬂ’i/x_ — YjlsThil
STL@ L0 S

Sﬂ’j/s

Now we can deal with the above situations.

Lemma 3  Assume that F,(x) e MDA(CI)% ) satisfy

Eqgs.(2), (3) and (4) forj with 1<j<m. If for all j, s with
1<j.s<m, np, F(al,)—> A, €[0,%), then there
exists an index 7, such that r=max{s>1:4;,<c0 for
every j with 1<<s}.

Proof By Lemma 1, we get oj<an<...<qy,.

If npjynfj(a,'n‘n) — 4,, <x for 1<j<m-1, then
r=m; if there exist some j, such that A4;,=oo, let
si=max {1<j<m—1:4; ,,=0}. If nPj,nF}(a;,,n)_)Aj,sl
<oo for 1<j<s -1, then r=s;. Otherwise, we can con-
tinue this step. Since 4;;=1<co, then r>1. This com-
pletes the proof.

Theorem 1  Under the assumptions of Lemma 3,
then the limit distribution of M(x) with the normal-
izing sequences a, =/, and 3,=0 is

G, (x) =D (x)... D" (x)x D, (x)

where 7 is given in Lemma 3.
Proof By Lemma 1, we get o<an<...<qy,.

For » given in Lemma 3 and every / with »<I/<m
there exists s</, such that np,,F.(a],)—> A, =o.

Hence,

F(a F(a,
L) _ o fim i) _g (5)
n—® F;(a., )

s,n K

and by Lemma 2 in Jiang (2004b) for j with s<j<m,

F.(a
im _"( ‘Y,’”) =0 (6)
n—»o F;'(al,n)
1) If s<r, then 4, ,<oo. Thus

F(a,) F(a,) F.(a.,)

-~ = lim—=—
e R (a;,n) e F;(a.;,n) F; (al’,n)

__F(el,)
=4  lim=———=0. @)

s, -
n—wo F; (al,,n )

and by Lemma 2 in Jiang (2004b) for j with s<j<m,

ij(a;,n) —

im 2% ®)
n—o F‘j(al,n)
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Hence,

: - ' . - ’ F} (a; n )
hm npl nF; (ar n) = hm npl nF; (ar n’/ = /’
n—o ’ > n—o ’ > F; (al,n)

F(a
=lim _l( ',’”) =0
e F} (al,n )

2) If s>r, there exists s;<s, such that

T ’ _ . . .
np, F, (a;,) > A,  =oo. Hence, as in the derivation

in Egs.(5) and (6) we have for j with s,<j<m,

Fa, )
lmf —
noee F/‘ (ax,n)

If s1<r, then 4, , <oo. Thus, as in the derivation

in Egs.(7) and (8) we have for j with s,<j<m

F(e;,)
m f —
e Fj (asl,n)

This results in

Flay,)_. FE(a,) E@,) F(,) _

e F_; (al’,n ) e F_; (a; N ) R (a;,n ) R (al,,n )

and by Lemma 2 in Jiang (2004b) for j with s<j<m,

F(a'
1m_’(—r,’") =0
n—o F}(al,)1)

Hence, again we get

F(a],)
F} (al,,n )

hm npl,nF} (a;,n ) = hm npl,nF} (al’,n )

F; (alf,") — 0

=lim—
= F(a,)

If s,>r, we repeat the step and get s,>s3>...>5,.
Since m<oo, after some limited number of steps we get

s;<r which shows that limnp, ,F,(a,,)=0, forall />r.

Thus

which completes the proof.

also np,’n]?}(ar',nx) ~ np,,,f, (a,f’n )x =0,

We can call the extreme value distribution
G,(x)= CD:ji” (x).. (Dz: (x)x®, (x) Fréchet mix-
ture distribution. Similarly, G, (x) =¥, (x)... ¥ (x)
x¥, (x)can be called Weibull mixture distribution
and we have the following theorem.

Assume that F(x) eMDA(‘Pa/_) sat-
isfy Eqs.(2), (3) and (4) for 1<j<m with xz<co. If for
all j, s with 1<j,s<m, np, ,F,(y.,) > 4, €[0,].

Then

i) there
r=max {s>1:4; <oo for every j with 1<j<s};

ii) the limit distribution of Mx(x) with the

normalizing sequences «, =, , and f,=xr is

Theorem 2

exists an index 7, such that

G,(x) =¥ (x).. W (x)x ¥, (x).

Lemma 4 Assume that Fj(x)eMDA(A) satisfy
Eqgs.(2), (3) and (4) forj with 1<j<m. If for all j, s with
1<j,5<m, npj,nl?j(ﬂ;,n) — 4, €[0,0], then there ex-

ists an index 7, such that r=max {s>1:4; ;<00 if 1;;>0 or
A4; =0 if 4;,=0 for every j with 1<j<s}.
Proof If npj.,nﬁj(,b” )= 4, <o if 4;,>0 or

A4;,~0 if 1;=0 for 1<j<m~1, then r=m. If there exist
some j, such that 4;,=o0 if 4;,>0 or 4,,>0 if A;,~0,
let s;=max{1<j<m—1:4,,~x if 4;,>0 or A4;,>0 if
ﬁfj/m:O}-

If npj,nF}(IB_y,l,n)_)Aj,xl <oo if /l/,lgl >0 or
4, =0if 4, =0 for 1<j<s;—1, then r=s;. Other-

wise, we continue this step. Since 4, ;=1<oo, then r>1.
This completes the proof.

Theorem 3  Under the assumptions of Lemma 4,
then for any x the limit distribution of Mz(x) with the

normalizing sequences @, =a/, and S, = S/ is

G,(x)=A"(4,,%)...A" (4, x)x A(X),

where r is given in Lemma 4.
Proof We discuss the following two cases.

A) xp=0:

For r given in Lemma 4 and every / with r<I<m
there exists s</, such that np, .F.(f3/,) > 4, = if
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Ag>0 or Ay>0 if Ay~=0. Thus,

F;(ﬂll,n)

lim=— 1
n—w F;(ﬂs,n)

by Lemma 2 in Jiang (2004b) for j with s<j<m

F (B _

E ) ®

1) If s<r, then 4;,<oo or lim _(ﬁ' ) =4, <
e F(BL) T

which implies by Lemma 2 in Jiang (2004b) for j with
s<j<m and for any ¢ and large n,

b

EBD e,
BBy
Hence,
FBL) _ . FBL)EWBL) _
SREB,) BB BB

Also by Lemma 2 in Jiang (2004b) for j with r<j<m

lim ('B’ ) =0, (10)
n—ow F (ﬂl .
implying for / and any x

Fla,x+p.)

r,n

F(a,,x+pB.,) F(B.)

m =lim —
o E(ﬂl,n) e F(ﬂrn) F}(ﬂl,n)
=e " lim E(B) =0. (11)
n—»o F(IB]n)
Hence,
hm npl,n}?} (a;,nx + ﬂr,,n)
. _ F(af x+ 0 )
=limnp, F,(B],)——="——""2=0 (12)
G IV /9]

2) If s>r, there exists s; with s;<s, such that

np, F, (B,) > A,
A.,.=0. Thus,

51/

s=0if 4, >0 or 4 >0 if

_F.(B,)
hmf = 18"
= F (B )

Hence, as in the derivation in Eq.(9) we have for

j with 5,<j<m, ’11112 = ((ﬂﬂz n))
F (B.)

If s;<r, then lim———

== F (f,.,)

implies by Lemma 2 in Jiang (2004b) for j with
51<j<m and for any ¢ and large n,

=4, , <o, which

FBLD g
Ep)
Hence,
FB,) . BB EWB.) FQBL)

lim—=———=lm—=——"———"———
o F;(ﬂ/,n) o F; (ﬂl,n) F; (ﬂs,n) F;(ﬂsl,n)

Thus, as in the derivation in Egs.(10), (11) and (12)
we have for j with s<j<m,

LI -

n—»o0 F (ﬂ] n) n—»

Fl(e),x+f,)
m L
E(ﬂl,n)

Hence we also get,

hm npl,nF; (ar’,nx + ﬁlf,n) = O .

If s,>r, we repeat the step and get s,>s3>...>s,.
Since m<oo, after some limited number of steps we get
s:<r. This completes the proof.

B) xp<oo:

The proof is similar to that in i).

The distribution G, (x) =

A (A,,%)... A" (A, x)x A(x) can also be called

Gumbel mixture distribution.

extreme value
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CONCLUSION

Fréchet mixture, Gumbel mixture and Weibull
mixture can be not max-stable distribution.
Theorem 4 i) If o=a,, then a Fréchet mixture is
Fréchet distribution.

ii) If o<e,, then a Fréchet mixture is not
max-stable.
Proof i) If oy=a,, then a=¢, for all 1<i<r—1 and

r=1
Hq):f (x)x (I)ar (x)= (Di (x)= (I)ar (B_l/a’x),

i=1

r—l1
where B=1+ Z A, which implies our statement.
i=1

ii) Let a1<a;. If a=q; for some 1<i<j<r, then
D ()0 (x) =D ().

Hence, w.l.o.g. we suppose that o1<a<...<a,.
r—1
Now suppose G(x)=[]@; (x)x®, (x) is
i=1
max-stable. Thus, there exist constants «,>0 and b,
such that

r—1 r-1
Hq)];?f (a,x+b)x q)l;,. (4x+b)= H(D; (x)x D, (x)

=l i=1

By taking logarithms, this is equivalent to

r—1 o1
kY A(ax+b) " +k(ax+b)“ =Y Ax™ +x7
i=1

i=1

where a<m<...<a,.

For fixed &, let x \ 0, then the right hand side of
the above equality tends to approach oo, but if b0,
then the left hand side of the above equality is
bounded, this is a contradiction. Hence ;=0 and

r—1 r—l1
kY A(ax) +k(ax)™ =) Ax“ +x“.  (13)
i=1 i=1

This is equivalent to

—a O Al o) —a, 1 o, —a,
kA (a,x) ‘(1+Zj(akx) 1 +Z(akx) ! ]

i=2 <4 1

-a, < A7 o —a; 1 a —a,
=4,(x) 1+2;x i +Zx .
=2 44 1

Let x—oo, for any fixed k£ we get ko, =1, and hence

a, =k"“ . Inserting it into Eq.(13)

r—1 r—1
l-a;/ay _— 1- - - -
ZAik al o g el e =ZA,.x %X
i=1

i=1
By multiplying both sides with x* we get

r=1 r=1
I-a;/ = l-a,/ =
Sk g S g
i=1

i=1
Let x—0, for any k we get k'“'“ =1. Hence,

a1=a,., this is a contradiction.
Theorem 5 i) If a;=¢,, then a Weibull mixture is
Weibull distribution.

i) If o<e,, then a Weibull mixture is not
max-stable.
Proof The proof is similar to that in Theorem 4.
Theorem 6 i) If 4,=4,=...=4,_1=1, then a Gumbel
mixture is Gumbel distribution.

ii) If there exist at least one parameter A;<I,
1<i<r—1, then a Gumbel mixture is not max-stable.
Proof 1) If =1 for all 1<i<r-1, then

ﬁ/\”" (Ax)x A(x) = A®(x) = A(x—1log B),

i=1

r=1
where B =1+ z 4., which implies our statement.

i=1

ii) If A=A for some 1<i<j<r, then
A (AX)x A (Ax)= AT (4 ).

Hence, w.l.0.g. suppose that 0<A4,<A,<...<4,_1<I=4,.
Let A,=1. Now suppose

G,(x)= ﬁAA" (Ax)x A(x)
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is max-stable, it means that there exist constants a;>0
and by, such that:

ﬁAkA' (A (a,x+b,)x A(x) = ﬁ/\“’ (Ax)x A(x).

By taking logarithms, this is equivalent to

r r
kY A0t =N g, (14)

i=1 i=1

Thus,
logk]
=4 | apx+by ——— r
Ale l[ e A 1+ Z Ai 3*(1(’11 Naygx+by )
i=2 Al

) .
=A4e™ {1 + Yy A ]

=2 44

Let x—o0, we have for any fixed £,

logk

A j ~ Ale’l"“ .

-4 [akx-v-bk -

Ae
This results in
a, =1, b, =logk/4,.

Inserting it into Eq.(14)

r r

=21 4 o= A
DAk T e = 4
i=1 i=1

By multiplying both sides with €', we get

r—1 r—1

12,12 ((1=2;)x -1/ _ (1-2,)x
Do AR AN A =N 4
i=2

i=2
Let x—>—o0, we have for any fixed £,
kl*l/ﬂl :1

which implies 4,=1 and

r—1 r—1
z Aik"’l" et = z Al.e’ﬂ"x .
i=2 i=2
By multiplying both sides with e”*, we get

r—1 r-l
ZAikl-/l, elhAx | 1Ak — ZAie(ﬂz-/l,)X +1,
i=3

i=3
Let x——o0, we have for any fixed £,
k=1,

which implies 4,=1 and similarly, for i with 3<i<r—1,
A=1.
Hence, 41=1,=...=A4,_1=1, this is a contradiction.
Fréchet mixture, Gumbel mixture and Weibull
mixture in Theorems 1, 2, 3 can be represented as
mixed generalized extreme value distribution
(MGEV)H,  (x)as follows:

[Texpt-4a+p2)"")

i=1

ifp.>00rp, <0,

[ Texpi-4 expi-Axi}

if p,=0 foralli<r

H, . (x)= (15)

where 1+px>0, 4;€(0,0) and 4;€[0,1) for 1<i<r—1,
A=4,=1 and p;>2p:>...2p,>0 or p;<p<...<p,<0.
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